
 Programming & Integration

 An Introductory Guide to Motion Control Programming…

Precision MicroControl (PMC) motion controllers
are successfully deployed in a wide variety of
applications such as electronic assembly, electro-
optics and semiconductor machine automation.
PMC recognizes that no matter what the
application, good software tools are a critical to
the success of any automation project.

To speed system development, PMC offers a
comprehensive and powerful high-level Motion
Control Application Programming Interface
(MCAPI), as well as our Motion Integrator™ suite
of graphical setup, tuning and diagnostic utilities.
These software tools are designed to help you get
up-and-running quickly – whether your control
program requires just a few simple motion
commands, or the flexibility and power of a multi-
threaded C++ host application.

To further simplify system integration and
eliminate any hidden costs, all software is
included with PMC motion control cards at no
extra charge. And to ensure that you get the most
out of your programming investment, all
functions and commands are compatible across
the entire PMC product family.

• Fully programmable in C /C++, Delphi & Visual Basic

• Drivers for Windows 98/2000/NT/XP and Linux

• Simple command-based programming also available

• Includes Motion Integrator™ setup & diagnostic tool suite

• Compatible across PMC controller family

 MCAPI - Motion Control Application Programming Interface

For the experienced programmer, the
MCAPI provides a standard set of
functions that can be called from
application programs written in C/C++ and
other high level languages such as Visual
Basic and Delphi (Pascal). In addition, the
Motion VI Library provides the LabVIEW
and BridgeVIEW programmer with
graphical access to the MCAPI. For easy
integration with Microsoft COM enabled
software (Component Object Model
supporting ActiveX components), a
standard COM interface to the MCAPI is
also provided.

The MCAPI is fully supported under
Windows 982000/NT/XP and Linux.
For the Windows and Linux developer,
the MCAPI is a Dynamic link Library
(DLL) that communicates with the
control card through 32-bit installable
device drivers.

The functions of the MCAPI have
names consistent with the operations
they perform, making programs easy to
read and practically self-documenting.

For example, the function call to move 1
axis to position 1000 would appear in a
C program as:

MCMoveAbsolute(ctrlr,1,1000,0);

The function call to read the position of
axis #8 into a variable is:

Position = MCGetPosition (ctrlr,8);

The Motion Control API (MCAPI) was
designed from the ground up to include
the power and flexibility that experienced
C- programmers have come to expect. The
design of the MCAPI includes a high
degree of backwards- and cross-platfom
compatibility. Code written four, five, or
even six years ago will run on the latest
versions of the MCAPI.

For high-performance motion control
applications, communication speed is
critical. The MCAPI uses the motion
control card’s dual ported memory and
high-speed direct binary interface for
optimum throughput.

C-Programmable

For High-Performance

PC-Based

Applications

• Designed for OEM’s with demanding PC-based control requirements

• Seamless integration with high-level languages

• Programmable in C/C++, Delphi, LabVIEW, Visual Basic

• Capable of multi-threading under Windows NT/2000/XP and Linux

• Clearly documented with comprehensive on-line help

• Many example programs with source code

• For RTOS support (QNX,VxWorx,VenturCom & others) contact PMC

Visual Basic™
Development Environment

Microsoft Visual
Developers Studio™

Partial Listing of MCAPI Functions
Change output state of digital I/O channel
Set jog configuration
Configure and enable / disable gearing
Set direction of travel
Turn axis on or off
Get current position
Get status value from axis
Get velocity value
Start motion
Start axis or axes moving to home position
Store current position to point memory
Move to an absolute position
Move a relative distance from current position
Set acceleration value
Set deceleration value
Set servo output phase
Get current scale factors
Set scale factors for unit conversion
Set PID filter values

A representative sample of the more than 130 MCAPI functions. Contact PMC for an up-to-date
list.We continually add functions to support new features.

Motion Control Programming Options

MCEnableDigitalIO(ctrlr, channel, state);
MCSetJogConfig(ctrlr, axis, lpjog);
MCEnableGearing(ctrlr, axis, masis, ratio, state);
MCDirection(ctrlr, axis, dir);
MCEnableAxis(ctrlr, axis, state);
MCGetPosition(ctrlr, axis);
MCGetStatus(ctrlr, axis);
MCGetVelocity(ctrlr, axis);
MCGo(ctrlr, axis);
MCGoHome(ctrlr, axis);
MCLearnPosition(ctrlr, axis, index);
MCMoveAbsolute(ctrlr, axis, index);
MCMoveRelative(ctrlr, axis, distance);
MCSetAcceleration(ctrlr, axis, rate);
MCSetDeceleration(ctrlr, axis, rate);
MCSetServoOutputPhase(ctrlr, axis, select);
MCGetScale(ctrlr, axis, scale_factors);
MCSetScale(ctrlr, axis, scale_factors);
MCSetFilterCongig(ctrlr, axis, lpflf);

Motion Control Programming Options

WinControl is a powerful yet
easy to use Windows based
terminal emulator for MCCL
programming. MCCL commands
can be entered from the
keyboard or downloaded from
an ASCII text file.

The Windows MCAPI on-line help
includes links to programming

examples and associated
commands.

Tight integration with popular
programming environments
includes syntax coloring to
allow easy identification of
MCAPI specific code.

Software is

Compatible

Across the Entire

Family of PMC

Controllers

Motion Control Programming Options

MCCL – Motion Control Command Language

• Intuitive, easy-to-use commands

• Store & execute multiple programs on-board

• Solve any application, from basic to the most complex

• Ideal for prototyping and embedded control applications

Partial Listing of MCCL Command Set

Setup Commands Motion Commands Reporting Commands
PP Profile Parabolic CM Contour Mode AT Tell Pos. Aux. Encoder
PS Profile S curve CP Contour Path TF Tell Following Error
SA Set Acceleration CR Arc Center Relative TO Tell Optimal Position
SD Set Derivative Gain FE Find Edge TP Tell current Position
SE Stop on Follow Error FI Find Index TS Tell Servo Status
SG Set Prop. Gain GH Go Home TT Tell Target Position
SH Step Half/Micro GO Start in Velocity Mode TX Tell Cont. Count
SI Set Int. Gain MA Move Absolute TZ Tell Index Position
SQ Set Torque MF Motor Off
SS Set Slave ratio MN Motor On Macro Commands
SV Set Velocity MR Move Relative ET Escape Task
US User Scale PM Position Mode GT Generate Task
VA Vector Acceleration QM Torque Mode MC Macro Call
VD Vector Deceleration SM Set Master MD Define as Macro
VG Velocity Gain SN Synchronization On MJ Macro Jump
VO Velocity Override ST Stop RM Reset (clear) Macros
VV Vector Velocity VM Velocity Mode TM Tell Macro

A representative sample of the more than 175 MCCL commands.

PMC’s motion control cards can execute
more than 175 MCCL commands, allowing
you to perform a wide variety of tasks with
a simple on-board command language.
Setting a motor’s maximum speed, moving
a motor to a specific position, or even
reporting the current position are just some
of the operations that can be performed
using the MCCL commands.

Each MCCL command can easily be
identified by a two-letter mnemonic. The
letters are easy to remember because they
relate to the function the command
performs. The format for all commands is
the same as the example below:

1 MA 10.5

Axis # Parameter
Command Mnemonic

This command causes axis 1 to Move
Absolute to position 10.5. By placing
commas (,) between multiple commands,
they can all be issued at the same time to
initiate synchronized multi-axis motion.

The MCCL language includes commands
for conditional execution branching and

looping. Using these commands, complex
control operations can be implemented in
user-written “macro” routines. Multiple
commands can be linked, permanently
stored in the card’s memory as a macro
command, and used at any time. Macro
commands can be written to perform any
motion, from a simple homing routine, to
controlling an entire machine without the
intervention of a host computer.

As with the Windows version of the MCAPI,
the MCCL commands can be sent to the
card via three different interfaces:

• PC bus (ISA or PCI using the
terminal emulator software utilities)

• RS-232/422 serial port
• IEEE-488 interface

With a terminal emulator utility running
on the host PC, typing on the keyboard
transfers one character at a time to the
motion control card. Any response from
the card will be displayed on the host
computer screen. Motion control com-
mands can also be placed in an ASCII text
file and downloaded to the card.

Easy-to-Use Motion

Command Language

for Fast Prototyping

& Embedded Control

Win Control Motion Command
Terminal Emulator

Motion Contol Programming Options

High Level
Languages
• C
• C++
• Visual Basic
• Pascal

Advanced
Development
Environments
• Delphi
• Lab Windows
• Visual C/C++

Visual Programming
• Visual Basic
• LabVIEW
• BridgeVIEW
Drivers
• OLE controls
• LabView VI

MCCL
ASCIICommand
Interface
(Win Control
Terminal Emulator)

Motion Control API (MCAPI)

Low-Level Device Driver / DLL

PMC Motion Control Card

PMC’s Motion Control API for
Windows 95/98/NT/2000 includes
complete function libraries for:

• Visual C/C++

• Visual Basic

• Borland Delphi

• LabVIEW

• BridgeVIEW

• Watcom C/C++

PMC continuously develops new software tools and
provides custom software solutions to qualified
OEM’s. Contact a PMC application engineer to
discuss your requirements.

Motion control applications can run on the host PC, the PMC controller, or both.

Software included with each controller includes many high-level program-
ming examples and pre-built Windows dialog boxes with source code, as well
as extensive online help and PMC's Motion Integrator™, a comprehensive
suite of setup, tuning and diagnostic tools.

A complete VI Library with detailed motion control
icons is provided for LabVIEW programmers

Motion Dialog boxes are pre-built for all common setup tasks,
so you can incorporate them into your application program
with a single function call. They are already written, so you
don't have to.

Two of the many high-level programming
examples - available with fully annotated source
code

Get you controller installed and running in hours instead
of days with PMC's graphical and intuitive Motion
Integrator™ setup, tuning & diagnostic programs.

Servo Setup & Scaling Motion Dialogs LabVIEW programming examples

A Servo Tuning and a System Setup dialog box "C" and Visual Basic Sample Programs

Powerful API

& Software Tools

Speed System

Development

• Host-based application programs:
For sophisticated applications
running on a host PC, the Motion
Control API (MCAPI) provides
seamless integration between PMC
motion control systems and popular
high-level programming languages.

• Embedded application programs:
For applications and routines
running on-board the PMC
controller, the Motion Control
Command Language (MCCL) is
easy-to-use and frees the host PC
for other tasks.

Motion Control Integration and Diagnostic Tools

We continuously develop new software tools. Please consult our factory for the latest available software.

To assist the machine builder,
powerful software tools are
included with the Windows
MCAPI. For the programmer,
there is a wealth of commented
sample source code. And our
Motion Integrator™ suite of
setup, tuning and diagnostic
programs will help you get
your system up and running
in no time.

2075-N Corte del Nogal
Carlsbad, CA 92009, USA
Tel 760-930-0101 • Fax 760-930-0222

Information: info@pmccorp.com
Sales: sales@pmccorp.com
Tech Support: support@pmccorp.com
Web: www.pmccorp.com

www.pmccorp.com Control
For Robotics & Machine Automation

Motion

Motion Control Programming Examples
PMC provides programming support for DOS, Windows, and stand-alone applications. Below are two motion control programming
examples. Each example shows how to program the same motion using MCCL commands and MCAPI functions.

Linear and Circular Contouring

PMC's motion control cards support simultaneous Linear and/or
Circular Contouring. Any number of axes (as many as eight) with
any combination of Servo and Stepper motors can be used. The
on-board CPU will compute points on the path at intervals of 125
µsec, while still allowing on-the-fly changes of feed rate,
acceleration, deceleration, and PID parameters. For example:

3D Linear Interpolated move

MCCL
1VV10,1VA50,1VD50 ; Set Vector Vel.,Accel., & Decel.
1CM1,2CM1,3CM1 ; Contour Mode Axes1, 2, & 3
1CP1,1MA15,2MA15,3MA5 ; Contour Move (CP1=

; Linear Interpolation) Absolute Move
; to Axis 1=15.0", 2=15.0", 3=5.0"

MCAPI using “basic”
Contour.VectorVelocity = 10.0 ‘ set contour velocity
Contour.VectorAccel = 50.0 ‘ set contour acceleration
Contour.VectorDecel = 50.0 ‘ set contour deceleration
Call MCSetContourConfig(1, Contour) ‘ initialize axis with contour

‘ settings
Call MCSetOperatingMode(1, 1, CONTOUR) ‘ axis one is in control
Call MCSetOperatingMode(2, 1, CONTOUR) ‘ axis two linked to axis one

‘ motion
Call MCSetOperatingMode(3, 1, CONTOUR) ‘ axis three linked to

‘ axis two
Call MCContourPath(1, LINEAR, “ 1MA15,2MA15,3MA5”)

Basic Positioning

Any or all axes can be easily programmed for independent
motion with a minimum of commands.

Move axis 1, wait for 5 msec, return to starting position

MCCL
1SV15,1SA5, 1DS5 ; Set Axis #1 vel., Accel. & Decel
1MR3.5,1WS0.005,1MR-3.5 ; Move axis #1 3.5", wait 5 msec,

; Move-3.5"

MCAPI using “C”
MCSetVelocity(1, 15.0); // set axis 1 velocity
MCSetAccleration(1, 5.0); // set axis 1 acceleration
MCSetDeceleration(1, 5.0); // set axis 1 deceleration
MCMoveRelative(1, 3.5); // move axis 1 by 3.5 inches
MCWaitForStop(1, 0.005); // wait 5msec after axis 1 stops
MCMoveRelative(1, -3.5); // move axis 1 by -3.5 inches position

MCAPI using “basic”
Call MCSetVelocity(1, 15.0) set axis 1 velocity
Call MCSetAccleration(1, 5.0) set axis 1 acceleration
Call MCSetDeceleration(1, 5.0) set axis 1 deceleration
Call MCMoveRelative(1, 3.5) move axis 1 by 3.5 inches
Call MCWaitForStop(1, 0.005) wait 5 msec after axis 1 stops
Call MCMoveRelative(1, -3.5) move axis 1 by 3.5 inches

Axis #1

0.0" 5.0"

5.0" 15.0"

5.0" 15.0"
Axis #2

Axis #3

Relative
Move #1

Relative
Move #2

5
msec

3.5"

3.5"

0.0"

0.0"

5 msec setting time between relative moves

3-dimensional Linear Interpolated move Velocity Profile for three axes Linear Interpolated
move

Z

X

Y

(X = 15, Y = 15)

(X = 5, Y = 5, Z = 5)

