

MultiFlex ETH
1000 Series

Ethernet Motion Controller - User’s Manual
Revision 1.2

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009 * USA

Tel: +1-760-930-0101
Fax: +1-760-930-0222

www.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

Precision MicroControl Corp.

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed to be free
from defects in material and workmanship, for a period of 2 years from the date of shipment. Liability is
limited to FOB Factory repair, or replacement, of the product. Other products supplied as part of the
system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use or
installation or consequential damage.

© Copyright Precision Micro Control Corporation, 2008-2012. All rights reserved.

Information in this document is subject to change without notice.

Intel is a registered trademark of Intel Corporation.

Microsoft® and Windows® are registered trademarks of Microsoft Corporation.

Acrobat® and Acrobat Reader® are registered trademarks of Adobe Corporation.

Precision MicroControl Corp.
2075-N Corte del Nogal

Carlsbad, CA 92011 • USA

Tel: +1-760-930-0101
Fax: +1-760-930-0222
Web: www.pmccorp.com
Email: info@pmccorp.com
 support@pmccorp.com
 sales@pmccorp.com

MultiFlex ETH 1000 Series User's Manual

i

Table of Contents

Prologue... 3
Introduction ... 5
Motion Control Primer .. 11

Axis I/O ..15
The Command Set - the heart of the motion controller ...16
Executing Operations with MCCL ...17
Closed loop, open loop, and position verification..20
Why does a servo need to be tuned?..22
Position Feedback - Quadrature Incremental Encoder ...24
Servo Amplifiers: Current Mode versus Velocity Mode...25
Stepper Motors - Full Step versus Micro Step ..26
Homing - Why, When, and How ..27

Software, Programming and Utilities .. 29
Controller Interface Types ...30
Building Application Programs using Motion Control API ...31
MCSpy - application program diagnostic tool..36
PMC Sample Programs...37
Motion Control API On-line Help ...38
Motion Integrator ...40
PMC Utilities ..43

Connecting to the Controller ... 47
+/- 10V Analog Servo Command Connections ...48
PWM (Pulse Width Modulation) Command Connections..49
Pulse Command Connections...51
Amplifier / Driver Enable Connections - Low Active..52
Driver Disable Connections - Low Active ..53
Amplifier / Driver Enable Connections - High Active ...54
Amplifier / Driver Fault Connections..55
Differential Incremental Encoder Connections..56
Single Ended Incremental Encoder Connections..57
Over-Travel Limit Connections..58
Home Sensor Connections ...60
TTL Digital Input Connections ...61
TTL Digital Output Connections ..62
A/D Input Connections wiring example ...63

Motion Control... 65
Servo (analog command) Axis Setup..65
Tuning the Servo ...68
Moving Servo Axes with Motor Mover...77
Stepper (pulse command) Axis Setup...78
Moving Stepper Axes with Motor Mover..85
Contour Motion (arcs and lines) ..91
Electronic Gearing ...100
Jogging ..101

Table of Contents

Precision MicroControl Corp.

ii

Defining Motion Limits ...102
Homing Axes ...105
Motion Complete Indicators...117
On the Fly changes ...119
Feed Forward (Velocity, Acceleration, Deceleration)..120
Save and Restore Axis Configuration Settings ...122

Application Solutions ... 123
Backlash Compensation..123
Emergency Stop ..125
Encoder Rollover ...127
Flash Memory Firmware Update ...128
Saving and Restoring Axis Configuration Settings..129
Learning/Teaching Points..133
Building MCCL Macro Sequences ..135
MCCL Multi-Tasking ..137
Position Capture ..140
Position Compare ..141
Position Verification of an Open Loop Pulse Axis ...143
PWM Servo Command..147
Record Motion Data...150
Resetting the Controller...151
Single Stepping MCCL Programs ...152
Torque Mode Output Control...154
Turning off Integral gain during a move...156
Defining User Units..159
Watchdog Circuit ...163

General Purpose I/O.. 165
Digital I/O...165
Configuring and Exercising the Digital I/O...167
Using the Digital I/O...168
A/D Inputs..170

Specifications.. 173
Motion Control Board...173
Analog Command Axis Specifications...174
Pulse Command Axis Specifications...175

I/O Signal Descriptions & Schematics .. 177
Signal Descriptions..178
Motor Command Signals ...178
Encoder Feedback Signals..179
Default Axis Inputs...179
Default Axis Outputs..181
Default Configuration of General Purpose I/O ..183
Circuit Schematics...185

Troubleshooting.. 189
Controller Error Codes ... 199

Motion Control API Error Codes..200
MCCL Error Codes ..201

Glossary... 203
Appendix.. 207

Default Axis Configuration Settings...207
Index... 209

MultiFlex ETH 1000 Series User's Manual

3

Prologue

This document provides configuration, programming and application information for the MultiFlex ETH
1000 Series Ethernet motion controllers. Documentation for this product line includes the following
documents:

MultiFlex ETH 1000 Series Quick Start Guide
MultiFlex ETH 1000 Series Installation Manual
MultiFlex ETH 1000 Series User’s Manual (this document)
Motion Control API (Application Programming Interface) Reference Manual
Motion Control Command Language (MCCL) Reference Manual

The latest versions of these documents can be downloaded from the Support section of PMC’s web site
at: www.pmccorp.com/support/mfxeth1000.php.

Motion Controller Installation

i

This user manual provides detailed information about how to configure and
program the controller. To learn how to install and initiate communication with
the controller, please see the MultiFlex ETH 1000 Series Installation Manual,

This user manual applies to all MultiFlex ETH 1000 Series models, which include the following:

Table 1. MultiFlex ETH 1000 Series Models

Model Total Analog AC Sine Step/Dir or Encoder Analog
 Axes and/or Commutation CW/CCW Channels Inputs
 PWM Axes Axes Pulse Axes (standard / (optional)

 (Servo) (Servo) (Stepper/Servo) optional)

MultiFlex ETH 1040 4 - - 4 0 / 4 8

MultiFlex ETH 1400 4 4 2 - 4 8

MultiFlex ETH 1440 8 4 2 4 4 / 8 8

MultiFlex ETH 1800 8 8 4 - 8 8

MultiFlex ETH 1802 8 8* - - 8 8

MultiFlex ETH 1840 12 8 4 4 8 8

* PWM onlly

http://www.pmccorp.com/support/mfxeth1000.php�

Precision MicroControl Corp.

4

Page intentionally
left blank

MultiFlex ETH 1000 Series User's Manual

5

Introduction

The MultiFlex ETH 1000 Series are programmable Ethernet-based motion controllers designed for high-
performance multi-axis control of servo and stepper motors and I/O. Features and benefits offered by
models in this series include:

 Fast communication via 10/100 Ethernet or independent (stand-alone) operation
 64-bit floating-point RISC CPU for high precision and dynamic range
 Customizable FPGA-based I/O architecture
 Up to 12 total axes (model ETH-1840)
 4 to 8 axes analog servo control (models ETH-1400, -1440, -1800, -1840)
 8 axes PWM servo control (models ETH-1800, -1802, -1840)
 Up to 4 axes Step/Dir/CW/CCW pulse control (models ETH-1040, -1440, -1840)
 2 to 4 axes AC sine commutation (models -1400, -1440, -1800, -1840)
 Coordinated motion - interpolation, contouring, spline, master/slave, gearing
 Trapezoidal, S-curve and parabolic velocity profiles
 User selectable 1, 2, 4 kHz servo update rate each axis
 16-bit analog servo command outputs
 20 MHz encoder inputs for high-speed, high-resolution moves
 5 MHz step/direction/CW/CCW outputs for high-speed microstepping
 On-the-fly changes in trajectory, direction and PID values
 On-board multi-tasking frees host PC for other tasks
 Eight general-purpose 14-bit A/D input channels (optional)
 Up to 76 user-assignable digital I/O channels
 Encoder-failure detection circuitry for improved machine safety
 Sub-microsecond position capture & compare I/O for rapid event triggering & synchronization
 Plug-on interconnection boards can reduce or eliminate extra wires and cables
 Programmable in C/C++/C#/.NET, Delphi, LabVIEW, VB and easy-to-use command language
 Drivers and example programs with source code for Windows and Linux
 Programming API and commands are compatible across all PMC motion controllers
 Graphical setup, tuning, diagnostic and example programs
 Custom features and performance enhancements available upon request

Chapter

1

Introduction

Precision MicroControl Corp.

6

Processor

MultiFlex ETH 1000 series motion controllers feature an advanced 64-bit MIPS CPU core coupled with
Ethernet interface logic and internal cache memory to provide a powerful processing engine for high-
performance motion control. An embedded multi-tasking real time kernel executes all motion control
operations with 64 bit floating point precision. 32 MB of DRAM and 8 MB of non-volatile FLASH memory
provide on-board memory space for executing both the intrinsic motion control code as well as user
programs. A high-capacity FPGA interfaces directly with I/O such as encoders, analog inputs, control
signals and general-purpose I/O and provides a great amount of flexibility for tailoring the controller to
specific application and performance requirements.

PC computer minimum requirements

A MultiFlex ETH 1000 series controller can communicate with almost any Windows or Linux based
computer equipped with a 10/100 Ethernet adapter with PMC’s Motion Control API installed. At run-time,
the controller can be connected to a host PC application or it can be configured to run stand-alone without
a host PC. In both cases, the controller’s CPU executes motion functions independently of the host PC,
so other than the minimum requirements for the selected operating environment (Windows, Linux), the
controller does not require the use of any additional PC resources.

Programming

Windows and Linux programmers can create flexible and powerful control programs for PMC motion
controllers in two ways:

1. Writing a high-level program (C/C++/C#/VB/Pascal/LabVIEW) that uses the functions supplied as
part of PMC’s Motion Control API (Application Programming Interface)

and/or

2. Using PMC’s embedded multi-tasking Motion Control Command Language (MCCL)

Programmers can use either, or both, programming methods to command and control the motion
controller. For example, a multi-threaded C/C++/C# host application program can control and coordinate
the execution of motion and I/O, while one or more embedded MCCL routines can run simultaneously as
background tasks on the controller board.

To operate the controller in true stand-alone mode (without a host PC), MCCL macro routines must be
used exclusively. In this case, one or more MCCL macro routines would be saved to the controller’s non-
volatile memory and one command macro would be configured to execute automatically on boot-up. On
the other hand, if the controller remains connected to the host PC, then users can deploy any
combination of Motion Control API and MCCL programming that meets their needs.

PMC’s WinControl terminal emulator utility (a Motion Control API component) provides a low-level
command interface used to send MCCL commands and routines to the controller for immediate
execution, or to download and save MCCL routines (also called “macros”) to the controller for later
execution. Any MCCL command or routine can also be downloaded and called from a high-level program
(C/C++/C#/VB etc) via the appropriate Motion Control API function libraries.

For additional information on Motion Control API and MCCL programming, please refer to the Motion
Control API Reference Manual and the Motion Control Command Language (MCCL) Reference
Manual which are both available for download at: www.pmccorp.com/support/mfxeth1000.php.

Motion Control API example

http://www.pmccorp.com/support/mfxeth1000.php�

Introduction

MultiFlex ETH 1000 Series User's Manual

7

Function prototypes
C/C++ MCMoveAbsolute(HCTRLR hCtlr, WORD axis, double position);
C#/.NET Mcapi.Error Mcapi.MoveAbsolute(Int16 axis, Double position);
Delphi: procedure MCMoveAbsolute(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCMoveAbsolute(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW:

//C/C++ Example, Move Axis 1 to position 85000

MCMoveAbsolute(hCtlr, 1, 85000.0);

MCCL command example

MA Move Absolute
MCCL command : aMAn a = Axis number n = integer or real
applies to: Analog Command Axis, Pulse Command Axis
see also: MR, PM

These MCCL command sequences cause the motion controller to execute a move to absolute position n.

;Example:
1MA1000 ;Axis 1 move to position 1000
2MA-25000 ;Axis 2 move to position -25000

The following example illustrates MCCL multi-tasking. This example shows how a user would monitor the
state of a digital input while an axis is moving in order to ‘automatically’ stop the axis as soon as the input
is activated:

;Example:
AL0,AR10 ;define user register 10 as input #4 active
AL0,AR100 ;define user register #100 as background task
MD100,IN4,MJ101,NO,1JR-3 ;jump to macro 101 when digital input #4 turns on
MD101,1ST,1WS.05 ; macro 101 defined, stop axis #1.
AL1,AR10,ET@100 ;terminate background task

i

There is not necessarily a one-to-one relationship between each Motion Control
API function and eacn MCCL command. Although any MCCL command can be
called directly using the Motion Control API’s pmccmdex() function, most Motion
Control API functions ease the task of programming by encapsulating additional
functionality within each function.

Introduction

Precision MicroControl Corp.

8

Programming Tools

PMC’s Motion Control API provides experienced programmers with a comprehensive function library.

Develop application programs with Visual
C/C++/.NET

Comprehensive on-line help provides detailed
function descriptions and program samples

Sample programs with full source code are
supplied with the MCAPI. These C++, Visual
Basic, and Delphi sample programs allow the
user to; move an axis (servo or stepper),
monitor position (actual, target, and optimal),
monitor axis status & I/O (Limits +/-, Home,
Index, an Amplifier Enable), define or change
move parameters (Maximum velocity,
acceleration/deceleration), Define or change
the servo PID parameters

Introduction

MultiFlex ETH 1000 Series User's Manual

9

Software Tools & Utilities

PMC’s Motor Mover allows users to: move any or
all motors, change velocities on the fly, define
cycling routines, monitor position and status

PMC’s Motion Integrator's Setup Wizards
walk the user through the integration

process with external components (motors,
encoders, sensors)

The Servo Tuning Utility includes on-line help assisting
with both using the program and explaining the
fundamentals of servo tuning. A complete Servo Tuning
tutorial is also available on the Motion CD

Introduction

Precision MicroControl Corp.

10

I/O Configuration Panel

PMC's I/O Configuration Panel (accessible from Windows Control Panel) allows users to re-configure
the channel numbers and logical functions of the digital I/O. The flexibility provided by this unique feature
allows more efficient use of I/O resources and eases the task of connecting the controller to external
devices.

Figure 1. Digital I/O Configuration Panel

MultiFlex ETH 1000 Series User's Manual

11

Motion Control Primer

Motion Control Architecture

A typical PC-based multi-axis motion control system is comprised of :

 A programmable motion controller
 A user interface from which to program, command and monitor the motion controller
 Two or more servo or stepper motors
 An amplifier/driver for each motor
 A position feedback device for servo motors or closed-loop stepper motors
 End of travel sensors (or limit switches) for axes with linear travel
 A mechanical stage and load. In this illustration, a stage is mounted on bearings and a lead screw

is coupled to the motor shaft. When the motor shaft rotates, the stage moves along the lead
screw.

Figure 2: Typical motion control system

Chapter

2

Ethernet cable

Servo or Stepper Motor

Lead screw

Encoder
Stage

Positive Limit
sensor

Negative Limit
sensor

Amplifier/Drive

 PC computer

Multi-Axis
Motion

Controller

Axis 1
Axis 2

Axis 3
Axis 4

Motion Control Primer

Precision MicroControl Corp.

12

Motion Controller Functional Block Diagram

PC Computer

Servo
Amplifier

Servo
Motor

Quadrature
Encoder

PCI Interface

General Purpose Digital I/O
(PLC type event

sequencing)

PID Filter
Axis 1
Axis 2
Axis 3
... etc.

Encoder
Decode

DAC
(+/- 10V)

Pulse
Axis

Axis I/O
(home, limits,
amp enable..)

Stepper
Driver

Stepper
Motor

Digital inputs

Digital outputs

Windows
Device Driver

Application
Programming

Interface

A/D
inputs

(optional)

Analog inputs

+2V to +24V

+2V to +24V

Timer
Interrupts

High-speed encoder capture inputs

High-speed encoder compare outputs

Non-Volatile
User-Program

Storage

Trajectory Generator
(velocity profiles)

Axis 1
Axis 2
Axis 3
... etc.

RAM Memory

Command Processor

Motion Controller
Ethernet
Interface

Motion Control Primer

MultiFlex ETH 1000 Series User's Manual

13

Motion Controller Tasks

The MutiFlex ETH 1000 Series motion controllers feature a 64-bit floating-point CPU, FPGA, I/O buffering
circuitry, a real time kernel and proprietary motion control firmware which work in combination to control
the position, velocity, or torque of as many as twelve axes. The primary operations performed by the
motion controller are:

 Trajectory generation (Trapezoidal, S curve, and Parabolic)
 PID filter (servo loop)
 I/O and error handling
 Host communication

On a periodic basis (each 250 microseconds to 1 millisecond, depending on the performance mode
chosen by the user), the controller’s CPU receives an internal interrupt that automatically triggers the
execution of the controller’s trajectory generator. Based on user commanded motion, the trajectory
generator then calculates a new desired positions and velocity values for all axes.

+/- 10 Volt Analog Servo Control

The target positions calculated by the trajectory generator are passed to each respective PID filter for
generation of a +/- 10V analog servo command signal for each axis. In addition to the trajectory
generator, every millisecond, the controller performs housekeeping and error checking (over travel limits
& following error exceeded) tasks.

PID Filter

The position feedback loop or PID (Proportional-Integral-Derivative) filter is executed every 1000 – 250
microseconds (1 - 4 kHz), depending on the performance mode chosen by the user. Each PID filter
execution results in the writing of a value to the DAC (Digital to Analog Converter) which is proportional
to:

Position error (the difference between the optimal (desired) position and the current position)
Plus the integral of the error
Plus the derivative of the error

The following discrete-time equation illustrates the control performed by the servo controller:

 u(n) = Kp*E(n) + Ki sum E(n) + Kd[E(n') - E(n' - 1)]

where u(n) is the analog command output level at sample time n, E(n) is the position error at sample time
n, n' indicates sampling at the derivative sampling rate, and kp, ki, and kd are the discrete-time filter
parameters loaded by the users. The first term, the proportional term, provides a restoring force
proportional to the position error. The second term, the integration term, provides a restoring force that
grows with time. The third term, the derivative term, provides a force proportional to the rate of change of
position error. It provides damping in the feedback loop. The sampling interval associated with the
derivative term is user-selectable; this capability enables the servo controller to control a wider range of
inertial loads.

Motion Control Primer

Precision MicroControl Corp.

14

Position Feedback via Incremental Encoder

The motion controller monitors the position of a servo via an incremental encoder. Both differential (A+, A-
, B+, B-, Z+, Z-) and single ended (A, B, Z) incremental encoders are supported. The maximum encoder
frequency is 20 MHz (@ 50% duty cycle). The two quadrature signals from the encoder are used to keep
track of the position of the motor. Each time a logic transition occurs at one of the quadrature inputs, the
controller’s position counter is incremented or decremented accordingly. This provides four times the
resolution over the number of lines provided by the encoder. The encoder interface is buffered by a
differential line receiver that includes error detection circuitry that will indicate an encoder fault for the
following conditions:

Open circuit condition
Short circuit condition
Low differential voltage signal
Common mode range violation

Note: For encoder fault detection of a single ended encoder the A-, B-, and Z+/Z- inputs must be
terminated to the 1.5V Encoder Reference signal.

Pulse (Step/Dir/CW/CCW) Command for Stepper or Pulsed Servo Systems

The controller supports the following type of pulse-command axes.

 Open Loop Stepper
 Open Loop Stepper with encoder feedback for position verification
 Closed Loop Stepper
 Closed Loop Servo (position loop closed by the servo amplifier)

The default format of the pulse command signal pair is Step/Direction but it can be configured by the user
for Clockwise/Counter Clockwise operation. The step-rate range for a pulse command axis is from a
minimum of 0.1 pulses per second to a maximum of 5 million pulses per second.

Position Feedback via Incremental Encoder

For Pulse Command applications that require position feedback the controller supports both differential
(A+, A-, B+, B-, Z+, Z-) and single ended (A, B, Z) incremental encoders. The maximum encoder
frequency is 20 MHz (@ 50% duty cycle). The two quadrature signals from the encoder are used to keep
track of the position of the motor. Each time a logic transition occurs at one of the quadrature inputs, the
controller encoder position counter is incremented or decremented accordingly. This provides four times
the resolution over the number of lines provided by the encoder. The encoder interface is buffered by a
differential line receiver that includes error detection circuitry for differential encoders that indicates an
encoder fault for the following conditions:

Open circuit condition
Short circuit condition
Low differential voltage signal
Common mode range violation

Note: For encoder fault detection of a single ended encoder the A_, B_, and Z+/Z- inputs must be
terminated to the 1.5V Encoder Reference signal.

Motion Control Primer

MultiFlex ETH 1000 Series User's Manual

15

Axis I/O

Digital I/O

Digital I/O are available on both the motion controller as well as on the optional ICN-125 plug-on
interconnection board.

The motion controller provides a total of 32 digital inputs and 28 digital outputs. 16 of the digital inputs are
bi-directional optically isolated (+3V to +25 V) and 16 are TTL level. For MultiFlex ETH 1000 series
models 1440 and 1840, four of the bi-directional optically isolated inputs (Limit +, Limit -, Encoder Coarse
Home, and Amplifier Fault) are shared between an analog command axis and a pulse command axis. 12
of the digital outputs are open-collector drivers and 16 are TTL level. By default each analog command
axis includes an open collect Amplifier Enable output that is capable of sinking 100 mA. By using the I/O
Configuration Panel described on pages 10 and 165, the user can associate any other digital output with
the Amplifier On/Off function.

High-speed I/O

High-speed capture and compare signals are also functions provided via the TTL I/O. Position capture
inputs are provided with up to 1 kHz trigger rate and a minimum pulse duration of less than 100
nanoseconds. High-speed TTL position compare outputs are provided with programmable trigger rates of
greater than 1 MHz and a maximum latency of less than 100 nanoseconds. Position compare
programmable modes of operation include: Strobe (repeat), Static, Toggle, and One-shot. The strobe
mode of operation is especially useful for triggering line-scan cameras for high-resolution inspection
applications.

For maximum convenience and ease of wiring, the user can re-assign the default functions of the digital
inputs and outputs using the I/O Configuration Panel described on page 10.

Motion Control Primer

Precision MicroControl Corp.

16

The Command Set - the heart of the motion controller

The motion controller is much more than an I/O card with DAC outputs and encoder inputs. The primary
task of the motion controller is to off load control and monitoring duties from the PC processor. This
requires a powerful and efficient low-level command set. Everything that a motion control card can do
depends on the command set. The command set of a high-performance motion controller should include
the ability to:

 Move one, some, or all motors simultaneously
 Calculate the trajectories and execute synchronized motion (linear interpolation, circular

contouring, helical motion)
 Set trajectory parameters (maximum velocity, acceleration, deceleration)
 Set PID filter parameters (proportional gain, derivative gain, derivative sampling period, integral

gain, integral limit, allowable following error, and feed forward)
 Report the axis / controller status, current position, target position, and many other parameters
 Provide data or interrupt the host PC based on user defined events
 Home an axis

The controller’s command set for is called MCCL (Motion Control Command Language) and it supports
more than 200 individual operations. For a complete listing and description of the controller’s command
set please refer to the separate Motion Control Command Language (MCCL) Reference Manual
which is available on PMC’s Motion CD and online at: www.pmccorp.com/support/support.php.

For quick application prototyping and troubleshooting, PMC’s WinControl utility allows the user to issue
MCCL commands directly to the controller. From the keyboard, MCCL commands can be entered one
command at a time and executed as soon as the user hits the ‘Return’ key. From the File menu, the user
can also download an entire MCCL text file to the controller.

Figure 3. WinControl allows the user to issue MCCL commands to the controller

http://www.pmccorp.com/support/support.php�

Motion Control Primer

MultiFlex ETH 1000 Series User's Manual

17

Executing Operations with MCCL

MCCL commands are two character alphanumeric mnemonics built with two key characters from the
description of the operation (eg. "MR" for Move Relative). When an MCCL command (followed by a
carriage return) is received by the controller it will be executed immediately. The following graphic shows
the result of executing the “VE” command. This command causes the controller to report firmware version
and installed memory size.

All axis-related MCCL commands will be preceded by an axis specifier, identifying for which axis the
operation is intended. The following graphic shows the result of issuing the Tell Position (aTP) command
to axis number one.

Note that each character typed at the keyboard should be echoed to the WinControl display. If you enter
an illegal character or an illegal series of valid characters, the controller will echo a question mark
character, followed by an error code. The MCCL Error Code listing can be found on page 201 of this
manual. On receiving this response, you should re-enter the entire command/command string. If you
make a mistake in typing, the backspace can be used to correct it, the controller will not begin to execute

Motion Control Primer

Precision MicroControl Corp.

18

a command until a carriage return is received.

Once you are satisfied that the communication link is correctly conveying your commands and responses,
you are ready to check the motor interface. When the controller is powered up or reset, each axis is
automatically set to the "motor off" state. In this state, there should be no drive current to the motors. For
servos it is possible for a small offset voltage to be present. This is usually too small to cause any motion,
but some systems have so little friction or such high amplifier gain, that a few millivolts can cause them to
drift in an objectionable manner. If this is the case, the "null" voltage can be minimized by adjusting the
offset adjustment potentiometer.

Before a motor can be successfully commanded to move certain parameters must be set by issuing
commands to the controller. These include; PID filter gains (servo only), trajectory parameters (maximum
velocity, acceleration, and deceleration), allowable following error (servo only), configuring motion limits
(hard and/or soft).

At this point the user should refer to the Motion Control chapter sections titled Theory of Operation –
Motion Control, Servo Operation and Stepper Operation. There the user will find more specific
information for each type of motor, including which parameters must be set before a motor should be
turned on and how to check the status of the axis.

Assuming that all of the required motor parameters have been defined, the axis is enabled with the
Motor oN (aMN) command. Parameter ‘a’ of the Motor oN command allows the user to turn on a specific
axes or all axes. To enable all, enter the Motor oN command with parameter ‘a’ = 0. To enable a single
axis issue the Motor oN command where ‘a’ = the axis number to be enabled.

After turning a particular axis on, it should hold steady at one position without moving. The Tell Target
(aTT) and Tell Position (aTP) commands should report the same number. There are two commands used
for basic position mode motion, Move Absolute (aMAn) and Move Relative (aMRn). To move axis 2 by
1000 encoder counts, enter 2MR1000 and a carriage return. If the axis is in the "Motor oN" state, it should
move in the direction defined as positive for that axis. To move back to the previous position, enter 2MR-
1000 and a carriage return.

The controller controller supports grouping together several commands. This is not only useful for
defining a complex motion that can be repeated by a single keystroke, but is also useful for synchronizing
multiple motions. To group commands together, simply place a comma between each command,
pressing the return key only after the last command.

A repeat cycle can be set up with the following compound command:

2MR1000,WS0.5,MR-1000,WS0.5,RP6 <return>

This command string will cause axis 2 to move from position 1000 to position –1000 7 times. The RePeat
(RPn) command at the end of a command string causes the previous command to be repeated 6
additional times. The Wait for Stop (aWSn) commands are required so that the first motion will be
completed (trajectory complete) before the return motion is started. The number 0.5 following the WS
command specifies the number of seconds to wait after the axis has ceased motion to allow some time
for the mechanical components to come to rest and reduce the stresses on them that could occur if the
motion were reversed instantaneously. Notice that the axis number need be specified only once on a
given command line.

A more complex cycle could be set up involving multiple axes. In this case, the axis that a command acts
on is assumed to be the last one specified in the command string. Whenever a new command string is
entered, the axis is assumed to be 0 (all) until one is specified.

Entering the following command:

2MR1000,3MR-500,0WS0.3,2MR1000,3MR500,0WS0.3,RP4 <return>

Motion Control Primer

MultiFlex ETH 1000 Series User's Manual

19

will cause axis 2 to move in the positive direction and axis 3 to move in the negative direction. When both
axes have stopped moving, the WS command will cause a 0.3 second delay after which the remainder of
the command line will be executed.

After going through this complex motion 5 times, it can be repeated another 5 times by simply entering a
return character. All command strings are retained by the controller until some character other than a
return is entered. This comes in handy for observing the position display during a move.
If you enter:

1MR1000 <return>
1TP <return>
(return)
(return)
(return)
(return)

The controller will respond with a succession of numbers indicating the position of the axis at that time.
Many terminals have an "auto-repeat" feature that allows you to track the position of the axis by simply
holding down the return key.

Another way to monitor the progress of a movement is to use the Repeat command without a value. If
you enter:

1MR10000 <return>
1TP,RP <return>

The position will be displayed continuously. These position reports will continue until stopped by the
operator pressing the Escape key.

While the controller is executing commands, it will ignore all alphanumeric keys that are pressed. The
user can abort a currently executing command or string by pressing the escape key. If the user wishes
only to pause the execution of commands, the user should press the space bar. In order to restart
command execution press the space bar again. If after pausing command execution, the user decides to
abort execution, this can be done by pressing the escape key.

Motion Control Primer

Precision MicroControl Corp.

20

Closed loop, open loop, and position verification

As it applies to motion control, there are three recognized control modes:

 Closed loop control
 Open loop control
 Open loop with position verification

Closed loop control

A broadly applied term, relating to any system in which the output is measured and compared to the
input. The output is then adjusted to reach the desired condition. In motion control, the term typically
describes a system utilizing a position transducer (an incremental encoder) to generate correction signals
in relation to desired parameters.

Servo systems are the most prevalent example of closed loop control. In a typical servo system a move
operations is initiated by the user issuing a move command to the servo controller. The controller then
calculates a velocity profile matching previously defined user trajectory (max. velocity, acceleration, and
deceleration) parameters. The controller applies a position/velocity command to the servo amplifier.
Based on feedback from an incremental encoder the servo controller calculates the following error
(difference between the actual position and the calculated desired position). The following error value is
then used by the PID filter to adjust the magnitude of the position / velocity command to the amplifier. For
additional information on the trajectory generator please refer to page 13 and 86. For additional
information on the PID filter please refer to page 13. For additional information on incremental encoders
please refer to page 24.

The significant advantage of a closed loop system is that based on the constant corrections by the PID
filter of the command voltage (based on the measured following error), servo systems are inherently more
intuitive than open loop systems. The disadvantage to the corrective nature of a servo system is that in
order for the PID filter to properly respond to a given error, the servo must be tuned. Tuning a servo is a
process in which the PID filter gain values are defined so that the response of the servo system to a given
following error meets the requirements of the machine designer. Compared to an open loop system,
which does not require PID filter tuning, the requirement of tuning a servo makes the setup of a closed
loop system a more complicated and time consuming operation. For additional information on tuning a
servo please refer to pages 22 and 68.

Open Loop control

An open loop control system is one in which the control output is not referenced or scaled to an external
feedback (typically an incremental encoder). The most widely recognized example of an open loop control
system is an axis controlled by a stepper motor. Most stepper motor controlled axes do not included any
type of external feedback device, so the axis is said to be operating "open loop". If for some reason the
stepper motor did not actually reach its target the stepper controller would be unaware of the fact.

Pulse command servo systems feature the use of digital amplifiers/drives which accept step/direction
(or CW/CCW) pulse command signals as inputs, and in which the closed loop control (position or velocity)
is executed entirely by the servo amplifier. As with a traditional servo system, a feedback device is
required, but in this case it is not necessary to connect it to the motion controller. The controller supports
pulse command servos, and if ordered with the stepper axis encoder option, the controller also supports
reading and recording the encoder position.

Motion Control Primer

MultiFlex ETH 1000 Series User's Manual

21

Open loop with position verification

By adding a feedback device (like an encoder) to a traditional open loop stepper you would have what is
known as an open loop with position verification system. For some applications where the higher costs,
complexity, or torque limitations of closed loop servos may be prohibitive a stepper coupled with an
encoder makes for a perfect compromise.

Contrary to many servo applications, where the following error of the axis along the entire path is of great
concern to the machine designer, for many stepper applications the user is only concerned about the 'end
of move' final position of the axis. By adding an encoder (typically directly coupled to the stepper motor
shaft) the user can monitor the 'end of move' final position of the axis and issue 'correction moves' to
compensate for any possible lost steps. For additional information on open loop with position verification
systems please refer to page 143.

Motion Control Primer

Precision MicroControl Corp.

22

Why does a servo need to be tuned?

A servo is a closed loop system, which the dictionary describes as:

An automatic system in which the output is constantly compared with the input through some form of
feedback. The error (or difference) between the two quantities can be used to bring about the desired
amount of control.

In typical servo systems:

 The output is a +/- 10 volt (torque or velocity) command that is applied as an input to a servo
amplifier

 The input described in the dictionary definition comes from an encoder. An encoder is an opto
electric device that generates two pulse trains that are phase shifted by 90 degrees

 In order for a servo system to perform properly, the difference (error) between the input and
output is multiplied by a set of gain values which results in a new output, bringing about the
desired amount of control

Servo tuning is the process in which the gain values are determined. From one servo axis to another the
gain values will change depending on differences between the motion controller, motor, encoder, and
load. When a user attempts to move an axis without first tuning the servo (determining the gain values)
the motion controller will not be able to calculate the appropriate output command to apply to the servo
amplifier. One of the following undesirable results will probably be observed:

 The axis will not move at all
 The axis moves in the direction of the target but stops well short of the target
 The axis moves in the opposite direction of the commanded target
 The axis towards the target but fails to 'settle', oscillation of one or more encoder counts is

detected

Imagine a seesaw, with the +/- 10 volt torque/velocity command on one side and the response of the
motor/load (feedback from an encoder) on the other side.

Output

(command signal)

Input

(encoder)

Motion Control Primer

MultiFlex ETH 1000 Series User's Manual

23

Until the servo is tuned, the system is effectively out of balance. Only after a servo has been tuned can
the controller calculate the appropriate torque/velocity command output for a given user defined motion.

To tune a servo axis use the Servo Tuning program included with PMC’s Motion Integrator software. For
assistance with servo tuning, refer to the Motion Control chapter of this manual or view or the
PowerPoint Servo Tuning tutorial available at www.pmccorp.com/support/mfxeth1000.php.

Figure 4. The Servo Tuning program is used to select PID gain values

Output
(command signal)

Input
(encoder)

Servo tuning

http://www.pmccorp.com/support/mfxeth1000.php�

Motion Control Primer

Precision MicroControl Corp.

24

Position Feedback - Quadrature Incremental Encoder

Quadrature Incremental Encoders are the default standard for providing position / velocity feedback for
today's motion control systems. A quadrature incremental encoder is an opto electric feedback device. A
light source and photo sensor pickup are used to detect markings on a glass ‘scale’. The more markings
on the glass scale, the higher the resolution of the encoder. The output of the photo sensor is passed to a
Phase Generator circuit, which is used to generate two wave forms (Phase A and Phase B), which have a
phase difference of 90 degrees. This phase difference is used by the controller to:

 Determine the direction of rotation (positive or negative) of the encoder/motor
 Enhance the resolution of the encoder by a factor of 4.

For noise immunity or applications where the encoder is positioned a significant distance from the motion
controller the encoder can use a differential driver device to output both the generated wave forms (A+
and B+) and their compliments A- and B-). For Differential or single ended encoders the MultiFlex
provides the user with the the option of enabling Encoder Fault detection, which will indicate an error
upon open circuit, short circuit, low differential voltage signal, and common mode range violation.

Glass scale

Phase
generation

circuitry

Phase A+

Index+LED Photo
sensor

Phase A-

Phase B+

Phase B-

Index-

Index mark

A 500 line quadrature incremental encoder will have 2000 quadrature counts per full rotation. The 90
degree phase difference is also used to determine the direction of motion of the axis/encoder. If phase A
comes before phase B, the controller will indicate positive or clockwise direction. If phase B comes
before phase A, the controller will indicate negative or counter-clockwise direction.

Some quadrature encoders include an additional ‘mark’ on the glass scale, which is used to generate an
index pulse. This signal, which ‘goes active’ once per rotation, is used by the motion controller to
accurately home (re-define the position of an axis) the axis. Please refer to the Homing Axes section of
this chapter.

Typically an encoder requires a +5 VDC power supply and ground reference, both of which are available
from the controller .

Motion Control Primer

MultiFlex ETH 1000 Series User's Manual

25

Servo Amplifiers: Current Mode versus Velocity Mode

For the vast majority of servo applications the user has the option of choosing between using a Current
Mode amplifier and a Velocity mode amplifier.

Current Mode amplifier (sometimes called Torque Mode)

The +/- 10V analog command output from the servo controller represents a current command to the
motor. The resulting output from the current mode amplifier will be proportional to the analog command
voltage output of the servo controller. A current mode amplifier typically requires that the user 'tune' the
current loop of the amplifier using either combinations of resistors and capacitors or adjusting
potentiometers while following manufacturer provided 'cook book' procedures.

 Current mode amplifier advantages:
 Low cost
 Ease of use
 High acceleration / deceleration increases machine throughput

Velocity Mode amplifier

Unlike a torque mode amplifier that closes only the current loop, a velocity mode amplifier closes both the
current loop and the velocity loop. A tachometer is used to provide velocity feedback. The +/- 10V analog
command output from the servo controller provides a velocity command to the amplifier, and the servo
controller uses Feed Forward (other wise known as Velocity Gain) to calibrate the velocity command to
the amplifier.

For servo systems that use velocity mode amplifiers the servo controller PID loop closes only the position
loop, and its operations are secondary to the velocity loop of the amplifier. Typically the PID gain values
of the servo controller will be very low (compared to the gain values of a torque mode amplifier).

 Torque mode amplifier advantages:
 High accuracy
 Analog velocity loop results in higher gains (stiffer response) and minimal following error

If there is a downside to using velocity mode amplifiers it would be that they can be more difficult to
configure. For one thing, unlike the torque mode amplifier that required minimal setup, a velocity mode
amplifier must be well tuned (minimal overshoot and no oscillation) before attempting to tune the position
loop of the servo controller. For additional information on working with velocity mode amplifiers please
refer to page 71.

Motion Control Primer

Precision MicroControl Corp.

26

Stepper Motors - Full Step versus Micro Step

Stepper motors have long been viewed as a low cost alternative to closed loop servos. The reality is that
there are real world application requirements for which stepper motors are better suited, regardless of
cost. The primary advantages of a stepper motor are:

 High torque to size
 High torque at low speed
 Holding torque (holds its position while not being commanded to move

Historically one of the primary disadvantages of a stepper motor was the limited number of step per
rotation, which limits final positioning resolution of the axis. Typical steps per rotation of today's stepper
motors range from 100 (3.6 degrees per step) to 500 (0.72 degrees per step). But with the advent of
microstepping driver technology a whole new world of applications have been opened up to the stepper
motor. For most stepper applications using a microstepping stepper driver can the user will gain:

 Increased positioning resolution
 Increased position accuracy
 Increased system performance by minimizing resonance
 Increased velocity resolution

As it relates to a stepper motor controller like the MultiFlex ETH 1000 Series, full step versus
microstepping is not an issue. The microstepping function of a motor occurs entirely in the stepper motor
driver - it has nothing to do with the motion controller. When switching to a microstepping stepper driver
the only required change is that prior to issuing a move command the user must recalculate the trajectory
parameters (max. velocity, acceleration, deceleration, and minimum velocity) and the move distance. For
example if a 200 step per rotation (1.8 degrees per step) stepper system with a maximum velocity of
20,000 steps per second is upgraded by using a microstepping driver operating at a ratio of 10:1:

 1) The maximum velocity of the axis is increased from 20,000 steps/sec. 200,000 steps/sec.
 2) The move the axis one complete rotation the move distance is increased from 200 to 2000

Motion Control Primer

MultiFlex ETH 1000 Series User's Manual

27

Homing - Why, When, and How

All data registers on the motion controller are volatile, if power is cycled (turn off and then turned on) or
the controller is reset, the position registers will be initialized to zero. In order for the user to position one
or more axes to specific locations on the machine the user must first initialize the machine by homing
each of the axes.

For most applications, there is some position/angle of the axis (or mechanical apparatus) that is
considered 'home'. Typical automated systems use electro-mechanical devices (switches and sensors) to
signal the controller when an axis has reached this position. Upon activation of the sensor the controller
captures the position of the axis. The controller is not shipped from the factory programmed to perform a
specific homing operation. Instead, it has been designed to allow the user to define a custom homing
sequence that is specific to the application requirements. For additional information on building homing
sequences please refer to page 105.

Homing closed loop systems

The home location of a closed loop system is usually defined by the index mark of an encoder. For
systems that use a rotary encoder, where the index mark will be asserted multiple times along the range
of travel of the axis, a Coarse Home sensor is used to qualify which of the index mark locations will be the
home location. For additional information on homing closed loop axes please refer to page 107.

Servo motor
and encoder

Stage

Coarse Home
sensor

Positive Limit
sensor

Negative Limit
sensor

Encoder Index
mark location

Figure 5. Homing a closed loop system with an encoder index mark and Coarse Home sensor

Homing open loop systems

Open loop steppers are typically homed based on the location of a home sensor. Unlike closed loop
systems that use a precision reference index mark, steppers are more prone to homing inaccuracies due
the lower repeatability of the single electro mechanical home sensor. To achieve the highest possible
repeatability; reduce the velocity of the axis and always approach the home sensor from the same
direction. For additional information on homing open loop steppers please refer to page 112 .

Stepper motorHome sensor
activated

Home sensor Positive Limit
sensor

Negative Limit
sensor

Stage

Figure 6. Homing an open loop stepper with a Home sensor

Motion Control Primer

Precision MicroControl Corp.

28

MultiFlex ETH 1000 Series User's Manual

29

Software, Programming and Utilities

MultiFlex motion controllers can integrate seamlessly with host-computer based Windows applications.
The Motion Control Application Programming Interface (Motion Control API) provides support for all
popular high level languages, including C/C++/C#/.NET Delphi, Visual Basic and LabVIEW. Additionally,
an embedded Motion Control Command Language (MCCL) allows machine designers to execute motion
control routines independent of the host PC.

PMC’s Motion Control API is a group of Windows components that, taken together, provide a consistent,
high level, Applications Programming Interface (API) for PMC's motion controllers. The difficulties of
interfacing to new controllers, as well as resolving controller specific details, are handled by the API,
leaving the applications programmer free to concentrate on the application program.

Motion Controller

Motion Control API Function Library

Low-Level Device Driver (DLL)

HighLevel
Languages
 C / C++
 C# / .NET
 Visual Basic
 Pascal

Advanced
Development
Environments
 Visual Studio
 Lab VIEW
 Delphi

Visual
Programming
 Visual Basic
 LabVIEW

Drivers
 LabVIEW VI

ASCII
Command
Interface

Figure 7. PMC’s Motion Control API Architecture

The Motion Control API has been designed with a layered approach. As new versions of of the Motion
Control API and new PMC motion controllers become available, API support is provided by simply
replacing one or more of these layers. Because the public API (the part the applications programmer
sees) lies above these layers, no changes to applications programs will be required to support new
versions of the Motion Control API.

Chapter

3

Software, Programming and Utilities

Precision MicroControl Corp.

30

The API itself is implemented in three parts. The low level device driver provides communications with the
motion controller, in a way that is compatible with the Microsoft Windows operating system. The Motion
Control API low level driver passes binary MCCL commands (Motion Control Command Language – the
instruction set of the controller) to the controller . By placing the operating system specific portions of the
API here it will be possible to replace this component in the future to support new operating systems
without breaking application programs, which rely on the upper layers of the API.

Sitting above that, and communicating with the driver is the API Dynamic Link Library (DLL). The DLL
layer implements the high level motion functions that make up the API. This layer also handles the
differences in operation of the various PMC Motion Controllers, making these differences virtually
transparent to users of the API.

At the highest level are environment specific drivers and support files. These components support specific
features of that particular environment or development system.

Care has been exercised in the construction of the API to ensure it meets with Windows interface
guidelines. Consistency with the Windows guidelines makes the API accessible to any application that
can use standard Windows components - even those that were developed after the Motion Control API!
Please refer to the Motion Control Application Programming Interface (Motion Control API Reference
Manual for additional information on adapting the Motion Control API to other development environments.

Controller Interface Types

The controller supports two onboard interfaces, an ASCII (text) based interface and a binary interface.
The binary interface is used for high speed command operation, and the ASCII interface is used for
interactive text based operation. The high level sample programs (CWDEMO, PASDEMO, and VBDEMO)
use the binary interface, PMC WinControl uses the ASCII interface.

Application programs must indicate which interface they intend to use when they open a handle for a
particular controller. A controller may have more than one handle open at a time, but all open handles for
a particular controller must specify the same interface (all must be open with the binary interface or all
must be open with the ASCII interface). The open mode is specified by setting the second argument of
the MCOpen() function to either MC_OPEN_ASCII or MC_OPEN_BINARY.

Note that not all functions are available in the ASCII mode of operation, this mode is intended primarily for
use with the pmcgetc(), pmcgets(), pmcputc(), and pmcputs() character based functions (these 4
functions are not available in binary mode). This restriction will be eliminated in a future release of the
API.

Software, Programming and Utilities

MultiFlex ETH 1000 Series User's Manual

31

Building Application Programs using Motion Control API

The Motion Control Application Programming Interface is designed to allow a programmer to quickly
develop sophisticated application programs using popular development tools. The Motion Control API
provides high level function calls for:

Configuring the controller (servo tuning parameters, velocity and ramping, motion limits, etc.)
Defining on-board user scaling (encoder/step units, velocity units, dwell time units, user and part zero)
Commanding motion (Point to Point, Constant velocity, Electronic Gearing, Lines and Arcs, Joystick
control)
Reporting controller data (motor status, position, following error, current settings)
Monitoring Digital and Analog I/O
Driver functions (open controller handle, close controller handle, set timeout)

A complete description of all Motion Control API functions can be found in the Motion Control API
Reference Manual.

Included with the installation of the Motion Control API is the Sources ‘folder’. In this folder are complete
program sample source files for C++, Visual Basic, and Delphi.

Software, Programming and Utilities

Precision MicroControl Corp.

32

C/C++ Programming

Included with each of the C program samples (CWDemo. Joystick demo, and WinControl) is a read me
file (readme.txt) that describes how to build the sample program. The following text was reprinted from the
readme.txt file for the CWDemo program sample.

Contents
========
- How to build the sample
- LIB file issues
- Contacting technical support

How to build the sample
=======================
To build the samples you will need to create a new project or make file within your C/C++ development
tool. Include the following files in your project:
 CWDemo.c
 CWDemo.def
 CWDemo.rc

For 16-bit development you will also need:
 ..\mcapi.lib
 ..\mcdlg.lib
 ..\ctl3d.lib

For 32-bit development you will also need:
 ..\mcapi32.lib
 ..\mcdlg32.lib

 If your compiler does not define the _WIN32 constant for 32-bit projects you will need to define it at
 the top of the source file (before the header files are included).

LIB File Issues
===============
Library (LIB) files are included with MCAPI for all the DLLs that comprise the user portion of the API
(MCAPI.DLL, MCAPI32.DLL, MCDLG.DLL, and MCDLG32.DLL). These LIB files make it easy to resolve
references to functions in the DLL using static linking (typical of C/C++). Unfortunately,
under WIN32 the format of the LIB files varies from compiler vendor to compiler vendor. If you cannot use
the included LIB files with your compiler you will need to add an IMPORTS section to your projects DEF
file. We have included skeleton DEF files for all of the DLLs for which we also include a LIB file
(MCAPI.DEF, MCAPI32.DEF, MCDLG.DEF, and MCDLG32.DEF).

The 16-bit LIB files were built with Microsoft Visual C/C++ Version 1.52,
and the 32-bit LIB files Microsoft Visual Studio Version 5.

Software, Programming and Utilities

MultiFlex ETH 1000 Series User's Manual

33

Visual Basic Programming

Included with each of the Visual Basic program samples (VBDemo. VBDemo32) is a read me file
(readme.txt) that describes how to build the sample program. The following text was reprinted from the
readme.txt file for the VBDemo32 program sample.

Contents
========

- About the sample
- How to build the sample
- Contacting technical support

About the sample
================
This sample demonstrates a simple user interface to one axis of a motion controller. The user may
program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms
demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions
(such as a full-featured, ready-to-run
axis configuration dialog) are also demonstrated.

How to build the sample
=======================
To build the samples you will need to create a new project or use the Visual Basic project file (created
with Visual Basic v6.0) included with the sample. Include the following files if you create your own project:

 About32.frm
 Main32.frm
 Servo32.frm
 Step32.frm
 VBDemo.bas

 ..\mcapi32.bas
 ..\mcdlg32.bas

Set frmMain as the startup object for the project.

Software, Programming and Utilities

Precision MicroControl Corp.

34

Delphi Programming

Included with each of the Delphi program sample (PasDemo) is a read me file (readme.txt) that describes
how to build the sample program. The following text was reprinted from the readme.txt file for the
PasDemo program sample.

Contents
========

- About the sample
- How to build the sample
- Contacting technical support

About the sample
================
This sample demonstrates a simple user interface to one axis of a motion controller. The user may
program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms
demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions
(such as a full-featured, ready-to-run
axis configuration dialog) are also demonstrated.

How to build the sample
=======================
To build the samples you will need to create a new project or use the Delphi project files included with the
sample (Pdemo.dpr for 16-bit, Pdemo32.dpr for 32-bit). Include the following files if you create your
own project:

 About.pas
 Global.pas
 PasDemo.pas
 Servo.pas
 Stepper.pas

For 16-bit projects you will also need:

 ..\mcapi.pas
 ..\mcdlg.pas

For 32-bit projects you will also need:

 ..\mcapi32.pas
 ..\mcdlg32.pas

Software, Programming and Utilities

MultiFlex ETH 1000 Series User's Manual

35

LabVIEW Programming

PMC’s LabVIEW Virtual Instrument Library includes an On-Line help with a Getting Started guide.

Software, Programming and Utilities

Precision MicroControl Corp.

36

MCSpy - application program diagnostic tool

MCSpy is a debugging tool for application programs that use PMC's Motion Control API programming
interface. MCSpy captures commands and replies sent between the application program and the motion
control card. These commands are displayed in Motion Control Command Language (MCCL), which is
the language the Motion Control API uses to communicate with PMC's Motion

The MCSpy Trigger Setup dialog
allows the user to terminate the
capturing of commands / replies
data after the trigger event.

Here the command /reply capture
will end 10 commands after a move
relative (MR) command has been
issued to axis #1.

The Trigger Event (1MR1000)
is highlighted in green.

Software, Programming and Utilities

MultiFlex ETH 1000 Series User's Manual

37

PMC Sample Programs

Sample programs with full source code are supplied with the Motion Control API. These C++, Visual
Basic, and Delphi sample programs allow the user to:

 Move an axis (servo or stepper)
 Monitor the actual, target, and optimal positions of an axis
 Monitor axis I/O (Limits +/-, Home, Index, an Amplifier Enable)
 Define or change move parameters (Maximum velocity, Acceleration/Deceleration)
 Define or change the servo PID parameters

Software, Programming and Utilities

Precision MicroControl Corp.

38

Motion Control API On-line Help

Electronic help files are available for PMC’s Motion Control API. Help documents include; installation and
basic usage, complete function call reference and examples, high level dialog descriptions, and
LabVIEW VI Library reference.

The MCAPI Users Guide On-line Help
describes the basics of PMC’s MCAPI. This
should be the ‘first stop’ for any questions
about the MCAPI.

The MCAPI On-line Help provides a complete listing and
description of all MCAPI functions. Function calls are
grouped both alphabetically and by functional groups
(Motion, Setup, Reporting, Gearing, etc...). Source code
examples are provided for C++, Visual Basic, and Delphi.

Software, Programming and Utilities

MultiFlex ETH 1000 Series User's Manual

39

The MCAPI Common Dialog On-line Help
describes the high level MCAPI Dialog
functions. These operations include: Save
and Restore axis configurations (PID and
Trajectory), Windows Class Position and
Status displays, Scaling, and I/O
configuration.

The Motion VI Library On-line Help provides
installation assistance and detailed descriptions
of available VI’s.

Software, Programming and Utilities

Precision MicroControl Corp.

40

Motion Integrator

PMC’s Motion Integrator program is just like having your own ‘Systems Integrator’ to assist you with every
step of the integration process. Motion Integrator is a suite of powerful Windows tools that are used to:

 Configure the controller Tune the servo axes
 Verify the operation of the control system Diagnose controller failures
 Connect and test I/O

o Axis I/O (Home, Limits, Enable)
o General purpose Digital I/O
o General purpose Analog I/O

 Execute and plot the results of single
and/or multi-axes moves

 Comprehensive on-line help

 Comprehensive on-line help

For first time PMC motion control users, Motion Integrator can be run as a series of Windows Wizards

The Motion System Setup program opens with a
listing of the recommended integration steps

The Axis I/O wizard allows the user to verify the
operation of the Limits, Home, and Amp/Drive Enable

Software, Programming and Utilities

MultiFlex ETH 1000 Series User's Manual

41

Digital and Analog I/O Test Panels

The Digital I/O, and Analog Test panels allow the user to verify the operation of the general purpose I/O.

Once the systems has been tested and tuned (servo’s only) PMC’s Motor Mover allows
users to: move any or all motors, change velocities on the fly, define cycling routines,
monitor position and status

Software, Programming and Utilities

Precision MicroControl Corp.

42

Tuning servo’s with Motion Integrator

Motion Integrator provides a powerful and easy to use tool for ‘dialing in’ the performance of servo
systems. From simple current/torque mode amplifiers to sophisticated Digital Drives, Motion Integrator
makes tuning a servo is quick and easy.

By disabling the Trajectory generator, the user can execute repeated Gain mode (no ramping - maximum
velocity or acceleration/deceleration) step responses to determine the optimal PID filter parameters:

 Proportional gain
 Derivative gain
 Derivative sampling period
 Integral gain
 Integration Limit

With the Trajectory generator turned on, the user can execute ‘real world’ moves displaying the calculated
position, actual position, following error, and DAC output plots.

The Servo Tuning Utility includes on-line help assisting
with both using the program and explaining the
fundamentals of servo tuning. A complete Servo Tuning
tutorial is available on the Motion CD

Software, Programming and Utilities

MultiFlex ETH 1000 Series User's Manual

43

PMC Utilities

A powerful suite of utilities are included with the Motion Control API. These tools allow the user:

 Query motion control system version information
 Issue native language (MCCL) commands directly to the controller
 Upgrade the firmware of the controller
 Manually position axes with a game port joystick
 Display the Status of an axis

PMC’s Motion Control Panel

The Motion Control Panel is used to query the motion control system for firmware and Motion Control API
version information, and to uninstall a controller. It can be launched either from the Windows Start menu
or by selecting the Motion Control icon from the Windows Control Panel.

WinControl – MCCL (Motion Control Command Language) command set interface
utility

This utility provides the user with a direct communication interface with the controller in its native
language (MCCL). This tool is extremely useful not only during initial controller integration but also as a
debug tool during application software development. Two methods of executing MCCL commands are
supported: A PC keyboard key stroke is passed directly to the controller, and/or download a MCCL
command text file via the File – Open menu options

Software, Programming and Utilities

Precision MicroControl Corp.

44

Flash Wizard

All operational program code (firmware) for the MultiFlex ETH Series Ethernet controllers is stored in non-
volatile memory on-board the controller. PMC’s Flash Wizard is a windows application that allows users to
easily upgrade controller firmware via software. Users can download the latest firmware revisions from
the Support page of PMC’s web site at www.pmccorp.com/support/support.php.

Joystick Applet

Allows the user to manually position two axes using a joystick connected to a USB port on the host PC.
Full source code for this applet is provided with the Motion Control API installation.

http://www.pmccorp.com/support/support.php�

Software, Programming and Utilities

MultiFlex ETH 1000 Series User's Manual

45

Status Panel

Allows the user to monitor the status any or all axes (servo or stepper).

Software, Programming and Utilities

Precision MicroControl Corp.

46

MultiFlex ETH 1000 Series User's Manual

47

Connecting to the Controller

This chapter provides examples of the typical wiring connections and interface circuitry required when
using the controller to control the position / velocity of motors and associated I/O events.

i

For interconnection board and connector dimensions, specifications, pin-outs
and installation instructions, please see the MultiFlex ETH 1000 Series
Installation Guide available for download from PMC’s web site at:

www.pmccorp.com/support/mfxeth1000.php

Chapter

4

Connecting to the Controller

Precision MicroControl Corp.

48

+/- 10V Analog Servo Command Connections

Connectors J1 and J2 each provide two analog command signal pairs for controlling the position of two
analog command servos. The 16 bit +/- 10V Analog Command Output signals are available on pins 1 and
2. The Analog Command Return signals are available on pins 35 and 36. The typical interconnections for
the +/- 10V analog servo command are shown below.

+/- 10V Analog Command Output

Analog Command Return

J1

J2

1

35

Servo Amplifier

To Motor

Ref +

Ref -

TLE2142-12V

+12V

ADAM-3968
wiring module

1

35

Motion Controller

Figure 8. +/- 10V analog command servo wiring example (axis #1)

i

For Unipolar Analog Command (0.0V to +10.0) Servo Amplifiers an additional
connection (to the Direction output) to the amplifier is required to indicate the
'direction of motion'.

Connecting to the Controller

MultiFlex ETH 1000 Series User's Manual

49

PWM (Pulse Width Modulation) Command Connections

Connectors J1 and J2 each provide two PWM command outputs for controlling the position of as many as
four PWM command servos. Each output is driven by an Open Collector Driver (75434) and is capable of
sinking as much as 100 mA (max. voltage = 30V). The PWM Command outputs are available on pins 6
and 7 of connectors J1 & J2. Any of the Grounds signals can be used as a reference. The typical
interconnections for a Bipolar PWM servo are shown below.

PWM Command
Output
Ground

J1

6

57

Motion Controller

ADAM-3968
wiring module

6

57
75453

PWM Out

PWM Driver

ST Micro
L6203

In
1

In
2

+5V
4.7K

5 75453

Amp Enable5
Enable

+5V

4.7K

Axis #1 Amp Enable

Figure 9. Bipolar PWM command wiring example (axis #1). The ST Micro L6203 is shown for
example purposes only - THIS INTERCONNECT DRAWING IS NOT INTENDED TO BE USED FOR

CIRCUIT DESIGN.

i

For information on configuring and operating a PWM servo please refer
to the PWM Command Motion description in the Application
Solutions chapter of this manual (page 147 .

Unipolar PWM

A unipolar PWM requires both a PWM Command (Magnitued) signal and a Direction (Sign) signal. Due to
I/O limits the MultiFlex does not provide a dedicated PWM Direction output, but any of the general
purpose Digital Outputs can be configured to this function. For information on configuring the Digital
Outputs please refer to page 165. The typical interconnections for a Unipolar PWM servo are shown
below.

Connecting to the Controller

Precision MicroControl Corp.

50

PWM Command
Output
Ground

J1

6

57

Motion Controller

ADAM-3968
wiring module

6

57
75453

PWM Out

PWM Driver

Nat Semi
LMD18200

PWM

Dir.

20 20Brake

+5V

4.7K
Axis #1 Amp Enable

75453

Amp Enable
5

5

PWM Sign

LS541

Dig. #2 Out

4.7K
+5V

Figure 10. Unipolar PWM command wiring example (axis #1). For this example the PWM Direction
output is configured to use Digital Output #2. The National Semi LMD18200T is shown for example

purposes only - THIS INTERCONNECT DRAWING IS NOT INTENDED TO BE USED FOR CIRCUIT
DESIGN.

Connecting to the Controller

MultiFlex ETH 1000 Series User's Manual

51

Pulse Command Connections

Connectors J3 and J4 each provide two command signal pairs for controlling the position of two stepper
motors or two pulse command servo axes. The Step command output is available on pins 2 and 7. A +5
VDC opto isolator supply is available on pins 36 and 41. The Direction command output is available on
pins 3 and 8. A +5 VDC opto isolator supply is available on pins 37 and 42.

For Pulse command axes that require Clockwise / Counter Clockwise control signals (instead of Step /
Direction) the Motion Control API function MCSetModuleOutputMode() will allow the user to reconfigure
the pulse command output signals.

The typical interconnections for a pulse command axis are shown below.

ADAM-3968
wiring module

2

36

TS2

+5 VDC

+5 VDC

J1

Motion Controller

75453

Pulse

75453

Direction

J3

2

36

3

37

Pulse / CCW Command
Output

Direction / CW Command
Output

Stepper Driver

Step

To Motor

Directio
n

3

37

Figure 11. Pulse (Step & Direction) command wiring example (axis #5)

Note:
1) Not all drivers / amplifiers provide an optical isolator current limiting resistor. An external current limiting
resistor can be added between the terminal strip contact and the input contact on the driver / amplifier.

Connecting to the Controller

Precision MicroControl Corp.

52

Amplifier / Driver Enable Connections - Low Active

Connectors J1 and J2 each provide two Amplifier Enable command signal pairs. The typical
interconnections for Low Active Amplifier Enable are shown below.

ADAM-3968
wiring module

5

39

Servo Amplifier

To Motor

Axis 1 Amp Enable Output

+5 VDC

J1

5

39

Motion Controller

Amp Enable

75453

AE 1

Figure 12. Low Active Amplifier Enable wiring example (axis #1)

Note:
1) Not all drivers / amplifiers provide an optical isolator current limiting resistor. An external current limiting
resistor can be added between the terminal strip contact and the input contact on the driver / amplifier.

Connecting to the Controller

MultiFlex ETH 1000 Series User's Manual

53

Driver Disable Connections - Low Active

Connectors J3 and J4 each provide two Driver Disable command signal pairs. The typical
interconnections for Low Active Driver Disable are shown below.

J1

Motion Controller

Axis 5 Driver Disable Output

+5 VDC

75454

WO 5

J1

1

35

ADAM-3968
wiring module

1

35

Stepper Driver

To Motor

Driver Disable

Figure 13. Low Active Amplifier Enable wiring example (axis #5)

Note:
1) Not all drivers / amplifiers provide an optical isolator current limiting resistor. An external current limiting
resistor can be added between the terminal strip contact and the input contact on the driver / amplifier.

Connecting to the Controller

Precision MicroControl Corp.

54

Amplifier / Driver Enable Connections - High Active

The controller uses open collector drivers (TI SN 75453B) for the Amplifier Enable/Driver outputs. These
are current sinking devices which, when turned on, will 'pull' the Amplifier Enable output low (near
ground). Until the axis has been enabled by the user an internal resistor forces the Amplifier Enable
output to its inactive state (high). This type of circuit provides fail safe operation of 'low' active
Amplifier/Driver Enable systems .

For applications that require 'high' active Amplifier/Driver Enable outputs, once Windows has loaded
and an application program has been launched, the MCConfigureDigitalIO() function can be used to
change the active level of the Amplifier/Driver Enable outputs.

!

Warning – High Active Amplifier/Driver Enable is not a fail safe operation.

The typical interconnections for High Active Amplifier Enable are shown below.

ADAM-3968
wiring module

2

36

Servo Amplifier

To Motor

Amp Enable Output

Ground

J1

4

57

Motion Controller

Amp Enable

+5 VDC

75453

AE 1

Figure 14. High Active Amplifier Enable output wiring example (axes #1)

Connecting to the Controller

MultiFlex ETH 1000 Series User's Manual

55

Amplifier / Driver Fault Connections

The controller provides four optically isolated inputs for interfacing to an Amplifier / Driver fault sensor. Bi-
directional optical isolators are used, so the external device used to indicate an Amplifier/Driver Fault may
be either a sinking or sourcing device. By default each Amp Fault circuit is shared between an Analog
Command axis and a Pulse Command axis (Amp Fault 1 is shared by axes 1 and 5, Amp Fault is shared
by axes 2 and 6, etc...).

The maximum voltage that can be applied to an Amplifier / Driver Fault input is 25V. The minimum
voltage that will cause the optical isolator to conduct is 3.0V. The Amplifier / Driver Fault sensor must be
capable of sinking/sourcing at least 0.25 mA.

i

This wiring example shows a 'high' active (sourcing) Amplifier Fault circuit. For a
'low' active Amplifier Fault circuit:

1) The switch connects the Amplifier Fault input to ground
2) Connect a amplifier DC power supply (3.0 VDC to 25 VDC) to Amp Fault
supply/return

ADAM-3968
wiring module

17

51

Servo Amplifier

To Motor

Amplifier/Driver Fault

Amp Fault supply/return

J1

17

51

Motion Controller

Amp Fault output+5 VDC

Figure 15. High Active Amplifier Fault input wiring example (axis #1)

Connecting to the Controller

Precision MicroControl Corp.

56

Differential Incremental Encoder Connections

Each of the four VHDCI connectors provide two incremental encoders interfaces. These encoder
interfaces support either differential encoders (A+, A-, B+, B-, Z+, and Z-) or single ended encoders (A, B,
and Z). When differential encoders are used the controller supports hardware encoder error detection.

i

For additional information on incremental encoder basics please refer to page
24.

ADAM-3968
wiring module

11

45

12

46

13

47

Differential
Encoder
(Axis #1)

A+ out

A- out

B+ out

B- out

Z+ out

Z- out

+5 VDC in

Ground

J1

11

45

Axis 1 Encoder A+

Motion Controller

Axis 1 Encoder A-

12

46

13

47

39

58

2 K

2 K

2 K

Axis 1 Encoder B+

Axis 1 Encoder B-

Axis 1 Encoder Z+

Axis 1 Encoder Z+

+5 VDC output

Ground

A
A Error

B Error

Z Error

B

Z

+5VDC39

58

Figure 16. Differential encoder wiring example (axis #1)

Connecting to the Controller

MultiFlex ETH 1000 Series User's Manual

57

Single Ended Incremental Encoder Connections

Each of the four VHDCI connectors provide two incremental encoders interfaces.

i

As shown in the drawing below the unconnected encoder inputs (A-, B-, and Z-)
must be tied to the +1.5 VDC Encoder Reference.

ADAM-3968
wiring module

11

45

12

46

13

47

Single Ended
Encoder
(Axis #1)

A out

B out

Z out

+5 VDC in

Ground

J1

11

45

Axis 1 Encoder A+

Motion Controller

Axis 1 Encoder A-

12

46

13

47

10

39

2 K

2 K

2 K

Axis 1 Encoder B+

Axis 1 Encoder B-

Axis 1 Encoder Z+

Axis 1 Encoder Z-

+5 VDC
output

Ground

A
A Error

B Error

Z Error

B

Z

+5VDC

39

58
58

+1.5VDC (Encoder ref.)10 +1.5VDC (Encoder ref.)

Figure 17. Single ended encoder wiring example (axis #1)

i

The wiring example above assumes that the encoder outputs (A, B, & Z) are
'high active'. If any of the encoder outputs (most likely the Z output) are 'low
active' it should be connected to the '-' input of the MultiFlex and the '+' input
should be terminated to the +1.5V reference.

i

Depending on the current drive capability of the encoder the MultiFlex controller
may not support Encoder Fail Detection for single ended encoders. For
additional information please contact PMC Tech Support.

Connecting to the Controller

Precision MicroControl Corp.

58

Over-Travel Limit Connections

Sourcing Sensor

The controller provides eight optically isolated inputs for monitoring over-travel limit sensors. Bi-directional
optical isolators are used, so the over travel sensors may be either sinking or sourcing devices.

By default each over-travel limit input is shared between an Analog Command axis and a Pulse
Command axis (a Limit + is shared by axes 1 and 5, a Limit + is shared by axes 2 and 6, etc...). The
maximum voltage that can be applied to an over travel limit input is 25V. The minimum voltage that will
cause the optical isolator to conduct is 3.0V. The over travel limit sensor must be capable of
sinking/sourcing at least 0.25 mA.

ADAM-3968
wiring module

29

63 Axis 1/5 Limit +

J1

J2

29

Motion Controller

+5 VDC

Axis 1/5 Limit + return /
supply 63

Axis 1 Limit
+

Normall
y Closed

4.7K

4.7K

J3

29

63

Figure 18. Sourcing over travel limit sensor wiring example

i

This example uses Normally Closed switches for Fail Safe operation. If the
switch is opened or a wire is broken a change of state will be indicated. To
configure to controller for Normally Closed switches issue the function
MCConfigureDigitalIO() with mode value = MC_DIO_LOW.

i

In Position and Velocity mode the response to an activated limit input is
direction sensitive, the axis will only be stopped if it is moving in the direction of
the activated limit switch. In Contour mode, the axis will be stopped regardless
of the direction it is moving if a limit is activated. In Torque mode, the controller
will ignore the activation of a limit input.

Connecting to the Controller

MultiFlex ETH 1000 Series User's Manual

59

Sinking Sensor

The controller provides eight optically isolated inputs for monitoring over-travel limit sensors. Bi-directional
optical isolators are used, so the over travel sensors may be either sinking or sourcing devices.

By default each over-travel limit input is shared between an Analog Command axis and a Pulse
Command axis (a Limit + is shared by axes 1 and 5, a Limit + is shared by axes 2 and 6, etc...). The
maximum voltage that can be applied to an over travel limit input is 25V. The minimum voltage that will
cause the optical isolator to conduct is 3.0V. The over travel limit sensor must be capable of
sinking/sourcing at least 0.25 mA.

ADAM-3968
wiring module

29

63 Axis 1/5 Limit +

J1

J2

29

Motion Controller

+5 VDC

Axis 1/5 Limit + return /
supply 63

Axis 1 Limit
+

Normall
y Closed

4.7K

4.7K

J3

29

63

Figure 19. Sinking over travel limit sensor wiring example

i

This example uses Normally Closed switches for Fail Safe operation. If the
switch is opened or a wire is broken a change of state will be indicated. To
configure to controller for Normally Closed switches issue the function
MCConfigureDigitalIO() with mode value = MC_DIO_LOW.

i

In Position and Velocity mode the response to an activated limit input is
direction sensitive, the axis will only be stopped if it is moving in the direction of
the activated limit switch. In Contour mode, the axis will be stopped regardless
of the direction it is moving if a limit is activated. In Torque mode, the controller
will ignore the activation of a limit input.

Connecting to the Controller

Precision MicroControl Corp.

60

Home Sensor Connections

The controller provides four optically isolated inputs for defining the home position of an axis. Bi-
directional optical isolators are used, so the sensors may be either sinking or sourcing devices.

By default each Coarse Home / Stepper Home input is shared between an Analog Command axis and a
Pulse Command axis (a Coarse Home / Stepper Home is shared by axes 1 and 5, a Coarse Home /
Stepper Home is shared by axes 2 and 6, etc...). The maximum voltage that can be applied to an over
travel limit input is 25V. The minimum voltage that will cause the optical isolator to conduct is 3.0V. The
over travel limit sensor must be capable of sinking/sourcing at least 0.25 mA.

ADAM-3968
wiring module #3

(axes 5 & 6)

27

61

ADAM-3968
wiring module #1

(axes 1 & 2)

27

61

Axis 1 Coarse Home

J1

J2

27

Motion Controller

Axis 1/5 Home return /
supply 61

4.7K

4.7K

J3

27

61

Axis 1
Encoder

Coarse Home

Normall
y Open

Axis 5 Home

Normall
y Open

Axis 5 Home
+5 VDC

+5 VDC

Figure 20. Home sensor wiring example (axes #1 & #5)

Connecting to the Controller

MultiFlex ETH 1000 Series User's Manual

61

TTL Digital Input Connections

Each of the four VHDCI connectors provide four TTL level digital input channels that can be used to
monitor external events. An 74LS541 is used as the buffering device. An board 10K ohm pull resistor is
provided for each channel.

!

Warning – Voltage levels outside valid TTL levels applied to the TTL inputs may
damage the controller.

ADAM-3968 wiring
module

23

57

24

58

25

59

26

60

Motion Controller

+5 VDC

J1

23

57

24

58

25

59

26

60

74LS541+5 VDC

+5 VDC

+5 VDC

+5 VDC

Digital input #1

Ground

Ground

Ground

Ground

Digital input #2

Digital input #3

Digital input #4

Figure 21. TTL digital inputs wiring example (first 4 channels)

Connecting to the Controller

Precision MicroControl Corp.

62

TTL Digital Output Connections

Each of the four VHDCI connectors provide four TTL level digital output channels that can be used to
activate external devices. A 74LS541 is used as the buffering device. On power up (until the controller
has completed initialization - 30 seconds to 3 minutes) all outputs will go to a TTL 'high' level. When
initialization is complete the outputs will change to a TTL low state. The default state for the digital outputs
is for 'high true' (sourcing) logic.

When used as sinking (TTL low) outputs each channel can sink a maximum of 24 mA. which is suitable
for driving TTL loads, low current optical isolators, and low current solid state switches.
To configure a digital output for sinking (TTL low) use the function MCConfigureDigitalIO().
Note: once initialization is complete, a sinking output cannot 'turned off' (set to a TTL high) until an
application program has been launched.

!

Warning – Attempting to drive a load that exceeds the current drive capability of
the 74LS541 may damage the controller.

Digital Output #1

Ground

Sample External Devices

Ground

Ground

Ground

Digital Output #2

Digital Output #3

Digital Output #4

J1

19

53

Motion Controller

20

54

21

55

22

56

74LS541 +5 VDC

+5 VDC

+5 VDC

+5 VDC

ADAM-3968 wiring
module

19

53

20

54

21

55

22

56

+5 VDC
Solid State

Switch

Opto Isolator +5 VDCRelay +24 VDC

Figure 22. TTL digital outputs wiring example (first 4 channels)

Connecting to the Controller

MultiFlex ETH 1000 Series User's Manual

63

A/D Input Connections wiring example

If the Analog Input option is present each of the four VHDCI connectors provide two 14 bit A/D channels
(total of 8). The A/D option can be ordered with a voltage range of either:

 -10V to +10V (standard)
 0V to +4V (special order)

ADAM-3968
wiring module

33

67 Analog input #1

J1

J2

33

Motion Controller

Ground 67

TL074

AI Neg

AI Pos

3
1

2

+10 VDC

-10 VDC

Power
Supply

+10 VDC

+10 VDC

Figure 23. A/D inputs wiring example

Referring to the drawing above:

 If configured for +/- 10V A/D input range then AIPos = +12 VDC and AINeg = -12 VDC
 If configured for 0 - 4V A/D input range the AIPos = +4 VDC and AINeg = Ground

For more information about how to read the analog input values, please refer to the section titled “A/D
Inputs” on page 170.

Connecting to the Controller

Precision MicroControl Corp.

64

Watchdog Relay Connections
The controller incorporates a watchdog circuit and relay to protect against improper CPU operation. After
a controller reset, PC reset, or PC power cycle, once the controller is initialized (Run LED D3 on) the
watchdog circuit is enabled and the normally open watchdog relay is energized (contacts closed).

For some applications it is required that the motion controller watchdog circuit be hard wired into the
power distribution system. The diagram below details how the watchdog relay can be used to disable
amplifier power in the case of a controller watchdog failure.

AC Power

Amplifier
Power Supply

Relay - NO

+24 VDC

Motor

Servo
Amplifier

Motor

Servo
Amplifier

NO
Relay

Run

J8-1 J8-2

Motion Controller

Figure 24. Watchdog relay wiring example

Watchdog relay contact specifications

 Max. switching power = 30W

Max. switching current = 1A
Max. switching voltage: DC = 110V, AC=125V

J8 Mating connector:
 Pin Housing: Molex P/N 22-01-3027
 Crimp pin: Molex P/N 08-50-0114

MultiFlex ETH 1000 Series User's Manual

65

Motion Control

This chapter describes the basic motion control operations that can be performed by the motion
controller. The operations described in this chapter are common to both servo and stepper motors, with
specific differences detailed in the text.

Servo (analog command) Axis Setup

The basic steps required to implement closed loop servo motion are:

 Verify proper encoder operation
 Setting the allowable following error
 Define trajectory parameters
 Tuning the servo (select PID filter gain parameters)

Verify proper encoder operation

The Motion Integrator program provides easy to use tools for testing the operation of an encoder. The
user has the option of using the Connect Encoder Wizard or the Motion System Setup Test Panel.

i

Unlike the Connect Encoder Wizard, the Motion System Setup Test panel
does not allow the user to verify the operation of the encoder Index.

Chapter

5

Motion Control

Precision MicroControl Corp.

66

Manually rotate the motor/encoder in either direction, the position reported should increment or
decrement accordingly. Refer to the Troubleshooting Guide later in this manual if the controller does not
report an appropriate change of position.

Setting the Allowable Following Error
Following error is the difference between where an axis ‘is’ and where the controller has ‘calculated it
should be’. Most all servo systems require ‘some’ position error to generate motion. When a servo axis is
turned on, if a position error exists, the PID algorithm will cause a command voltage to be applied to the
servo to correct the error.

While an axis is executing a move, the following error will typically be between 1 and 1000 encoder
counts. Very high performance systems can be ‘tightly tuned’ to maintain a following error within 1 to 10
encoder counts. Systems with low resolution encoders and/or high inertial loads will typically maintain a
following error between 150 and 5000 encoder counts during a move.

The controller supports ‘hard coded’ following error checking. If at anytime the difference between the
optimal position and the current position exceeds the user defined ‘allowable following error’, an error
condition will be indicated. The axis will be disabled (Amplifier Enable output turned off, output command
signal set to 0.0V) and the axis status word will indicate that an error has occurred. The MCEnableAxis()
function is used to clear a following error condition. To disable ‘hard coded’ following error checking set
the allowable following error to zero.

i

The three conditions that will typically cause a following error are:

 1) Improper servo tuning (Proportional gain too low)
 2) Velocity profile that the system cannot execute (moving too fast)

 3) The axis is reversed phased (positive command results in
 negative motion)

The Status Panel screen shot below shows the typical display when a following error has occurred.

Motion Control

MultiFlex ETH 1000 Series User's Manual

67

Define trajectory parameters

Prior to issuing any motion commands the user must define the following trajectory parameters:

 Maximum Velocity
 Acceleration
 Deceleration

These parameter values can be defined either by issuing function calls (MCSetVelocity(),
MCSetAcceleration(), MCSetDeceleration()) or by entering values from the Servo Setup dialog
(available from Motor Mover, Servo Tuning program, CWDemo32.exe). For additional information on
trajectory profiles and velocity profiles please refer to pages 86 and 88.

Motion Control

Precision MicroControl Corp.

68

Tuning the Servo

Servo tuning is the process of setting the digital PID filter gains (proportional, derivative, and integral) to
get the best possible performance from an electro mechanical system.

A servo is a closed loop control system. The user commands the motion controller to execute a move of
one or more axes. The controller then calculates a velocity profile based on user defined trajectory
parameters (maximum velocity, acceleration, and deceleration). Each time the digital PID filter is
executed (every 250 usec's.) the difference between the encoder position and the calculated 'desired' is
measured and defined as the Following Error. Using the following error value, the PID filter adjusts the
+/- 10V Analog Command output to reduce the following error.

A servo motor and its load both have inertia, which the servo amplifier must accelerate and decelerate
while attempting to follow a change in the input (from the motion controller). The presence of inertia will
tend to result in over-correction, with the system oscillating or "ringing" beyond either side of its target
(under-damped response). This ringing must be damped, but too much damping will cause the response
to be sluggish (over-damped response). Proper balancing will result in an ideal or critically-damped
system.

A servo system is tuned by repeatedly executing a ‘step response’ (move of a specific distance), plotting
the resulting motion, and adjusting the digital PID filter parameters until an acceptable system response is
achieved.

i

For additional information on tuning a servo please refer to:

 PMC Servo Tuning program on-line help
 Servo Tuning PowerPoint tutorials (on the Motion CD)

Motion Control

MultiFlex ETH 1000 Series User's Manual

69

Figure 25. PMC's Servo Tuning Utility is used to: execute moves, plot the response of the servo,
and adjust PID gains

Saving the Tuning Parameters

Once an axis has been tuned you should save the PID and trajectory parameters. Select Save All Axis
Settings from the File menu. Selecting this option will load all servo settings into the mcapi.ini file (in the
C:\Windows folder). In addition when you elect to close the Servo Tuning program it will prompt the user
about saving the settings.

Motion Control

Precision MicroControl Corp.

70

i

Electing to save the Auto Initialize settings causes the Servo Tuning utility to
call the Motion Control API Common Dialog function MCDLG_SaveAxis. All
servo parameters (PID, Trajectory, Limits, etc...) will be saved in the dialog

To define these servo parameters from a user’s application program, call the
Motion Control API Common Dialog function MCDLG_RestoreAxis.

Changing the Scale of the Slide Controls

At the top of each slide control is a value showing the current setting as a percentage of the current
maximum setting. To change the range of one or more slide controls select the Zoom In (+) or Zoom Out
(-) buttons.

Executing cycle operations from the Servo Tuning program.

Beginning with revision 2.4 the servo tuning program allows the user to execute cycle operations. From
the Test Setup dialog define the move distance, dwell between positive and negative moves, cycle repeat
count, and dwell between cycles.

Motion Control

MultiFlex ETH 1000 Series User's Manual

71

Figure 26. Use the Test Setup dialog to configure the
distance, dwell, and repeat count of cycle operations

Tuning Velocity Mode Amplifier Servo Systems

A velocity mode amplifier incorporates an analog tachometer to provide the feedback for the velocity loop,
which is closed within the amplifier. The velocity loop is considered the primary or ‘inner’ loop of the servo
system. The MultiFlex ETH , which is a position controller, is used to close the secondary or ‘outer’
position loop of the servo system. For optimum position accuracy and repeatability it is recommended that
the encoder for a velocity mode amplifier axis not be directly coupled to the motor. Ideally a linear scale
(encoder) should be mounted on the external mechanics, as closely coupled as possible to the load or
‘end effector’.

!

The most important step of tuning a servo that uses a velocity mode amplifier is
to follow the amplifier manufacturers setup instructions to the letter. Since the
amplifier provides the primary servo control, if it is not setup correctly there is
no possibility of attaining acceptable servo system performance.

There are significant differences when tuning servo systems that close the velocity loop external to the
controller’s position loop. The digital PID filter of the controller becomes a secondary component in the
generation of the output signal that is applied to the velocity mode amplifier. The primary component that
the controller will use to generate the servo command signal is the Feed Forward term.

i

Feed Forward defines a voltage level output from the MultiFlex ETH , which in
turn commands the velocity mode amplifier to rotate the motor at a specific
velocity.

Prior to tuning velocity mode amplifier servo system the velocity feed forward term must be determined.
The following example describes how to calculate and set velocity feed forward of a servo axis:

Setting the Velocity Feed Forward

Motion Control

Precision MicroControl Corp.

72

The main component required to set the velocity feed forward of a servo axis is to determine the output
level of the tachometer at a specific motor velocity. For this example, a typical tachometer specification
would state:

 Output Range 0.0 to +10V
 Tach Output @ 1K RPM 1.0 volt

The specification describes a tachometer with an output range of 0 – 10V. The tachometer output ratio is
1.0V per 1,000 RPM’s. The resolution of the linear scale encoder is 2000 encoder counts per inch, and
the maximum velocity of the axis is 50 inches per second. Note: the servo amplifier may require scaling
adjustments for the RPM/Tachometer voltage output ratio. The velocity feed forward is calculated as
follows:

 controller output = Velocity (encoder counts/sec) X Feed forward term (encoder counts/volt/sec.)

 10 volts = 100,000 counts/sec. X Feed forward term (encoder counts * volt/sec.)

 Feed forward = 10 volts / 100,000 counts per sec.

 0.0001 = 10 volts / 100,000 counts per sec.

1VG0.0001 ;set velocity gain (velocity feed
 ;forward) with MCCL command

// set velocity gain (velocity feed forward) using Motion Control API
function
//
 MCGetFilterConfig(hCtrlr, iAxis, &Filter);
 Filter.VelocityGain = (hCtlr, 1, 0.0001);
 MCSetFilterConfig(hCtrlr, iAxis, &Filter);

Tuning the Servo

After setting the velocity feed forward (velocity gain) as shown above, open the Servo Tuning Utility.
Configure the utility as follows:

 1) From the Setup menu, select Servo Setup and define the trajectory parameters (velocity,
 acceleration, and deceleration) to match the application requirements.

 2) From the Test Setup menu define a typical application move distance and duration. For this
 example, the move distance is 5000 encoder counts. The move duration is set to 600
 milliseconds.

 3) Set the Proportional (P), Integral (I), and Derivative (D) slide controls to 0%.

 4) Turn on the Trajectory generator

 5) Turn the motor on

 6) Press the Step Plus pushbutton

A response similar to the following graphic should be observed:

Motion Control

MultiFlex ETH 1000 Series User's Manual

73

Increase the ‘P’ term 1-2 % at a time (it usually requires very little P for velocity mode amplifier systems)
and repeat the move until the following error value is no longer reduced by increases in the P gain.

The current P gain is your baseline value. Note this value in case you need get back to this step.

Increase the ‘P’ term and repeat the move until the following error begins to oscillate around a following
error of 0.

Motion Control

Precision MicroControl Corp.

74

Reduce the ‘P’ term by 15% to 20%. Begin adding derivative gain until the oscillations have been
dampened.

If the axis is not within a acceptable target range (typically +/- 1 encoder count) I gain is used to reduce
the static error at the end of the move. Without issuing another move, very slowly begin to increase the I
gain setting until the axis 'slews' to within +/- 1 encoder count. Now execute another move, if the axis
oscillates at the end of the move the I gain is too high, reduce the I gain and repeat the move.

Motion Control

MultiFlex ETH 1000 Series User's Manual

75

i

The motion controller provides the user with an option for the selecting the
mode of Integral gain operation. For Velocity mode amplifiers it is
recommended that the Integral gain option be set to Zero. In this mode of
operation Integral gain is only calculated after the calculated trajectory has been
completed. For additional information on Integral gain options please refer to
page 156.

Motion Control

Precision MicroControl Corp.

76

Saving the Tuning Parameters

When servo tuning is complete, closing the tuning utility will prompt this message about saving the Auto
Initialize setting, selecting Yes will store all settings for all installed axes. Selecting No will cause all
settings to be discarded.

Acceleration and Deceleration Feed Forward

For most applications velocity feed forward is sufficient for accurately positioning the axis. However for
applications that require a very high rate of change, acceleration and deceleration gain must be used to
reduce the following error at the beginning and end of a move.

Acceleration and deceleration feed forward values are calculated using a similar algorithm as used for
velocity gain. The one difference is the velocity is expressed as encoder counts per second, while
acceleration and deceleration are expressed as encoder counts per second per second.

 MultiFlex ETH 0 output = Accel./Decel. (encoder counts/sec/sec.) X Feed forward term (encoder counts *
volt/sec./sec.)

i

Acceleration and deceleration feed forward values should be set prior to using
the Servo Tuning Utility to set the proportional and integral gain. For additional
information please contact PMC Tech support.

Systems with Electrical or Mechanical Deadband

Some servo systems may demonstrate significant dead band due to friction, sticktion, or insufficient
amplifier drive power. This will typically be indicated when the output command to the servo is relatively
high but the axis does not move.

Systems of this type can be very difficult to ‘tune’. To overcome the limitations of the system and get the
axis moving, the proportional gain would need to be set very high. This will tend to make the system
become unstable, causing the axis to ‘oscillate’ at the end of a move. The Output Deadband (aODn)
command is used to compensate for the electrical and or mechanical dead band in a system by modifying
the calculated output signal, allowing the module to simulate a ‘frictionless’ system. The deadband value
will be added to a positive output and subtracted from a negative output.

Motion Control

MultiFlex ETH 1000 Series User's Manual

77

Moving Servo Axes with Motor Mover

Once the servo is tuned, the axis is ready to perform velocity profile moves. PMC’s Motor Mover program
allows the user to execute absolute, relative, and cycle move sequences, monitor position and status of
the axis. By selecting the Setup button the user can; set velocity parameters (maximum velocity,
acceleration, and deceleration), set velocity profile (Trapezoidal, S curve, or Parabolic), and enable over
travel limits.

Figure 27. PMC's Motor Mover can be used to move as many as 8 axes simultaneously

Motion Control

Precision MicroControl Corp.

78

Stepper (pulse command) Axis Setup

The controller supports three modes for controlling stepper motors or pulse command servo's:

Open loop pulse command
Open loop pulse command with encoder feedback
Closed loop pulse command

Open Loop Pulse Command Motion

Controlling the position and velocity of a stepper motor with no component of the command output
adjusted based on encoder feedback from the electro mechanical system is called open loop control.
The steps required to implement open loop pulse command motion are:

 Select the Velocity Profile type
 Define Trajectory parameters (max. velocity, acceleration, deceleration, min. velocity)
 Select the Pulse Rate range
 Configure axis inputs (over travel limits and driver fault)

To configure a Pulse Command axis for motion use the Stepper Axis Setup Dialog (select Setup from
Motor Mover).

Figure 28. Stepper axis Setup Dialog

Define trajectory
parameters

Set Step Rate Range

Low - 0.1 to 78K steps/sec.
Medium - 20 to 625K steps/sec.
High - 153 to 5.0M steps/sec.

Select Velocity
Profile type

Configure axis inputs

Motion Control

MultiFlex ETH 1000 Series User's Manual

79

i

The Minimum Velocity of a stepper axis must be set to a non zero value. The
default value is 1,000 steps per second. The recommended setting of the
minimum velocity is from 1% to 10% of the maximum velocity.

When the user commands a move the controller counts each pulse that is issued to the stepper motor
driver. When the position of an axis is queried (by issuing the function MCGetPosition () or MCCL Tell
Position (aTP) command), the number of pulses issued to the stepper driver is reported. Since there is no
position (or velocity) feedback there is no need to 'tune' the axis. However, the axis module must be
configured (Trajectory parameters, Velocity Profile, Limits etc...).

i

Stepper drivers typically use the Direction output from the stepper controller
signals to determine the observed direction of motion. If the observed direction
of motion is not correct (moving positive causes counter clockwise instead of
clockwise rotation) set axis scaling to -1.0.

Open Loop Pulse Command Motion with Position Verification Encoder

For some open loop stepper applications it is required that an encoder be incorporated to allow the user
to compensate for 'lost steps'. For these type of applications follow the steps described in the previous
section for configuring Open Loop Pulse Command Motion. After the axis has been configured and
basic motion has been verified, issue the Motion Control API function MCGetAuxEncPosEX() to read
the position of the auxiliary encoder. For auxiliary encoder connection information please refer to chapter
9 of this manual. For additional information please refer to the Encoders and MultiFlex ETH Axes
section starting on page 187 of the Application Solutions chapter.

Motion Control

Precision MicroControl Corp.

80

Closed Loop Steppers

The advancements in stepper motor/micro stepping driver technology have allowed many machine
builders to maintain ‘servo like’ performance while reducing costs by moving to closed loop stepper
systems. While closed loop steppers will still be susceptible to ‘stalling’, they are not plagued with the
familiar open loop stepper system problem of loosing steps due to friction (mechanical binding) or system
resonance.

For high accuracy stepper applications, the controller supports closed loop control of stepper motors
using quadrature incremental encoders for position feedback. The stepper axis will be controlled as if it is
a closed loop servo, the quantity and frequency of step pulses applied to the stepper driver is based on
the trajectory parameters of the move and the position error of the axis. Prior to attempting to operate a
stepper motor in closed loop mode the basic system components (motor, driver, wiring, and controller)
should be verified by moving in open loop mode. For information on operating an open loop stepper
please refer to the Stepper Basics and Moving Motors with Motor Mover sections in this chapter. If the
stepper motor does not operate as expected please refer the Troubleshooting chapter.

i

While executing closed loop stepper motion, when the target position
equals the current encoder position, the step pulse generator (PID filter)
will be turned off within 1 micro second.

Unlike a closed loop servo, if the final position of the stepper encoder is
beyond the target position of the move the motor will not be
commanded to move back to the target.

Closed Loop Stepper Setup
There are four steps required to configure a stepper to operate in closed loop :

1) Connect and verify operation of the encoder
2) Define the Encoder / Steps ratio
3) Set the trajectory parameters
4) Tune the axis

Connect and verify the encoder
 Connect the stepper motor's encoder to the controller per the connector pinouts described in chapters 5
and 10 of this manual.

To verify the operation of the encoder open the Motor Mover program (Start\Programs\Motion
Control\Motion Integrator\Motor Mover). From the Setup dialog select Closed Loop Mode and OK.:

Figure 29. Select Setup to open the dialog

Motion Control

MultiFlex ETH 1000 Series User's Manual

81

Figure 30. From the Stepper Setup dialog select the Closed Loop Mode check box

After closed loop mode has been enabled the Motor Mover position readouts will display the position of
the encoder (versus displaying the 'pulse count'). Rotate the motor / encoder shaft back and forth and
verify that the position display changes accordingly.

Figure 31. In closed loop mode the Motor Mover position readout displays encoder position

i

After switching a stepper axis into or out of closed loop mode the axis must be
disabled and then enabled. From a PMC program (Motor Mover, Cwdemo,
Servo Tuning, etc...) select the Motor Off and then the Motor On buttons). From
a user application issue the MCEnableAxis () function with state = False and
then state = True.

Define the motor steps per rotation / encoder counts per rotation ratio

When a stepper axis is operating in closed loop mode, move commands are issued in units of encoder
counts. The EncoderScaling member of the MCFILTEREX data structure is used to configure the
controller for converting encoder units to step pulses. The value is calculated by dividing motor steps per
rotation by encoder counts per rotation. For example, if there 2000 encoder counts per rotation (500 line
encoder) and the stepper motor has 51,200 steps per rotation, the Encoder Scaling value would be

EncoderScaling = motor steps per rotation / encoder counts per rotation.
EncoderScaling = 51,200 / 2000
EncoderScaling = 25.6

Motion Control

Precision MicroControl Corp.

82

The Encoder Scale can also be defined from the Stepper Setup dialog of the Servo Tuning or Motor
Mover programs.

Figure 32. Enter the closed loop steps / encoder scale

Set the trajectory parameters

As with an open loop stepper, the trajectory parameters (maximum velocity, acceleration, deceleration,
and minimum velocity) must be set prior to commanding motion. These values can be set using the
MCMOTION data structure or can be entered from the Stepper Setup dialog of Servo Tuning or Motor
Mover.

i

Closed loop stepper trajectory parameters (and move distances) are specified
in encoder units, not motor step units.

Tune the axis

When a stepper axis is configured for closed loop operation the default proportional gain is set to 0.0001,
which should be sufficient to move the axis near the specified target. Further adjustments of the
proportional and integral gain allow the controller to:

Minimize the following error while moving
 Eliminate slow speed slewing of the axis near the end of the move
 Settle within 1 encoder count of the target

Use the PMC Servo Tuning program (\Start\Programs\Motion Control\Motion Integrator\Servo Tuning) to
tune the closed loop stepper.

Step 1 - Enter a typical move distance (in encoder counts) and move duration (in milliseconds) using
 the Test Setup dialog (Setup\Test Setup).

Step 2 - Verify that the Trajectory Generator is on (yellow LED)

Motion Control

MultiFlex ETH 1000 Series User's Manual

83

Step 3 - Set the Proportional gain Slide Control Scale 0.20% (Press P+ zoom button)

Step 4 - Verify that the Proportional gain is set to 0.0001, Integral and Derivative gain = 0. Generally
 Derivative gain and Integral gain are not required to tune a closed loop stepper.

Step 5 - From the Servo Setup dialog verify that Closed Loop Mode is enabled and that the
 Encoder Scaling has been set

Step 6 - Toggle the Motor Off and Motor On buttons to initialize the closed loop position registers

Step 7 - Start the move with the Move + or Move - buttons

Step 8 - Observe the plot of following error during the move

Step 9 - Increase the proportional gain and repeat the move until the point of diminishing returns is
 reached (the following error no longer decreases). Further increases of the proportional gain
 will tend to cause the motor to emit a grinding noise or stall during a commanded move.

Step 10 - If the axis moves slowly near the end of the move and/or stops a few counts short of the
 target the Minimum Velocity is probably set too low.

Step 11 - Save the closed loop stepper settings by selecting Save All Axes Settings from the Servo
 Tuning File menu. This operation will copy all settings into the mcapi.ini file so that any
windows application program can load axis settings upon opening.

i

For additional information on using the Servo Tuning program please refer to:

 The Tuning the Servo section of the Motion Control chapter
 The Servo Tuning program on-line help

i

To disable closed loop stepper operation, issue the MCSetModuleInputMode
function with Mode = MC_IM_OPEN_LOOP or deselect the closed loop check
box in the Servo Tuning Servo Setup dialog..

Reverse Phasing of a closed loop stepper

If the closed loop stepper is reverse phased, issuing a move command will cause the motor to 'take off' in
the wrong direction at full torque / speed. Once the position error exceeds the value entered for the
allowable following error (default = 1024) a motor error will occur and the axis will stop. To change the
phasing either:

Issuing the MCSetServoOutputPhase () function with Phase = MC_PHASE_REVERSE
Selecting the Reverse Phase option in the Servo Tuning Servo Setup dialog
Swap the encoder phase A and B connections to the MultiFlex ETH

Closed loop stepper example

Axis 5 is a 51,200 micro steps per rotation stepper motor. A 2,000 count (500 line) incremental encoder is
coupled to the stepper motor shaft. The required maximum step rate for this application is 896,000 steps

Motion Control

Precision MicroControl Corp.

84

per second (1050 RPM), which requires the axis to be configured for High Speed step range. After
verifying the operation of the closed loop stepper from within the Servo Tuning program, save the
configuration with the File menu Save All Axis Settings option. From a users application program to load
the closed loop configuration call the MCDLG_RestoreAxis function from the PMC Common Motion
Dialog Library. To load the closed loop axis configuration from a PMC application program (Servo Tuning
or Motor Mover) select Auto Initialize from the File menu.

Motion Control

MultiFlex ETH 1000 Series User's Manual

85

Moving Stepper Axes with Motor Mover

After configuring the stepper setup parameters it is ready to execute motion. The Motor Mover program
allows the user to execute absolute, relative, and cycle move sequences, monitor position and status of
the axis. By selecting the Setup button the user can; set velocity parameters (maximum velocity,
acceleration, and deceleration), set velocity profile (Trapezoidal, S curve, or Parabolic), and enable
motion limits.

Figure 33. PMC's Motor Mover can be used to command motion for as many as 8 axes
simultaneously

Motion Control

Precision MicroControl Corp.

86

Defining the Characteristics of a Move

Prior to executing any move, the user should define the parameters of the move. The components that
make up a move are:

// Set axis 1 maximum velocity
// Set axis 1 acceleration
// Set axis 1 deceleration
// Set profile as Trapezoidal
// Set Position mode
// Set target (10000), begin move

MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetDeceleration(hCtlr, 1, 100000.0);
MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOID);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCMoveRelative(hCtlr, 1, 100000.0);

The parameters defined in the program example above specify a move to position 100,000. During the
move the velocity will not exceed 10,000 encoder counts per second. A trapezoidal velocity profile will be
calculated by the motion controller The rate of change (acceleration and deceleration) will be 100,000
encoder counts per second/per second, there by reaching the maximum velocity (10,000 counts per
second) in 100 msec’s. The resulting velocity and acceleration profiles follow:

Velocity
(encoder counts per second)

Time (msec's)

100 200 300 400 500 600 700 800 900 1000

2500

5000

10000

7500

Motion Control

MultiFlex ETH 1000 Series User's Manual

87

100000

100000

Acceleration / Deceleration
(encoder counts per sec / sec)

Time (msec's)

i

The default units for expressing Trajectory Parameters are:

 Velocity - encoder counts / second
 Acceleration - encoder counts / second / second
 Deceleration - encoder counts / second / second

If user unit parameters Scale and / or Rate are set to values other than 1 then
the Velocity, Acceleration, and Deceleration units will change as well.

Motion Control

Precision MicroControl Corp.

88

Velocity Profiles

The user can select one of three different velocity profiles that the controller will then use to calculate the
trajectory of a move.

DCX Accel / Decel Profiles

Trapezoidal Profile

Time

Accel
100,000 counts /

sec. / sec.

Decel
100,000 counts /

sec. / sec.

Parabolic Profile S curve Profile

DCX Velocity Profiles

Time

Max. Velocity
10,000 counts / sec.

Trapezoidal Profile

Time

Parabolic Profile

Time

S curve Profile

Trapezoidal Profile – (servo & steppers) MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOID);
 Shortest time to target when using the same trajectory parameters
 Profile most likely to result ‘jerk’ and/or oscillation
 Supports ‘on the fly’ target changes

Parabolic Profile – (stepper only) MCSetProfile(hCtlr, 1, MC_PROF_PARABOLIC);
 Slow ‘roll off’ minimizes lost steps at high velocity
 Initial linear rate of change eliminates ‘cogging’
 On the fly changes will cause the axis to first decelerate to a stop

S curve Profile – (servo only) MCSetProfile(hCtlr, 1, MC_PROF_SCURVE);
 ‘True sine’ rate of change effectively eliminates ‘jerk’ and/or oscillation
 Longest time to target when using the same trajectory parameters
 On the fly changes will cause the axis to first decelerate to a stop

Motion Control

MultiFlex ETH 1000 Series User's Manual

89

Point to Point Motion

To perform point to point motion of a servo or stepper motor::

// Enable the axis
// Enable Position mode
// Define the velocity profile (trapezoidal, S curve, or parabolic)
// define maximum velocity
// define acceleration
// define deceleration
// execute the move

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOIDAL);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 25000.0);
MCSetDeceleration(hCtlr, 1, 50000.0);
MCMoveRelative(hCtlr, 1, 122.5);

Motion Control

Precision MicroControl Corp.

90

Constant Velocity Motion

To move a servo or stepper at a continuous velocity until commanded to stop:

// Enable the axis
// Enable Velocity mode
// Define the velocity profile (trapezoidal, S curve, or parabolic)
// define maximum velocity
// define acceleration
// define deceleration
// define the direction (positive or negative) of the move
// begin motion of axis 1
// wait for digital I/O #4 to be true
// reduce velocity
// wait for digital I/O #2 to be true
// stop the motion of axis 1

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetProfile(hCtlr, 1, MC_PROF_TRAPEZOIDAL);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetDeceleration(hCtlr, 1, 100000.0);
MCSetDirection(hCtlr, 1, POSITIVE);
MCGo(hCtlr, 3);
MCWait For DigitalIO(hCtlr, 4, TRUE);
MCSetVelocity(hCtlr, 1, 5000.0);
MCWait For DigitalIO(hCtlr, 2, TRUE);
MCStop(hCtlr, 1);

Time in seconds

Velocity
(encoder counts per seconds)

1 2 3 4 5 6

2500

5000

7500

10000

Digital input #4 'turned on"

Digital input #2 'turned on"

Motion Control

MultiFlex ETH 1000 Series User's Manual

91

Contour Motion (arcs and lines)

The controller supports Linear Interpolated motion with any combination of two to eight axes and Circular
Contouring on as many as four groups of two axes. Executing a multi axis contour move requires:

 Turn the axes on
 Define the axes in the contour group and the controlling axis
 Define the trajectory (Vector Velocity, Vector Acceleration and Vector Deceleration)
 Define the type of contour move (Linear, Circular, user defined) and the move targets
 Loading the Contour Buffer for Continuous Path Contouring

Define the contour group

The MCSetOperatingMode() command is used to define the axes in a contour group. Issue this
command to each of the axes in the contour group. The parameter wMaster should be set to the lowest
axis number that will be moving on the contour. This axis will then be defined as the 'controlling' axis for
the contour group. The following example configures axis 1, 2, and 3 for contour motion with axis #1
defined as the controlling axis.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

Define the trajectory parameters

The MCGetContourConfig(), MCSetContourConfig(), and MCContour data structure are used to
define the trajectory parameters of a contour motion. The default units of the vector velocity are encoder
counts or steps per second. The default units of vector acceleration and vector deceleration are encoder
counts or steps per second per second. The default units of velocity override is a percentage of the
setting for vector velocity.

// Motion settings (GetDlgItemDouble() is a helper function defined
// elsewhere)
//
case IDOK:
 MCGetContourConfig(hCtrlr, iAxis, &Contour);
 Contour.Vector.Accel = GetDlgItemDouble(hDlg, IDC_TXT_ACCEL);
 Contour.VectorDecel = GetDlgItemDouble(hDlg, IDC_TXT_DECEL);
 Contour.VectorVelocity = GetDlgItemDouble(hDlg, IDC_TXT_VELOCITY);
 Contour.VelocityOverride = GetDlgItemDouble(hDlg, IDC_TXT_MAX_TORQUE);
 MCSetContourConfig(hCtrlr, iAxis, &Contour);

Define the type of contour move

The nMode parameter of the MCBlockBegin() function is used to define the type of contour move to be
executed. The following types of contour motion are supported:

Motion Control

Precision MicroControl Corp.

92

Table 2. Contour Mode Parameters

nMode parameter Contour move type Description

MC_BLOCK_CONTR_USER User defined, 1 to 8 axes
Specifies that this block is a user defined
contour path motion. lNum should be set to
the controlling axis number.

MC_BLOCK_CONTR_LIN
Linear interpolated move, 1
to 8 axes

Specifies that this block is a linear contour
path motion. lNum should be
set to the controlling axis number.

MC_BLOCK_CONTR_CW Clockwise arc, 2 axes
Specifies that this block is a clockwise arc
contour path motion. lNum should be set to
the controlling axis number.

MC_BLOCK_CONTR_CCW
Counter Clockwise arc, 2
axes

Specifies that this block is a counter-
clockwise arc contour path motion. lNum
should be set to the controlling axis number.

Examples of a linear move and a clockwise arc follow:

// Linear move
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 10000.0);
 MCMoveAbsolute(hCtlr, 2, 20000.0);
 MCMoveRelative(hCtlr, 3, -5000.0);
MCBlockEnd(hCtlr, NULL);

// Clockwise arc move
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 20000.0);
 MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
 MCMoveAbsolute(hCtlr, 1, 40000.0);
 MCMoveAbsolute(hCtlr, 2, 0.0);
MCBlockEnd(hCtlr, NULL)

Loading the Contour Buffer for Continuous Path Contouring

The controller uses a wrap around buffer known as the Contour Buffer to support Continuous Path
Contouring. When a single contour move is executed, the axes will begin moving towards the targets at
the user specified vector velocity and then will decelerate (at the specified vector velocity) and stop at the
target. If multiple contour move commands are issued, the contour buffer allows moves to smoothly
transition from one to the other. The vector motion will not decelerate and stop until the contour buffer is
empty or an error condition (max following error exceeded, limit sensor ‘trip’, etc...) occurs.

The wrap around Contour Buffer can be queued with as many as 256 linear motions or 128 arc motions
(an arc move takes up twice as much buffer space). The MCGetContouringCount() command will
report how many contour moves have been executed since the axes were last configured for contour
motion with MCSetOperatingMode(). The contouring count is stored as a 32 bit value, which means that
2,147,483,647 contour moves can be executed before the contour count will ‘roll over’.

To delay starting contour motion until the contour buffer has been fully loaded use the MCEnableSynch()
command. This command should be issued to the controlling axis before issuing any contour moves.
Moves issued after the MCEnableSynch() command will be queued into the contour buffer. To begin
executing the moves in the buffer, issue the MCGoEx() command to the controlling axis . To return to

Motion Control

MultiFlex ETH 1000 Series User's Manual

93

normal operation (immediate execution of contour move commands), issue MCEnableSynch() to the
controlling axis with the state = FALSE.

Multi Axis Linear Interpolated moves

An example of three linear interpolated moves is shown below. Once the first compound move command
is issued, motion of the three axes will start immediately (at the specified vector velocity). The other two
compound commands are queued into the contouring buffer. As long as additional contour moves reside
in the contour buffer continuous path contour motion continue. In this example, smooth vector motion will
continue (without stopping) until all three linear moves have been completed (the contour buffer has been
emptied). At this time the axes will simultaneously decelerate and stop.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// Motion settings (GetDlgItemDouble() is a helper function defined
// elsewhere)
//
case IDOK:
 MCGetContourConfig(hCtrlr, iAxis, &Contour);
 Contour.Vector.Accel = GetDlgItemDouble(hDlg, IDC_TXT_ACCEL);
 Contour.VectorDecel = GetDlgItemDouble(hDlg, IDC_TXT_DECEL);
 Contour.VectorVelocity = GetDlgItemDouble(hDlg, IDC_TXT_VELOCITY
);
 Contour.VelocityOverride = GetDlgItemDouble(hDlg,
IDC_TXT_MAX_TORQUE);
 MCSetContourConfig(hCtrlr, iAxis, &Contour);

// Linear move #1
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 85000.0);
 MCMoveRelative(hCtlr, 2, 12000.0);
 MCMoveAbsolute(hCtlr, 3, -33000.0);
MCBlockEnd(hCtlr, NULL);

// Linear move #2
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 0.0);
 MCMoveAbsolute(hCtlr, 2, 0.0);
 MCMoveAbsolute(hCtlr, 3, 0.0);
MCBlockEnd(hCtlr, NULL);

// Linear move #3
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveAbsolute(hCtlr, 1, 5000.0);
 MCMoveRelative(hCtlr, 2, 23000.0);
 MCMoveAbsolute(hCtlr, 3, -16000.0);
MCBlockEnd(hCtlr, NULL);

Arc Motion

Motion Control

Precision MicroControl Corp.

94

The controller supports specifying an arc motion in two axes in any of three different ways:

 Specify center and end point
 Specify radius and end point (not supported by the Motion Control API)
 Specify center and ending angle (not supported by Motion Control API)

When the first arc motion is issued, motion of the two axes will start immediately (at the specified vector
velocity). Additional contour motions will be queued into the contouring buffer. As long as additional
contour moves reside in the contour buffer continuous path contour motion will occur. In this example,
smooth vector motion will continue (without stopping) until all both arc motions have been completed (the
contour buffer has been emptied). At this time the axes will simultaneously decelerate and stop.

Arc motions by specifying the center point and end point

The MCArcCnter() command is used to specify the center position of the arc. This command also
defines which two axes will perform the arc motion. The MCMoveAbsolute() or MCMoveRelative()
commands are used to specify the end point of the arc. A spiral motion will be performed if the distance
from the starting point to center point is different than the distance from the center point to end point. An
example of two arc motions is shown below:

Y

X

10,000

-10,000

1st move - 180 degree clockwise arc

2nd move - 180 degree clockwise arc

Arc center X 10,000
 Y 0

Starting
point

End point of
first arc

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// Motion settings (GetDlgItemDouble() is a helper function defined
// elsewhere)
//
case IDOK:
 MCGetContourConfig(hCtrlr, iAxis, &Contour);
 Contour.Vector.Accel = GetDlgItemDouble(hDlg, IDC_TXT_ACCEL);
 Contour.VectorDecel = GetDlgItemDouble(hDlg, IDC_TXT_DECEL);
 Contour.VectorVelocity = GetDlgItemDouble(hDlg, IDC_TXT_VELOCITY);
 Contour.VelocityOverride = GetDlgItemDouble(hDlg, IDC_TXT_MAX_TORQUE);
 MCSetContourConfig(hCtrlr, iAxis, &Contour);

// Clockwise arc move #1

Motion Control

MultiFlex ETH 1000 Series User's Manual

95

//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 10000.0);
 MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
 MCMoveAbsolute(hCtlr, 1, 20000.0);
 MCMoveAbsolute(hCtlr, 2, 0.0);
MCBlockEnd(hCtlr, NULL);

// Clockwise arc move #2
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CCW, 1);
 MCArcCenter(hCtlr, 1, MC_CENTER_REL, -10000.0);
 MCArcCenter(hCtlr, 2, MC_CENTER_REL, 0.0);
 MCMoveRelative(hCtlr, 1, -20000.0);
 MCMoveRelative(hCtlr, 2, 0.0);
MCBlockEnd(hCtlr, NULL);

Arc motions by specifying the radius and end point

The MCArcRadius() function is used to execute an arc move by specifying the radius and end point of
an arc. The Axis parameter should equal the controlling axis for the contour move. The parameter Radius
should equal the radius of the arc. If the arc is greater than 180 degrees, the parameter Radius must be
expressed as a negative number. The MCMoveAbsolute() or MCMoveRelative() commands are used
to specify the end point of the arc. An example of two arc motions is shown below:

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// 90 degree Clockwise arc move #1
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcRadius(hCtlr, 1, 10000.0);
 MCMoveRelative(hCtlr, 1, 10000.0);
 MCMoveRelative(hCtlr, 2, 10000.0);
MCBlockEnd(hCtlr, NULL);

// 270 degree Clockwise arc move #2
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcRadius(hCtlr, 1, -10000.0);
 MCMoveRelative(hCtlr, 1, -10000.0);
 MCMoveRelative(hCtlr, 2, -10000.0);
MCBlockEnd(hCtlr, NULL);

Motion Control

Precision MicroControl Corp.

96

Y

X
10,000

10,000

-10,000

1st move - 90 degree clockwise arc

2nd move - 270 degree clockwise arc

Radius = 10,000

Starting
point

End point of
first arc

Arc motions by specifying the center point and ending angle

The MCArcEndingAngle() function is used to execute an arc move by specifying the ending angle and
center point of an arc. The Axis parameter should equal the controlling axis for the contour move. The
parameter Angle should equal the ending angle (absolute or relative) of the arc. When using this method
to specify an arc, the MCMoveAbsolute() and MCMoveRelative() functions are not used.
The MCArcCenter() function defines the radius of the arc. An example of two arc motions is shown
below:

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

// Clockwise arc move #1
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcCenter(hCtlr, 1, MC_CENTER_ABS, 10000.0);
 MCArcCenter(hCtlr, 2, MC_CENTER_ABS, 0.0);
 MCArcEndAngle(hCtlr, 1, MC_ABSOLUTE, 0.0);
MCBlockEnd(hCtlr, NULL);

// Clockwise arc move #2
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_CW, 1);
 MCArcCenter(hCtlr, 1, MC_CENTER_REL, -10000.0);
 MCArcCenter(hCtlr, 2, MC_CENTER_REL, 0.0);
 MCArcEndAngle(hCtlr, 1, MC_RELATIVE, 1800.0);
MCBlockEnd(hCtlr, NULL);

Motion Control

MultiFlex ETH 1000 Series User's Manual

97

 Y
(90 degrees)

X
(0 degrees)10,000

10,000

-10,000

Starting
point

End point of
first arc

-Y
(270 degrees)

1st move - 180 degree clockwise arc

2nd move - 180 degree clockwise arc

-X
(180 degrees)

Center
point

Changing the velocity ‘on the fly’

‘On the fly’ velocity changes during contour mode motion are accomplished by using the
VelocityOverride member of the MCContour data structure. Issue the command (to the controlling axis)
to scale the vector velocity of a linear or arc motion. The rate of change is defined by the current settings
for vector acceleration and vector deceleration.

i

Changing the velocity of a contour group using Velocity Override
is not supported for S-curve and/or Parabolic velocity profiles.

Cubic Spline Interpolation of linear moves

To have the controller perform ‘curve fitting’ (cubic spline interpolation) on a series of linear moves, issue
the MCEnableSynch() command to the controlling axis before issuing any contour move commands.
Next issue linear contour path commands to points on the curve. After loading the desired number of
moves into the contour buffer, issue a MCGOEx() command with the value Param set to 1. Motion will
continue from the first to the last point in the contour buffer. To return to normal operation, issue the
MCEnableSynch() command with parameter pState = FALSE.

i

Note that when performing cubic spline interpolation, only 128 motions can be
queued up in the contouring buffer.

User Defined Contour path

When executing contour motion the controller assumes that the axes are arranged in an orthogonal
geometry. The controller will calculate the distance and period of a move as follows:

Motion Control

Precision MicroControl Corp.

98

 Beginning position: X=0 Y=0 Z=0
 Target position: X=10,000 Y=10,000 Z=1000

 Calculated Contour Distance = (X2 + Y2 + Z2)
 = (10,0002 + 10,0002 + 1,0002)
 = (100,000,000 + 100,000,000 + 1,000,000)
 = 201,000,000
 = 14177.44

The period, or elapsed time of the move, is a simple matter of applying the current settings for Vector
Acceleration + Vector Velocity + Vector Deceleration to the Calculated Contour Distance.

For applications where orthogonal geometry is not applicable, the controller allows the user to define a
custom contour distance. This is accomplished by:

 1) The command sequence must be preceded by the Contour Path (aCPn) command (a = the
 controlling axis) with parameter n = 0.
 2) Contour Distance (aCDn) must be the last command in the compound command sequence,
 with parameter n = the Calculated Contour Distance of the move

The controller will use the current settings for vector velocity, vector acceleration, and vector deceleration
to calculate the period of the motion. When a User Defined Contour Path is selected (MCBlockBegin
with parameter nMode set to MC_BLOCK_CONTR_USER), the MCContourDistance() function is used
to enter the non-orthogonal contour distance.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// User defined move #1
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
 MCMoveAbsolute(hCtlr, 1, 1000.0);
 MCMoveAbsolute(hCtlr, 2, 1000.0);
 MCMoveAbsolute(hCtlr, 3, 1000.0);
 MCContourDistance(hCtlr, 1, 10000.0);
MCBlockEnd(hCtlr, NULL);

// User defined move #2 - the Distance parameter is 10,000 + 10,000 =
20,000
//
MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
 MCMoveAbsolute(hCtlr, 1, 0.0);
 MCMoveAbsolute(hCtlr, 2, 0.0);
 MCMoveAbsolute(hCtlr, 3, 0.0);
 MCContourDistance(hCtlr, 1, 20000.0);
MCBlockEnd(hCtlr, NULL);

i

For the MCContourDistance() function, the parameter Distance is an absolute
value, relative to the positions of the included axes when the
MCSetOperatingMode() function was last issued. Re-issuing the
MCSetOperatingMode() function will reset the current contour distance to
zero.

Motion Control

MultiFlex ETH 1000 Series User's Manual

99

Special case: setting the Maximum Velocity of an Axis

When executing simple point to point or velocity mode motions the maximum velocity of each axis is set
individually. When executing multi axis contour moves, the maximum velocity is typically expressed as the
velocity of the ‘end effector’ of the contour group. In a cutting application the ‘end effector’ would be the
tool doing the cutting (torch, laser, knife, etc…). Setting the maximum velocity of an axis in the contoured
group is not typically supported.

By combining a user define contour path (MCBlockBegin with parameter nMode set to
MC_BLOCK_CONTR_USER) with the MCContourDistance() command with parameter Distance = 0,
the user can execute multi axis contour moves and limit the maximum velocity of an individual axis. In this
mode of operation the MCVectorVelocity() command is not used to set the velocity of the contour
group. The axis with the longest move time (calculated by distance, velocity, acceleration, and
deceleration) will define the total time for the contour move. For moves of sufficient distance where the
axis has enough time to fully accelerate, this one axis will move at its preset maximum velocity. All axes
will move at or below their specified maximum velocities. All axes will start and stop at the same time. In
the following example, axes 1 and 2 are commanded to move the same distance but the maximum
velocity for axis two is 1/3 that of axis one. Since both axes are moving the same distance, they will both
travel at a maximum velocity of 100 counts per second.

MCSetVelocity(hCtlr, 1, 300.0);
MCSetAcceleration(hCtlr, 1, 1000.0);
MCSetDeceleration(hCtlr, 1, 1000.0);

MCSetVelocity(hCtlr, 2, 100.0);
MCSetAcceleration(hCtlr, 2, 1000.0);
MCSetDeceleration(hCtlr, 2, 1000.0);

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);

MCContourdistance(hCtlr, 1, 0.0);

MCBlockBegin(hCtlr, MC_BLOCK_CONTR_USER, 1);
 MCMoveRelative(hCtlr, 1, 1000.0);
 MCMoveRelative(hCtlr, 2, 1000.0);
MCBlockEnd(hCtlr, NULL);

If the commanded move distance of axis one was 2000 counts it would move at a higher velocity than
axis two, but it would not reach its maximum velocity as set by the MCSetVelocity() command.

Motion Control

Precision MicroControl Corp.

100

Electronic Gearing

The MultiFlex motion controllers support slaving any axis or axes to a master. Moving the master axis will
cause the slave to move based on the specified slave ratio. The optimal position of the slave axis is
calculated by multiplying the optimal position of the master by the gearing ratio of the slave. The slave's
optimal position is maintained proportional to the master's position. This can be used in applications
where multiple motors drive the same load. Gearing supports both servos and stepper axes, with the
master axis operating in position, velocity, or contouring mode. If a following error or limit error occurs on
any of the geared axes (master or slaves) all axes in the geared group will stop.

The Motion Control API function MCEnableGearing() configures and initiates gearing. The slave ratio
can be set to any integer or real value. If the slave ratio is a positive value, a move in the positive
direction of the master will cause a move in the positive direction of the slave. If the slave ratio is a
negative value, a move in the positive direction of the master will cause a move in the negative direction
of the slave. The following program example configures axes 2, 3, and 4 as slaves of axis 1.

// Enable gearing of axis 2, 3, and 4
// Move axis 1 (master), slaves (axes 2, 3, and 4) will move at define
ratio
MCEnableGearing(hCtlr, 2, 1, 0.5, TRUE);
MCEnableGearing(hCtlr, 3, 1, 12.87, TRUE);
MCEnableGearing(hCtlr, 4, 1, -125, TRUE);
MCMoveRelative (hCtlr, 1, 215.0);

// disable gearing
MCEnableGearing(hCtlr, 2, 1, 0.5, FALSE);
MCEnableGearing(hCtlr, 3, 1, 12.87, FALSE);
MCEnableGearing(hCtlr, 4, 1, -125, FALSE);

!

Note – if the slave axes are servo’s or closed loop steppers, the PID
parameters for each axis must be defined prior to beginning
master/slave operation.

!

Note – Changing the slave ratio ‘on the fly’ may cause the mechanical
system to ‘jerk’ or to ‘error out’ (following error).

Motion Control

MultiFlex ETH 1000 Series User's Manual

101

Jogging

In some applications it may be necessary to have a means of manually positioning the motors. Since the
controller is able to control the motion of servos and steppers with precision at both low and high speeds,
all that is required to support manual positioning is: .

 A PC with a game port
 A PC joystick
 PC based software that positions the axes in Velocity mode

Jogging without writing software

One of the tools provided with the Motion Control API is the Joystick Demo. This tool allows the user to
configure and then jog one or two axes.

Figure 34. Joystick Demo program

Using the Joystick Demo in your application program

After the Motion Control API has been installed the source files for the Joystick Demo are available in the
Motion Control folder \Program Files\Motion Control\Motion Control API\Sources\Joy.

Motion Control

Precision MicroControl Corp.

102

Defining Motion Limits

The controller implements two types of motion limits error checking. End of travel or 'Hard' limit
switch/sensor inputs and 'soft' user programmable position limits.

Servo or stepper
motor

StageLead screw

Positive Limit
sensor

Negative Limit
sensor

Hard Limits

The Limit + and Limit - inputs of the controller use bi-directional optical isolators for interfacing to the
external limit sensors. For example wiring diagrams refer to pages 58 and 59. For axis I/O circuit
schematics refer to page 187. Use the Motion Integrator Motion System Setup Test Panel or the Status
Panel Utility to test the limit sensors, wiring, and controller operation.

i

By default all optically isolated inputs indicate that an input is on when the opto
device is conducting. For a limit sensor circuit that operates like a 'normally
open' switch, when the switch is closed (opto isolator is conducting) the
associated Limit +/- status bit will be set to a

For fail safe limit operation a 'normally closed' circuit can be used by issuing the
MCConfigureDigitalIO() with Mode value = MC_DIO_LOW. This will invert the
reported limit state so that the Limit +/- status bit will be set to a 1 if either the
switch is opened or one of the limit circuit wires is broken.

The controller supports two levels of limit switch handling:

Motion Control

MultiFlex ETH 1000 Series User's Manual

103

 Auto axis disable
 Simple monitoring

The Motion Control API function MCSetLimits() allows the user to enable the Auto Axis Disable
capability of the MultiFlex ETH . This feature implements a hard coded operation that will stop motion of
an axis when a limit switch is active. This background operation requires no additional controller
processor time, and once enabled, requires no intervention from the user’s application program. However
it is recommended that the user periodically check for a limit tripped error condition using the
MCGetStatus(), MCDecodeStatus() functions. The MCSetLimit() function provides the following limit
flags:

Flag Description
MC_LIMIT_PLUS Enables the Positive/High hard limit
MC_LIMIT_MINUS Enables the Negative/Low hard limit
MC_LIMIT_BOTH Enables the Positive and Negative hard limits
MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active
MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH Decelerate and stop the axis when the hard limit input goes active

MC_LIMIT_INVERT
Invert the active level of the hard limit input. Typically used for normally closed
limit sensors. Do not use if MCConfigureDigitalIO() with Mode value =
MC_DIO_LOW is being used to invert the reported state of a limit input .

When a limit event occurs, motion of that axis will stop and the error flags (MC_STAT_ERROR and
MC_STAT_PLIM_TRIP or MC_STAT_MLIM_TRIP) will remain set until the motor is turned back on by
MCEnable(). The axis must then be moved out of the limit region with a move command
(MCMoveAbsolute(), MCMoveRelative()). The Status Panel screen shot below shows the typical
display when a hard limit sensor is tripped during a move.

// Set the both hard limits of axis 1 to stop smoothly when tripped,
ignore
// soft limits:
//
MCSetLimits(hCtlr, 1, MC_LIMIT_BOTH | MC_LIMIT_SMOOTH, 0, 0.0, 0.0);

The +HLim T and
Error bits indicate
that a over travel
limit error has
occurred.

The Limit + bit
indicates the

current state of the
Limit + input.

Motion Control

Precision MicroControl Corp.

104

// Set the positive hard limit of axis 2 to stop by turning the motor
off.
// Because axis 2 uses normally closed limit switches we must also invert
the
// polarity of the limit switch. Soft limits are ignored.
MCSetLimits(hCtlr, 2, MC_LIMIT_PLUS | MC_LIMIT_OFF | MC_LIMIT_INVERT, 0,
0.0, 0.0);

i

 In Position and Velocity mode the response to an activated limit input is
direction sensitive, the axis will only be stopped if it is moving in the direction of
the activated limit switch. In Contour mode, the response to an activated limit
input is not direction sensitive, the axis will be stopped regardless of the
direction it is moving if either limit switch is activated. In Torque mode, the
controller will ignore the activation of a limit input, the axis will continue to move.

If the user does not want to use the Auto Axis Disable feature, the current state of the limit inputs can be
determined by polling the controller using the MCGetStatus(), MCDecodeStatus() functions. The flag
for testing the state of the Limit + input is MC_STAT_INP_PLIM. The flag for testing the state of the Limit
- input is MC_STAT_INP_MLIM.

Soft Limits

Soft motion limits allow the user to define an area of travel that will cause an error condition. When
enabled, if an axis is commanded to move to a position that is outside the range of motion defined by the
MCSetLimit() function, an error condition is indicated and the axis will stop. The MCSetLimit() function
provides the following limit flags:

Table 3. Motion Control API Limit Mode Flags

Flag Description
MC_LIMIT_PLUS Enables the High/Positive soft limit
MC_LIMIT_MINUS Enables the Low/Negative soft limit
MC_LIMIT_BOTH Enables the High and Low soft limits
MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active
MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH Decelerate and stop the axis when the hard limit input goes active

When a soft limit error event occurs, the error flags (MC_STAT_ERROR and MC_STAT_PSOFT_TRIP or
MC_STAT_MSOFT_TRIP) will remain set until the motor is turned back on by MCEnable(). The axis
must then be moved back into the allowable motion region with a move command (MCMoveAbsolute(),
MCMoveRelative()).

// Assume axis 3 is a linear motion with 500 units of travel. Set the
both
// hard limits of this axis to stop abruptly. Set up soft limits that
will
// stop the motor smoothly 10 units from the end of travel (i.e. at 10
// and 490).

MCSetLimits(hCtlr, 3, MC_LIMIT_BOTH | MC_LIMIT_ABRUPT, MC_LIMIT_BOTH |
MC_LIMIT_SMOOTH, 10.0, 490.0);

Motion Control

MultiFlex ETH 1000 Series User's Manual

105

Homing Axes

When power is applied or the controller is reset, the current position of all servo and stepper axes are
initialized to zero. If they are subsequently moved, the controller will report their positions relative to the
position where they were last initialized. At any time the user can call the MCSetPosition() function to re-
define the position of an axis.

In most applications, there is some position/angle of the axis (or mechanical apparatus) that is considered
'home'. Typical automated systems utilize electro-mechanical devices (switches and sensors) to signal
the controller when an axis has reached this position. The controller will then define the current position of
the axis to a value specified by the user. This procedure is called a homing sequence. The controller is
not shipped from the factory programmed to perform a specific homing operation. Instead, it has been
designed to allow the user to define a custom homing sequence that is specific to the system
requirements. The controller provides the user with two different options for homing axes:

1) High level function calls using the Motion Control API - Easy to program homing sequences
usingMotion Control API function calls.

2) MCCL homing macro’s stored in on-board memory - When executed as background tasks,
 MCCL homing macro’s allow the user to home multiple axes simultaneously. For additional

information on macro’s and background tasks please refer to the Motion Control Command
Language (MCCL) Reference manual.

Connecting a Home Sensor

The Home inputs (Coarse Home - servo’s & closed loop steppers, Home – open loop stepper) of the
controller use bi-directional optical isolators for interfacing to the external home sensor. For example
wiring diagrams refer to page 60. For axis I/O circuit schematics refer to page 187. Use the Motion
Integrator Motion System Setup Test Panel or the Status Panel Utility to test the home sensors, wiring,
and controller operation.

Verifying the operation of the Index Mark of an Encoder

Most closed loop system applications will use the Index mark of the encoder to define the ‘home’ position
of a servo. Use Motion Integrator’s Connect Encoder Wizard to verify the proper operation of the encoder
index.

Motion Control

Precision MicroControl Corp.

106

Programming Homing Routines

The controller provides sophisticated programming support for homing closed loop servos, Closed Loop
Steppers, and Open Loop Steppers. The following two tables summarize which commands are provided
for homing operations.

Table 4. Motion Control API Homing Functions

Axis Type Functions Input Notes

Closed Loop Servo
MCIndexArm
MCWaitForIndex
MCIsIndexFound

Encoder Index

Closed Loop Servo MCFindIndex Encoder Index
Use only from within
background task

Closed Loop Stepper
MCIndexArm
MCWaitForIndex
MCIsIndexFound

Aux. Encoder Index

Closed Loop Stepper MCFindIndex Aux. Encoder Index
Use only from within
background task

Open Loop Stepper
MCEdgeArm
MCWaitForEdge
MCIsEdgeFound

Home

Open Loop Stepper MCFindEdge Home
Use only from within
background task

Table 5. MCCL Homing Commands

Axis Type Command Input Notes
Closed Loop Servo IA & WI Encoder Index

Closed Loop Servo FI Encoder Index
Use only from within
background task

Closed Loop Stepper IA & WI Aux. Encoder Index

Closed Loop Stepper FI Aux. Encoder Index
Use only from within
background task

Open Loop Stepper EL & WE Home

Open Loop Stepper FE Home
Use only from within
background task

Motion Control

MultiFlex ETH 1000 Series User's Manual

107

Homing a Rotary Stage (closed loop servo or closed loop stepper) with the
Encoder Index

Many servo motor encoders generate an index pulse once per rotation. For a multi turn rotary stage,
where one rotation of the encoder equals one rotation of the stage, an index mark alone is sufficient for
homing the axis. When an axis need only be homed within 360 degrees no additional qualifying sensors
(coarse home) are required.

i

The following C example uses the MCIndexArm(), MCIsIndexFound(), and
MCWaitForIndex() functions for homing a closed loop system. For complete C
code homing samples that can be cut and pasted into an application program
please refer to the Motion Control API on-line help (mcapi.hlp).

// Arm index and wait for index to be found
//
MCIndexArm(hCtlr, 1, 0.0);
if (!MCIsIndexFound(hCtlr, 1, 10.0)) {
 // Index not found within time limit (10 seconds),
 // error handling code goes here
}
//
// Process index and stop motor
//
MCWaitForIndex(hCtlr, 1); // controller 'processes' index data
MCStop(hCtlr, 1); // stop
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100); // let motor settle 100 msec (WIN32 API function)

i

The following MCCL example uses the Index Arm (aIAn) and the Wait for Index
(aWI) commands to home a closed loop system.

;MCCL rotary axis homing sequence index mark
MD10,1SV10000,1VM,1DI0,1GO,1IA0,LU"STATUS",1RL@0,IC18,JR-3,NO,1WI,MJ11
 ;move, arm and capture index
MD11,1ST,1WS.01,1PM,1MN,1MA0,1WS.01 ;stop, initialize axis, move to
index
 ;mark

Homing a Closed Loop Axis with Coarse Home and Encoder Index Inputs

A typical axis will incur multiple rotations of the motor/encoder over the full range of travel. This type of
system will typically utilize a coarse home sensor to qualify which of the index pulses is to be used to
home the axis. The Limit Switches (end of travel) provide a dual purpose:

 1) Protect against damage of the mechanical components.
 2) Provide a reference point during the initial move of the homing sequence

Motion Control

Precision MicroControl Corp.

108

Servo motor and
encoder

Stage
Lead screw

Coarse Home
sensor

Positive Limit
sensor

Negative Limit
sensor

Figure 35. Typical Linear Stage

When power is applied or the controller is reset, the position of the stage is unknown. To home the axis a
velocity mode move in the positive direction is commanded, checking the status of both the Coarse Home
sensor and the Limit + sensor. Once the axis is within the Coarse Home sensor the MCIndexArm(),
MCIsIndexFound(), and MCWaitForIndex() functions are used to reference the reported position of the
axis to the index mark. The MCEnableAxis() function completes the homing operation by reinitialize all
position registers. The following flow chart describes a typical homing procedure. If the positive limit
sensor is activated the stage will change direction prior to homing the axis.

Motion Control

MultiFlex ETH 1000 Series User's Manual

109

Homing a Closed Loop System -
Encoder Index, Coarse Home Sensor, and Over Travel Limits

Coarse
 Home sensor

active?

Limit +
 sensor

 tripped?

Enable hard limit
 error checking

Stop axis,
change

direction

Coarse
 Home sensor

active?

Start
velocity

mode move
in the

positive
direction

No

Enable axis
to clear limit.

Move neg.
to Coarse

Home
sensor

Yes

Coarse
 Home sensor

active?

No

Coarse
 Home sensor

inactive?

Yes

No

Yes

No

Stop axis,
change

direction

Yes

No

Capture
Encoder

Index

Yes

Stop, turn
Motor oN,
move to

index mark

Homing complete

Figure 36. Typical homing routine for a servo

i

The following C example uses the MCIndexArm(), MCIsIndexFound(), and
MCWaitForIndex() functions for homing a closed loop system. For complete C
code homing samples that can be cut and pasted into an application program
please refer to the Motion Control API on-line help (mcapi.hlp).

// Motion Control API linear stage homing sequence using the index mark
//
MCIndexArm(hCtlr, 1, 1000.0);
if (!MCIsIndexFound(hCtlr, 1, 10.0)) {
 // Index not found within time limit (10 seconds),
 // error handling code goes here
}
// Process index and stop motor
MCWaitForIndex(hCtlr, 1); // controller 'processes' index data
MCStop(hCtlr, 1); // stop
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}

Motion Control

Precision MicroControl Corp.

110

Sleep(100); // let motor settle 100 msec (WIN32 API function)

// Move back to location of index mark
//
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCIsStopped(hCtlr, 1, 2.0);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100);

i

The following MCCL example uses the Index Arm (aIAn) and the Wait for Index
(aWI) commands to home a closed loop system.

;MCCL linear stage homing sequence using the index mark
MD10,1IA1000,MC20,1WI,1ST,1WS.01,MJ11 ;capture index (position = 1000) then

stop
MD11,1PM,1MN,1MA1000,1WS.1 ;initialize axis, move to index

;homing sub routines
MD20,LU"STATUS",1RL@0,IS18,BK,NO,JR-5 ;test for Index Found

Motion Control

MultiFlex ETH 1000 Series User's Manual

111

Homing a Closed Loop Axis with a Limit sensor

An axis can be homed even if no index mark or coarse home sensor is available. This method of homing
utilizes one of the limit (end of travel) sensors to also serve as a home reference.

i

This method is not recommended for applications that require high
repeatability and accuracy. To achieve the highest possible accuracy when
using this method, significantly reduce the velocity of the axis while polling for
the active state of the limit input.

The following Motion Control API and MCCL sequences will home an axis at the position where the
positive limit sensor ‘goes active’:

i

The following C example uses the MCSetPosition() function to redefine the
encoder position a closed loop system. For complete C code homing samples
that can be cut and pasted into an application program please refer to the
Motion Control API on-line help (mcapi.hlp).

// Motion Control API homing sequence (using positive limit sensor)
// the axis must have already been moved into (and tripped) the positive
limit
// sensor

// Once the positive limit switch is active, move negative until switch is inactive
//
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);
MCSetVelocity(hCtlr, 1, 1000.0);
MCGoEx(hCtlr, 1, 0.0));
dwStatus = MCGetStatus(hCtlr, 1);
if (!MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_PLIM)) {
 dwStatus = MCGetStatus(hCtlr, 1)
}

// Stop the axis and define the leading edge of the limit switch as position 0
//
MCAbort(hCtlr, 1);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
MCSetPosition(hCtlr, 1, 0.0);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, -100.0);

Motion Control

Precision MicroControl Corp.

112

i

The following MCCL example uses the Define Home (aDHn) command to
redefine the encoder position of a closed loop system.

; MCCL linear stage homing sequence using the positive limit sensor
MD1,1LM2,1LN3,MJ10 ;call homing macro
MD10,1VM,1DI0,1GO,LU”STATUS”,1RL@0,IS10,MJ11,NO,JR-5
 ;move and poll the Limit + sensor
MD11,1WS0.01,1MN,1DI1,1SV1000,1GO,LU”STATUS”,1RL@0,IC28,MJ12,NO,JR-5
 ;move negative until limit + inactive
MD12,1AB,1WS.1,1DH0,1PM,1MN,1MA-100 ;stop immediately when limit + not active,
 ;define position as 0. Move to position –
100.

Homing open loop steppers

Open loop steppers are typically homed based on the position of a home sensor. Unlike servos that use a
precision reference index mark, steppers are more prone to homing inaccuracies due the lower
repeatability of the single electro mechanical home sensor. To achieve the highest possible repeatability;
reduce the velocity of the axis and always approach the home sensor from the same direction. Here is a
typical linear axis controlled by an open loop stepper motor. A home sensor defines the home position of
the axis. End of travel or Limit Switches are used to protect against damage of the mechanical
components.

Stepper motor

Lead screw

Home sensor Positive Limit
sensor

Negative Limit
sensor

Stage

When power is applied or the controller is reset, the position of the stage is unknown. The following
command sequence will move the stage in the positive direction. If the positive limit sensor is activated
before the Home sensor the stage will change direction, until home sensor is located. When the Home
sensor is activated the MCEdgeArm () and MCIsEdgeFound () functions are used to capture the
position of the Home sensor active edge.

Motion Control

MultiFlex ETH 1000 Series User's Manual

113

Homing an Open Loop Stepper -
 Home Sensor and Over Travel Limits

Home
sensor
 active?

Enable hard limit
 error checking

Slow down

Limit +
 sensor

 tripped?

Start velocity
mode move

in the
positive
direction

No

Enable axis,
Move neg.
towards
Home
sensor

No

Stop axis,
change

direction

Yes

Stop, move
to position 0
(where index

mark was
captured)

Homing complete

Home
 sensor

inactive?

Capture
sensor edge
MCEdgeLatch

MCWairForEdge

Yes

No

Yes

Figure 37. Typical homing routine for a stepper

i

The following C example uses the MCEdgeArm(), MCIsEdgeFound(), and
MCWaitForEdge() functions for homing a closed loop system. For complete C
code homing samples that can be cut and pasted into an application program
please refer to the Motion Control API on-line help (mcapi.hlp).

// Motion Control API open loop stepper linear stage homing sequence using
the home sensor
//
MCEdgeArm(hCtlr, 1, 1000.0);
if (!MCIsEdgeFound(hCtlr, 1, 10.0)) {
 // Edge not found within time limit (10 seconds),
 // error handling code goes here
}
// Process edge and stop motor
MCWaitForEdge(hCtlr, 1); // controller 'processes' edge data
MCStop(hCtlr, 1); // stop
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100); // let motor settle 100 msec (WIN32 API function)

// Move back to location of home sensor edge
//
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);

Motion Control

Precision MicroControl Corp.

114

MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCIsStopped(hCtlr, 1, 2.0);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100);
// Enable / disable axis to set MC_STAT_INP_INDEX to monitor the current
// state (not capture & latch) of Home sensor
MCEnableAxis(hCtlr, 1, FALSE);
MCWait(hCtlr, 0.01);
MCEnableAxis(hCtlr, 1, TRUE);

i

Prior to issuing MCEdgeArm () the status flag MC_STAT_INP_INDEX will
indicate the current state of the Home Sensor (1 = active, 0 = inactive). After
issuing MCEdgeArm () MC_STAT_INP_INDEX will be latched when the
Home sensor edge has been captured. To clear latching of
MC_STAT_INP_INDEX issue:
 MCEnableAxis(hCtlr, 1, FALSE);
 MCEnableAxis(hCtlr, 1, TRUE);

i

The following MCCL example uses the Edge Arm (aEAn) and the Wait for Edge
(aWE) commands to home a closed loop system.

; MCCL Stepper linear stage homing sequence using Home & positive limit
;sensors
MD5,5LM2,5LN3,MJ10 ;enable limits, call homing macro
MD10,5VM,5DI0,5SV10000,5GO,LU"STATUS",5RL@0,IS24,MJ11,NO,IS10,MJ13,NO,JR-8
 ;test for sensors (home and
+limit)
MD11,LU"STATUS",5RL@0,IC24,MJ12,NO,JR-5 ;continue moving until home
sensor off
MD12,5ST,5WS.1,5DI1,5SV5000,5GO,MJ14 ;move back to the home sensor
MD13,5WS0.01,5MN,5DI1,5SV5000,5GO,MJ14 ;move out of limit sensor range
 ;back toward the home sensor
MD14,5EL0,MC15,5WE,5ST,5WS.1,5MF,5MN,5PM,5MA-100
 ;capture the active edge of the
 ;home sensor. Stop axis and
 ;define a position 0, ;move to
 ;position -100
MD15,LU"STATUS",5RL@0,IS18,BK,NO,JR-5 ;loop status for Edge found bit
set

i

Prior to issuing Edge Latch (aELn) the status bit 24 Index / Home will indicate
the current state of the Home Sensor (1 = active, 0 = inactive). After issuing
Edge Latch (aELn) status bit 24 will be latched when the Home sensor edge
has been captured. To clear latching issue:
 1MF,1MN

Motion Control

MultiFlex ETH 1000 Series User's Manual

115

Homing a Open Loop Stepper with a Limit sensor

An axis can be homed even if no home sensor is available. This method of homing utilizes one of the limit
(end of travel) sensors to also serve as a home reference. The following Motion Control API and MCCL
sequences will home an axis at the position where the positive limit sensor ‘goes active’:

i

The following C example uses the MCSetPosition() function to redefine the
encoder position a closed loop system. For complete C code homing samples
that can be cut and pasted into an application program please refer to the
Motion Control API on-line help (mcapi.hlp).

// Motion Control API homing sequence (using positive limit sensor)
// the axis must have already been moved into (and tripped) the positive
limit
// sensor

// Once the positive limit switch is active, move negative until switch is inactive
//
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);
MCSetVelocity(hCtlr, 1, 1000.0);
MCGoEx(hCtlr, 1, 0.0));
dwStatus = MCGetStatus(hCtlr, 1);
if (!MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_PLIM)) {
 dwStatus = MCGetStatus(hCtlr, 1)
}

// Stop the axis and define the leading edge of the limit switch as position 0
//
MCAbort(hCtlr, 1);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
MCSetPosition(hCtlr, 1, 0.0);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, -100.0);

i

The following MCCL example uses the Define Home (aDHn) command to
redefine the encoder position of a closed loop system.

; MCCL linear stage homing sequence using the positive limit sensor
MD5,5LM2,5LN3,MJ10 ;call homing macro
MD10,5VM,5DI0,5GO,LU”STATUS”,5RL@0,IS10,MJ11,NO,JR-5
 ;move and poll the Limit + sensor
MD11,5WS0.01,5MN,5DI1,5SV1000,5GO,LU”STATUS”,5RL@0,IC28,MJ12,NO,JR-5
 ;move negative until limit + inactive
MD12,5AB,5WS.1,5DH0,5PM,5MN,5MA-100 ;stop immediately when limit + not active,

Motion Control

Precision MicroControl Corp.

116

 ;define position as 0. Move to position –
100.

Motion Control

MultiFlex ETH 1000 Series User's Manual

117

Motion Complete Indicators

When the controller receives a move command, the Trajectory Generator calculates a velocity profile.
This profile is based on:

 The target position (absolute or relative)
 The user defined trajectory parameters (velocity, acceleration, and deceleration)
 The user selected velocity profile type (trapezoidal, s-curve, parabolic)

The velocity profile, as calculated by the trajectory generator, is made up by a series of calculated
‘Optimal Positions’ that are evenly spaced along the motion path in increments of 1 msec’s. For an analog
command servo axis these 1 msec optimal positions are passed to the PID filter, which then performs a
linear interpolation, calculating intermediate target points every 250 usec's.

Velocity
(encoder counts per second)

Time (msec's)4 8 12 16 20

25000

50000

100000

75000

= Optimal positions

Optimal position - Actual position = Following error

calculated trajectory complete
(status bit 3 set)

= Calculated trajectory

= Actual trajectory

= Following Error

For a closed loop servo, when the calculated optimal position of an axis is equal to the move target,
the calculated ‘digital trajectory’ of the move has been completed and the MC_STAT_TRAJ status flag
(MCCL status trajectory complete bit 3) will be set (as shown in the Status Panel graphic below). For a
closed loop stepper axis when the encoder position is equal to the move target, the trajectory of the
move has been completed and the MC_STAT_TRAJ status flag will be set. For an open loop stepper
axis when the step count (pulses issued) is equal to the move target, the trajectory of the move has
been completed and the MC_STAT_TRAJ status flag will be set.

Motion Control

Precision MicroControl Corp.

118

The MC_STAT_TRAJ status flag is the conditional component of the MCIsStopped() and
MCWaitForStop() functions. As shown by the trajectory graph above, the typical lag or following error
during a servo move can cause the MC_STAT_TRAJ flag to be set before the axis has reached its
target. Issuing MCIsStopped() with a timeout value specified or MCWaitForStop() with a Dwell time
specified allows the user to delay execution move has been completed (following error = 0). In the
example below, the MCIsStopped() function (with a 2 second timeout) is used to poll the axis for
MC_STAT_TRAJ = true. The Windows SLEEP function is used to allow the axis to stop and settle for 100
milliseconds. command includes a Dwell of 5 msec’s, allowing the axis to stop and settle.

MCMoveRelative(hCtlr, 2, 500.0); // move 500 counts
MCIsStopped(hCtlr, 1, 2.0);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100);

Another method of indicating the end of a move of a servo is to use MCIsAtTarget() or
MCWaitForTarget() functions. To satisfy the conditions of MCIsAtTarget() and MCWaitForTarget() ,
the axis must be within the Deadband range (encoder counts +/- or stepper pulses +/-) for the time period
specified by DeadbandDelay, both of which are defined within the MCMotion data structure.
The MC_STAT_AT_TARGET flag will be set when the conditions for both Deadband and Deadbanddelay
have been met.

MCMoveRelative(hCtlr, 1, 1250.0); // move 1250 counts
MCWaitForTarget(hCtlr, 1, 0.005); // wait till MC_STAT_TRAJ set
plus // msec’s

MCIsAtTarget(hCtlr, 1, 2.0);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to reach the target within time limit (2 seconds),
 // error handling code goes here
}
Sleep(100);

Motion Control

MultiFlex ETH 1000 Series User's Manual

119

On the Fly changes

During a Trapezoidal profile point to point or constant velocity move of one or more axes, the controller
supports ‘on the fly’ changes of:

 Target
 Maximum Velocity
 Acceleration
 Deceleration
 PID parameters

Changes made to any or all of these motion settings while an axis is moving will take affect within 1 msec.

!

Note – Changing the PID parameters (Proportional gain, Derivative gain,
Integral gain) ‘on the fly’ may cause the axis to jump, oscillate, or ‘error out’.

i

S-curve or Parabolic velocity profiles:
 1) Changing the target position on the fly will cause the axis to
 decelerate to a stop before proceeding to the new target
 2) On the fly changes of trajectory parameters (max. velocity, accel,
 decel) will not be implemented until the current move has been
 completed

i

If an “on the fly” target position change requires the axis to change direction the
axis will first decelerate to a stop. The axis will then move in the opposite
direction to the new target. This will occur if:

 1) The new target position is in the opposite direction of the current
 move
 2) A ‘near target’ is defined. A near target is a condition where the
 current deceleration rate will not allow the axis to stop at the
 new target position. In this case the axis will decelerate to a stop at
 the user define rate, which will result in an overshoot. The axis will
 then move in the opposite direction to the new target.

If an on the fly change requires the axis to change direction, the command
interpreter will stall, not accepting any additional commands, until the change of
direction has occurred (deceleration complete).

Motion Control

Precision MicroControl Corp.

120

Feed Forward (Velocity, Acceleration, Deceleration)

Feed forward is a method in which the controller increases the command output to a servo in order to
reduce the following error of an axis. Traditionally feed forward is associated with servo systems that use
velocity mode amplifiers, but simple torque mode amplifiers used for high velocity and high rate of change
applications can also benefit from the use of feed forward.

The basic concept of feed forward is to match the servo command voltage output of the controller to a
specific velocity of axis. This essentially adds a user defined offset to the digital PID filter, resulting in
more accurate motion by reducing the following error. For example:

The maximum velocity of an axis is 500,000 encoder counts per second. With a typical load applied, the
user determines that a servo command voltage of 8.25V will cause the motor to rotate at 500,000
encoder counts per second. The feed forward algorithm used by the controller to generate the servo
command output is:

 controller output = Velocity (encoder counts/sec) X Feed forward term (encoder counts/volt/sec.)

with a velocity of 500,000 counts per second at a command input of 8.25V the algorithm will be:

 8.25 volts = 500,000 counts/sec. X Feed forward term (encoder counts * volt/sec.)

 Feed forward = 8.25V / 500,000 counts per sec.

 0.0000165 = 10 volts / 100,000 counts per sec.

i

Because the controller’s PID filter uses negative feedback, feed forward values
are expressed as negative values.

// set velocity gain (velocity feed forward) using Motion Control API
function
//
 MCGetFilterConfig(hCtrlr, iAxis, &Filter);
 Filter.VelocityGain = (hCtlr, 1, -0.0000165);
 MCSetFilterConfig(hCtrlr, iAxis, &Filter);

;set velocity gain (velocity feed forward) using MCCL VG command

1VG-0.0000165 ;set velocity gain (velocity feed
 ;forward) with MCCL command

i

An axis that has been tuned without feed forward will need to be re-tuned when
the feed forward has been changed to a non zero value.

See the description of Tuning a Velocity Mode amplifier in the Tuning the
Servo section of the Motion Control chapter

Motion Control

MultiFlex ETH 1000 Series User's Manual

121

When feed forward is incorporated into the digital PID filter it becomes the primary component in
generating the servo command output voltage. Typically the setting of the other terms of the filter will be:

 Proportional gain – reduced by 25% to 50%
 Integral gain – reduced by 5% to 25%
 Derivative gain – set to zero, if the axis is too responsive reduce the gain of the amplifier

Acceleration and Deceleration Feed Forward

For most applications, velocity feed forward is sufficient for accurately positioning the axis. However for
applications that require a very high rate of change, acceleration and deceleration gain must be used to
reduce the following error at the beginning and end of a move.

Acceleration and deceleration feed forward values are calculated using a similar algorithm as used for
velocity gain. The one difference is the velocity is expressed as encoder counts per second, while
acceleration and deceleration are expressed as encoder counts per second per second.

 controller output = Accel./Decel. (encoder counts/sec/sec.) * Feed forward term (encoder counts *
volt/sec./sec.)

i

Acceleration and deceleration feed forward values should be set prior to using
the Servo Tuning Utility to set the proportional and integral gain.

i

Acceleration feed forward and deceleration feed forward are not supported
during Contour Mode (multi-axes lines and/or arcs).

Motion Control

Precision MicroControl Corp.

122

Save and Restore Axis Configuration Settings

The Motion Control API Motion Dialog library includes MCDLG_SaveAxis() and
MCDLG_RestoreAxis(). These high level dialogs allow the programmer to easily maintain and update
the settings for servo and stepper axes.

MCDLG_SaveAxis() encodes the motion controller type into a signature that is saved with the axis
settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the axis settings. If you
make changes to your hardware configuration (i.e. change controller type) MCDLG_RestoreAxis() will
refuse to restore those settings.

You may specify the constant MC_ALL_AXES for the wAxis parameter in order to save the parameters
for all axes installed on a motion controller with a single call to this function.

If a NULL pointer or a pointer to a zero length string is passed as the PrivateIniFile argument the default
file (mcapi.ini) will be used. Most applications should use the default file so that configuration data may be
easily shared among applications. Acceptance of a pointer to a zero length string was included to support
programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

MultiFlex ETH 1000 Series User's Manual

123

Application Solutions

Backlash Compensation

In applications where the mechanical system isn't directly connected to the motor, it may be required that
the motor move an extra amount to compensate for system backlash. When backlash compensation is
enabled, the controller will offset the target position of a move by the user defined backlash distance. This
feature is only available for Analog Command Servo axes.

The function MCEnableBacklash() is used to initiate backlash compensation. The Backlash parameter
of this function sets the amount of compensation and should be equal to one half of the amount the axis
must move to take up the backlash when it changes direction. The units for this command parameter are
encoder counts, or the units established by the MCSetScale() command for this axis.

When this feature is enabled, the controller will add or subtract the backlash distance from the motor's
commanded position during all subsequent moves. If the motor moves in a positive direction, the distance
will be added; if the motor moves in a negative direction, it will be subtracted. When the motor finishes a
move, it will remain in the compensated position until the next move.

Prior to enabling backlash compensation, the motor should be positioned halfway between the two
positions where it makes contact with the mechanical gearing. This will allow the controller to take up the
backlash when the first move in either direction is made, without "bumping" the mechanical position.

While backlash compensation is enabled, the response to the MCGetPosition(), MCTellTarget() and
MCTellOptimal() commands will be adjusted to reflect the ideal positions as if no mechanical backlash
was present.

For the example below assume that the system has 200 encoder counts of backlash. This example
moves the system to the middle of the backlash range and enables compensation. Note that the
compensation value (in encoder counts) used with MCEnableBacklash() is half of the total amount of
backlash.

MCMoveRelative(hCtlr, 1, -100.0); // move to middle of backlash
MCWaitForStop(hCtlr, 1); // let motion finish
MCEnableBacklash(hCtlr, 1, 100.0, TRUE); // enable backlash
compensation

Chapter

6

Application Solutions

Precision MicroControl Corp.

124

Gear backlash

Application Solutions

MultiFlex ETH 1000 Series User's Manual

125

Emergency Stop

Many applications that use motion control systems must accommodate regulatory requirements for
immediate shut down due to emergency situations. Typically these requirements do not allow an
emergency shut down to be controlled by a programmable computing device. The drawing below depicts
an application where an emergency stop must be a completely ‘hard wired’ event.

Computer Control
Panel

Motor

Servo
Amplifier

Motor

Servo
Amplifier

Motor

Servo
Amplifier AC Power In

Relay - NC

E-stop Switch

+5 VDC

Amplifier
Power Supply

AC In

Figure 38. Typical 'hard wired' E-stop

This ‘hard wired’ E-stop circuit uses a relay to disconnect power from the servo amplifiers. The motors
and amplifiers would certainly be disabled, but the motion controller and the application program will have
no indication that an error condition exists.

E-stop switch connected to Amplifier Fault servo module input

The Amplifier / Driver Fault inputs can be used to disable motion with no user software action required.
The E-stop switch is wired to the Amplifier/Drive Fault input of each axis being used. Auto shut down of
motion upon activation of the E-stop switch is enabled by the MCMotion structure member
EnableAmpFault. When the E-stop switch is activated:

 1) The axis is disabled (PID loop terminated, Amplifier Enable / Driver Disable output turned off)
 2) The status flag MC_STAT_AMP_FAULT will be set for each axis
 3) The status flag MC_STAT_ERROR will be set for each axis

When the E-stop condition has been cleared, motion can be resumed after issuing the MCEnableAxis
function with the parameter wAxis set to MC_ALL_AXES.

Application Solutions

Precision MicroControl Corp.

126

ADAM-3968 wiring
module #1

(axes 3 & 4)

17

51

18

52

ADAM-3968 wiring
module #1

(axes 1 & 2)

17

51

18

52

Axis 1 Amplifier Fault

Amp Fault supply/
return

J1

17

51

Motion Controller

AC Power In

Relay -
NC

E-stop Switch

+24 VDC

Amplifier
Power Supply 18

52

J2

17

51

18

52

Axis 3 Amplifier Fault

Amp Fault supply/
return

Axis 2 Amplifier Fault

Amp Fault supply/
return

Amp Fault supply/
return

Axis 4 Amplifier Fault

Figure 39. E-stop switch wired to the Amplifier / Driver Fault inputs

Application Solutions

MultiFlex ETH 1000 Series User's Manual

127

Encoder Rollover

The controller provides 32 bit position resolution, resulting in a position range of –2,147,483,647 to
2,147,483,647. For an application where the axis is moving at maximum velocity (20 million encoder
counts per second), the encoder would rollover in approximately 1.6 minutes. When the encoder rolls
over, the reported position of the axis will change from a positive to a negative value. For example, if the
axis is at position 2,147,483,647 the next positive encoder count will cause the controller to report the
position as –2,147,483,647.

If a user scaling other than 1:1 has been defined the controller will report the position in user units. The
reported position at which the value will rollover is based on the user scaling. If user scaling is set to
10,000 encoder counts to one position unit, the reported position will rollover at position 214,748.3647.
The next positive encoder count will cause the controller to report the position as
 –214,748.3647.

Encoder rollover during Position Mode moves
The controller does not support executing Position Mode moves when the encoder rolls over. No matter
what the commanded position, the axis will stop at the rollover position (2,147,483,647 or
 –214,748.3647).

Encoder rollover during Velocity Mode moves
No disruption or unexpected motion will occur if a rollover occurs during a Velocity mode
(MCSetOperatingMode, MC_MODE_VELOCITY) move.

!

Prior to executing a velocity mode move in which the encoder position may
rollover the axis must be homed (MCFindIndex or MCSetPosition) to position 0.
Defining a offset to the home position will cause the axis to pause at the rollover
point.

Application Solutions

Precision MicroControl Corp.

128

Flash Memory Firmware Update

PMC’s Flash Wizard is a windows utility that allows the user to easily update the controller’s firmware
code. Firmware updates for most PMC motion controllers are available for download from from the
Support section of PMC’s web site www.pmccorp.com/support/support.php. Note: Please contact PMC if
firmware is not available for your model.

http://www.pmccorp.com/support/support.php�

Application Solutions

MultiFlex ETH 1000 Series User's Manual

129

Saving and Restoring Axis Configuration Settings

Users of PMC motion controllers can:

 Save desired motion controller and axis configuration settings to a text file
 Download the saved settings from a text file to any installed controller
 Copy the saved settings from one PC to another for use by multiple controllers
 View the saved settings by opening a saved text file

Whenever the motion controller is reset or powered up, all motion settings (velocity, acceleration,
deceleration, limits, PID values, etc) and all global controller settings (user scaling and I/O configuration)
revert to factory default values (factory default values are listed on page 165). Therefore, after power-up,
you should always initialize all controller and axis settings to their desired values. You can accomplish
this in any one of three ways:

1. Use the Setup Menu selections “save all axis settings” and “initialize (restore) axis settings”
in any of PMC’s application programs.

2. Use the Motion Control Dialog MCDLG_SaveAxis() and MCDLG_RestoreAxis() functions.

3. Save and initialize each parameter individually from a high-level program or an MCCL command

text file.

i

On power-up or reset, all motion controller settings revert to factory default
values. Therefore, after power-up, users should always initialize all controller
settings to their desired values.

Saving and restoring configuration settings using PMC application programs

For initial testing and system configuration, users will probably find it most convenient to save and restore
(initialize) axis settings via the menu selections in PMC’s application programs.

The first time that the Motion Control API recognizes that one or more PMC motion controllers are
installed, a (mcapi.ini) text file is created in the C:\Windows\ folder. Initially mcapi.ini contains only
information about the controller type and interface settings. When users select “Save All Axis Settings” in
the application program’s setup menu, the settings currently being used by the motion controller are
saved to the mcapi.ini file.

The available menu choices are:

a. "Save All Axis Settings" - Copies the settings used by the controller to mcapi.ini
b. "Initialize All Axes" - Copies the axis settings saved in mcapi.ini to the controller
c. "Always (or Auto) Initialize All Axes" - Every time that the program starts, the axis settings

will automatically be copied from mcapi.ini to the controller

Application Solutions

Precision MicroControl Corp.

130

Figure 40. Saving and Restoring Settings From a PMC Sample Program

Example: PMC’s Motion Integrator provides first-time users with a step by step process that helps them
install, configure and troubleshoot their motion controller. Like the provided sample programs, Motion
Integrator also allows users to conveniently save all settings to C:\Windows\mcapi.ini. Once the desired
settings are saved, users can direct other PMC application programs to load and use the saved setting by
selecting Auto Initialize from each program’s File menu.

Figure 41. Use Previously Saved Settings by Checking the “Auto Initialize” Menu Selection

!

Selecting Save All Axes from the File menu of a PMC application program will
overwrite all previously stored settings.

Application Solutions

MultiFlex ETH 1000 Series User's Manual

131

Saving and restoring configuration settings using the MCDLG functions

Programmers can programmatically save axis settings to the mcapi.ini file (or any other text file) and
restore (initialize) the settings from the saved file back to to the motion controller using the MCDLG
(Motion Control Dialog) functions MCDLG_SaveAxis() and MCDLG_RestoreAxis(). These functions are
convenient because they save all controller and axis settings at once. These are the same functions
invoked by the Setup menu selections of PMC’s sample programs. These functions are documented in
more detail in the MCDLG Reference online help, accessible from the Motion Control API program group,
as shown in the following figure.

Figure 42. MC Dialog Box Reference and Sample Source Code Program Groups

i

The default name for the initialization file used to save and restore controller
and axis settings is mcapi.ini. However users can programmatically save the
axis settings to any filename, with a different filename extension if they wish.

As a helpful guide for programmers, PMC’s Motion Control API also includes a Sample Source Code
folder which contains the source code for all of PMC’s sample programs. For example, the following
source code performs the saving and restoring functions for the "Save All Axis Settings" and "Initialize All
Axes" menu selections in the sample application programs.

case IDM_AUTO_INIT:
 SkipTimer = true;
 if (GetMenuState(GetMenu(hDlg), IDM_AUTO_INIT, MF_BYCOMMAND) & MF_CHECKED)
 CheckMenuItem(GetMenu(hDlg), IDM_AUTO_INIT, MF_UNCHECKED);
 else
 {
 CheckMenuItem(GetMenu(hDlg), IDM_AUTO_INIT, MF_CHECKED);
 MCDLG_RestoreAxis(hCtlr, MC_ALL_AXES, MCDLG_PROMPT |
MCDLG_CHECKACTIVE, NULL);
 }
 Cycle = SkipTimer = false;
 break;

Application Solutions

Precision MicroControl Corp.

132

case IDM_INIT:
 SkipTimer = true;
 MCDLG_RestoreAxis(hCtlr, MC_ALL_AXES, MCDLG_PROMPT | MCDLG_CHECKACTIVE,
NULL);
 Cycle = SkipTimer = false;
 break;

case IDM_SAVE_SETTINGS:
 SkipTimer = true;
 MCDLG_SaveAxis(hCtlr, MC_ALL_AXES, 0, NULL);
 SkipTimer = false;
 break;

Saving and restoring configuration settings via individual function or MCCL calls

In addition to the MCDLG functions, programmers can selectively save and restore one, some, or all
settings individually according to their needs. Users can do this either by Motion Control API function calls
or by sending one or more MCCL commands to the motion controller. For example, after boot-up, users
can send the motion controller a text file containing the MCCL commands required to initialize the desired
configuration settings. See the Motion Control API Reference Manual and Motion Control Command
Language Reference Manual for more specific information about programming the controller.

Application Solutions

MultiFlex ETH 1000 Series User's Manual

133

Learning/Teaching Points

As many as 256 points can be stored for each axis in the controller’s point memory by using the
MCLearnPoint() function. A stored point can be either the actual position of an axis
(MC_LRN_POSITION) or the target position of an axis (MC_LRN_TARGET).

The value MC_LRN_POINT would typically be used in conjunction with jogging. The operator would jog
the axes along the desired path, issuing the MCLearnPoint() command at regular intervals. The
MCMovePoint() command would then be used to ‘play back’ the path traversed by the operator.

For applications where the target point data was previously recorded and stored in the PC, the value
MC_LRN_TARGET would be used to load the target points into the MultiFlex ETH . For some
applications, using MCLearnPoint() to load a series of moves may be ‘easier’ than issuing a series of
contour mode linear moves, even though the results would be the same.

Once all points have been stored, the axes are commanded to move to the stored positions with
MCMoveToPosition(). The parameter wIndex indicates to which stored point the axis should move.

// Move axis 1 and store position in consecutive point storage locations.

WORD wIndex;
MCEnableAxis(hCtlr, 1, TRUE); // motor on
MCGoHome(hCtlr, 1); // start from absolute zero
MCWaitForStop(hCtlr, 1, 0.100);

for (wIndex = 0; wIndex < 5; wIndex++) {
 MCMoveRelative(hCtlr, 1, 1234.0); // move
 MCWaitForStop(hCtlr, 1, 0.100); // are we there yet?
 MCLearnPoint(hCtlr, 1, wIndex, MC_LRN_POSITION);
}

// Store several positions for axis 4 without actually moving the axis. Note //
that axis is disabled with MCEnableAxis() prior to storing positions

WORD wIndex;
MCEnableAxis(hCtlr, 4, FALSE); // motor off
for (wIndex = 0; wIndex < 5; wIndex++) {
 MCMoveRelative(hCtlr, 4, 2468.0); // nothing actually moves
 MCLearnTarget(hCtlr, 4, wIndex, MC_LRN_TARGET);
}

// This example moves to the stored positions, dwelling for 0.2 seconds at
// each point.

WORD wIndex;
MCEnableAxis(hCtlr, 4); // enable axis
for (wIndex = 0; wIndex < 5; wIndex++) {
 MCMoveToPoint(hCtlr, 4, wIndex); // move to next point
 MCWaitForStopped(hCtlr, 4, 0.2);
}

To cause the controller to perform linear interpolated moves between the taught points, place each of the
axes in contour mode. Use the lowest axis number as the contour mode command parameters, this is the
controlling axis. Set the vector velocity and accelerations of the controlling axis. Issue a single
MCMoveToPoint() command to the controlling axis with the point numbers as the command parameter.
Note that when point memory is used with motors in contour mode, point 0 should not be used. This

Application Solutions

Precision MicroControl Corp.

134

example executes linearly interpolated moves through three stored points of axes 1, 2, and 3.

MCSetOperatingMode(hCtlr, 1, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 2, 1, MC_MODE_CONTOUR);
MCSetOperatingMode(hCtlr, 3, 1, MC_MODE_CONTOUR);

// Linear interpolated move sequence through stored points

for (wIndex = 1; wIndex < 4; wIndex++) {
 MCBlockBegin(hCtlr, MC_BLOCK_CONTR_LIN, 1);
 MCMoveToPoint(hCtlr, 1, wIndex);
 MCMoveToPoint(hCtlr, 1, wIndex);
 MCMoveToPoint(hCtlr, 1, wIndex);
 MCBlockEnd(hCtlr, NULL);
}

Application Solutions

MultiFlex ETH 1000 Series User's Manual

135

Building MCCL Macro Sequences

A powerful feature is the ability to define MCCL (Motion Control Command Language) command
sequences as macros.

i

For additional information on macro’s and MCCL (Motion Control Command
Language) commands please refer to the MCCL Reference Manual.

A macro is a user define sequence of operations that is executed by issuing a single command. For
example:

1MR1000,WS0.25,MR-1000,WS0.25

will cause the motor attached to axis 1 to move 1000 counts in the positive direction, wait one quarter
second after it has reached the destination, then move back to the original position followed by a similar
delay. If this sequence were to represent a frequently desired motion for the system, it could be defined
as a macro command. This is done by inserting a Macro Define (MDn) command as the first command in
the command string. For example:

MD3,1MR1000,WS0.25,MR-1000,WS0.25

will define macro #3. Whenever it is desired to perform this motion sequence, issue the command Macro
Call (MC3).

To command the controller to display the contents of a macro, issue the Tell Macro (TMn) command with
parameter ‘n’ = the number of the macro to be displayed. To display the contents of all stored macro’s
issue the Tell macro command with parameter ‘n’ = -1.

!

Once a macro operation has begun, the host will not be able to communicate
with the controller until the macro has completed execution. For information
on communicating with the controller while executing macro’s please refer to
the section titled MCCL Multi-Tasking.

Application Solutions

Precision MicroControl Corp.

136

The controller can store up to 1024 user defined macros. Each macro can include as many as 255 bytes,
resulting in a total macro capacity of 255K bytes. Depending on the type of command and type of
parameter, a command can range from 2 bytes (a command with no parameter) to 10 bytes (a command
with a 64 bit floating point parameter).

i

If the amount of available macro memory exceeds 255K bytes the controller will
respond with error code - 18

 all MultiFlex ETH Series Ethernet controllers feature non-volatile memory storage which can be used to
store MCCL macro routines. This allows completely independent “stand-alone” operation of the controller.
MCCL macros stored in non-volatile memory will be cleared when the Reset Macro (RMn) command is
issued.

To terminate the execution of any macro that was started from WinControl press the escape key.
To start a macro that runs indefinitely without ‘locking up’ communication with the host, start the macro’s
with the generate a Background task (GT) command instead of the Call macro command (MC). This
will allow the operation execute as a background task. Please refer to the next section Multi-Tasking.

i

The controller supports single-stepping of any MCCL macro command
executing as the foreground task. For additional information please refer to
Single Stepping MCCL Programs later in this chapter.

Application Solutions

MultiFlex ETH 1000 Series User's Manual

137

MCCL Multi-Tasking

The controller’s command interpreter is designed to accept commands from the user and execute them
immediately. With the addition of sequencing commands, the user is able to create sophisticated
command sequences that run continuously, performing repetitive monitoring and control tasks. The
drawback of running a continuous command sequence is that the command interpreter is not able to
accept other commands from the user.

!

Once a macro operation has begun, the host will not be able to communicate
with the controller until the macro has completed execution.

The controller supports Multi-tasking, which allows the controller to execute continuous monitoring or
control sequences as background tasks while the foreground task communicates with the ‘host’.

With the exception of reporting commands (Tell Position, Tell Status, etc...), which are not compatible
with Multi-Tasking, any MCCL commands, can be executed in a background task. Prior to executing a
command sequence/macro as a background task, the user should always test the macro by first
executing it as a foreground task. When the user is satisfied with the operation of the macro, it can be
run as a background task by issuing the Generate Task (GTn) command, specifying the macro number
as the command parameter. After the execution of the Generate Task command, the accumulator
(register 0) will contain an identifier for the background task. Within a few milliseconds, the controller will
begin running the macro as a background task in parallel with the foreground command interpreter. The
controller will then be free to accept new commands from the user.

;Multitasking example – while axis #1 is moving, monitor the state of
digital
;input #4. When the input goes active, stop axis #1 and terminate the
;background task

AL0,AR10 ;define user register 10 as input #4
active
 ;flag register
AL0,AR100 ;define user register #100 as
background task
 ;ID register

MD100,IN4,MJ101,NO,1JR-3 ;jump to macro 101 when digital input
#4
 ;turns on
MD101,1ST,1WS.05,AL1,AR10,ET@100 ;stop axis #1. Terminate background
task

GT100,AR@100,1VM,1DI0,1GO ;spawn macro #10 as background task.
Store
 ;task ID into register #100. Start axis
#1
 ;moving in velocity mode,

Application Solutions

Precision MicroControl Corp.

138

i

Note: Immediately after ‘spawning’ the background task (with the GTn
command), the value in the accumulator (task identifier) should be stored in a
user register. This value will be required to terminate execution of the
background task.

Another way to create a background task is to place the Generate Task command as the first command
in a command line, using a parameter of 0. This instructs the command interpreter to take all the
commands that follow the Generate Task command and cause them to run as a background task. The
commands will run identically to commands placed in a macro and generated as a task.

;Multitasking example – while axis #1 is moving, monitor the state of the
;motor error status bit (bit 7). If error occurs set bit #1 of user
;register 200

GT0,AR@100,LU”STATUS”,1RL@0,IC0,JR-3,NO,AL1,AR200,ET@100
 ;loop on axis #1 status bit 0, if set;
set
 ;bit #1 of register 200, terminate task
using
 ;Task ID (in register #100)

Within the background task, the commands can move motors, wait for events, or perform operations on
the registers, totally independent of any commands issued in the foreground. However, the user must be
careful that they do not conflict with each other. For example, if a background task issues a move
command to cause a motor to move to absolute position +1000, and the user issues a command at the
same time to move the motor to -1000, it is unpredictable whether the motor will go to plus or minus 1000.

In order to prevent conflicts over the registers, the background task has its own set of registers 0 through
9 (register 0 is the accumulator). These are private to the background task and are referred to as its 'local'
registers. The balance of the registers, 10 through 255, are shared by the background task and
foreground command interpreter, they are referred to as 'global' registers. If the user wishes to pass
information to or from the background task, this can be done by placing values in the global register. Note
that when a task is created, an identifier for the task is stored in register 0 of both the parent and child
tasks.

When one or more background tasks are active the Task Handler will begin issuing local interrupts every
250 microseconds. Each time the task handler interrupt is asserted, the controller will switch from
executing one task to the next every 250 micro seconds. For example if three background tasks are
active, plus the foreground task (always active), each of the four tasks will receive approximately 100
micro seconds of processor time every 1 millisecond.

Processing Time
(usec's)

Foreground task

Background task #1

Background task #2

Background task #3

Active task = 100 usec

250 500 750 1000 1250 1500 1750 2000

Application Solutions

MultiFlex ETH 1000 Series User's Manual

139

While a background task executes a Wait command, that task no longer receives any processor time. For
tasks that perform monitoring functions in an endless loop, the command throughput of the controller can
be improved by executing a Wait command at the end of the loop until the task needs to run again.

A common way for a background task to be terminated, is when the command sequence of the task
finishes execution. This will occur at the end of the macro or if a BreaK (BK) command is executed.
When a task is terminated, the resources it required are made available to run other background tasks.

;Multitasking example – this background task will terminate itself if the
;motor error status bit for axis #1 is set. This sequence is similar to
the ;previous example except that the task is self terminating, so
register #100
is not required.

GT0,LU”STATUS”,1RL@0,IC0,JR-3,NO,AL1,AR200,BK
 ;loop on axis #1 status bit 0, if set;
set
 ;bit #1 of register 200, task self
terminates
 ;(no commands left to execute)

Alternatively, the Escape Task (Ten) command can be used to force a background task to terminate.
When a task is generated by the GT command, a value known as the Task ID is placed into the
accumulator. This value should immediately be copied into a user register. The parameter to this
command must be the value that was placed in accumulator (register 0) of the parent task, when the
Generate Task command was issued.

;Multitasking example – Terminating a background task with the Escape
Task command.

GT100,AR@150 ;call macro #100 as a background task,
copy
 ; task ID into user register 150

ET@150 ;to terminate background task issue
escape
 ; task command with parameter n = Task
ID

Application Solutions

Precision MicroControl Corp.

140

Position Capture

The controller supports capturing the position of a closed loop encoder or step count (of an open loop
stepper) on the rising edge of a TTL Position Capture input. As many as 1024 captured positions can be
stored in the recording memory for each axis. The maximum frequency of position captures is 1 kHz. The
maximum latency between the rising edge of the position capture input and the loading of the captured
position is 100 nano seconds.

i

The active level of a position capture input is fixed as a TTL high. Unlike the
general purpose digital I/O channels, a position capture input cannot be
configured for 'low true' operation.

The Motion Control API function MCEnableCapture () is used to initiate position capture. When this
feature is enabled the current position will be recorded on the rising edge of the capture input. If
parameter count equals 1 the module will capture only one position. If parameter count equals 2 the
module will capture two positions, and so on. When the number of positions captured = count , the
MC_STAT_POS_CAPT flag (status bit 5) will be set. To report the number of positions captured issue the
MCGetCount () function with the type = MC_COUNT_CAPTURE. To disable position capture issue
MCEnableCapture () with parameter count equal to 0. Captured positions may be retrieved using the
MCGetCapturedData() function.

Long int count;
double data{10};

MCEnableAxis(hCtlr, 1, 1);
MCMoveRelative(hCtlr, 1, 10000.0);

// Capture 10 positions
//
MCEnableCapture(hCtlr, 1, 10.0);

// Retrieve the 10 captured positions into local array
//

do {

MCGetCount((hCtlr, 1, MC_COUNT CAPTURE, &count);
} while (count <10);

MCGetCaptureData(hCtlr, 1, MC_CAPTURE_ACTUAL, 0, 10, &data);

Application Solutions

MultiFlex ETH 1000 Series User's Manual

141

Position Compare

The controller provides two (one for the four Analog command axes and one for the four Pulse Command
axes) high speed TTL outputs to indicate that a position compare event has occurred. The assertion of
this output is based on the position of the encoder of a closed loop axis or the step count register of an
open loop stepper. As many as 1024 compare positions can be stored in the recording memory.

Compare predefined positions

To configure an axis for position compare first use the Motion Control API function
McConfigureCompare () to define the number of compare positions (as many as 1024) and the
compare output mode. Then issue the Motion Control API function MCEnableCompare () with the flag =
MC_COMPARE_ENABLE. This will terminate any current compare operation and initializes the compare
index to 0. After starting a move, when the actual position is equal to the compare position the compare
output will be turned on (TTL high by default) and the next compare position will be loaded into the
compare register. When all position compare events have been completed the MC_STAT_BREAKPOINT
flag of the axis status will be set.

Compare at incremental distances

For compare events at fixed distances of travel use the function MCEnableCompare () and:

1) Store the beginning point (first compare position) in the first location of values
2) Set the num parameter to 1
3) Set the inc parameter to the distance (counts or steps) between compare events

Compare frequency and output latency

The compare position update frequency is based on the trajectory generator, which executes every
milisecond (1kHz). Therefore the distance between compare positions cannot be such that the time from
one compare event to the next is less than the position update frequency. The maximum latency between
the an axis reaching the compare position and the activation of the compare output is 100 nano seconds.

Compare output signal configuration

When the compare output is activated as the result of a compare or breakpoint occurrence, the compare
output signal will react according to the which mode has been selected with the mode parameter of the
MCConfigureCompare () function.

mode Description
MC_COMPARE_DISABLE Disables the compare output
MC_COMPARE_INVERT Inverts the active level of the compare output
MC_COMPARE_ONESHOT Configures the compare output for one shot operation (one shot

period is defined by the period parameter of
McConfigureCompare () function. The one shot pulse period
range is from 1millisecond to 1.0 second. For one shot periods
less than 50 milliseconds the timer resolution is 1 millisecond.
For one shot periods greater than 50 milliseconds the timer
resolution is 50 milliseconds.

Application Solutions

Precision MicroControl Corp.

142

MC_COMPARE_STATIC Configures the compare output to turn on when a compare
event occurs. The output will stay on until a new compare event
is called

MC_COMPARE_TOGGLE Configures the compare output to toggle between the active and
inactive state each time a compare event occurs

For all of the output modes, the compare output will be activated within 100 nano seconds of the
encoder/step count reaching the compare position. When the compare output mode is set to Disabled,
the output will be at its' in-active level (TTL low). The controller sets the output mode to Disabled on
power up or reset.

To report the number of compare events that have occurred issue the MCGetCount () function
with the type = MC_COUNT_COMPARE. To disable position compare issue
MCEnableCompare () with parameter flag value = MC_COMPARE_DISABLE.

//
// Use positions spaced 5 units apart, beginning at 10.0 as compare
// positions. Toggle the output pin on valid compares. Wait for 20
// compares to complete.
//
data[0] = 10.0; // starting point
MCConfigureCompare(hCtlr, 1, data, 1, 5.0, MC_COMPARE_TOGGLE, 0.0);

MCEnableCompare(hCtlr, 1, MC_ENABLE_COMPARE); // enable compare
MCMoveRelative(hCtlr, 1, 100.0);

do { // wait for 5 points
 MCGetCount(hCtlr, 1, MC_COUNT_COMPARE, &count);
} while (count < 20);

Application Solutions

MultiFlex ETH 1000 Series User's Manual

143

Position Verification of an Open Loop Pulse Axis

Historically stepper motors have been used as a reduced cost alternative to servos for applications that
do not require the accuracy, repeatability, and acceleration of a closed loop servo. One of the necessary
'evils' of the tradeoff of selecting a stepper motor over a servo is the tendency of steppers to 'lose steps'
due to motor / load resonance. By adding an encoder (typically directly coupled to the stepper motor
shaft) the user can monitor the final position of the stepper and issue 'correction moves' to compensate
for the lost steps.

One of the available controller options is the support of encoder feedback for Pulse Command axes. A
Pulse Command axis can be configured to use an encoder in one of two different ways:

 Closed Loop Mode
 Open Loop with Position Verification

For a detailed description of Closed Loop Operation of a Pulse Command axis please refer to page 80. In
order to differentiate between an encoder used for Closed Loop operation of a Analog or Pulse Command
axis and an encoder used for position verification of a Pulse Command axis, the encoder of an Open
Loop Pulse Command axis will be referred to as an Auxiliary Encoder. The advantages of an open loop
stepper with auxiliary encoder versus a closed loop axis are:

 The pulse train of an open loop stepper 'at velocity' is much more stable
 Easier to configure - open loop systems require no tuning
 Lower cost

Position verification example
Typically an encoder is added to an open loop stepper to allow the user to retrieve the encoder position at
the end of a move. The reported position of the auxiliary encoder is used to determine whether or not the
axis is properly positioned.

// After a move compare the target and auxiliary encoder position.
// If short of the target, execute a move = the difference of the target &
// encoder position

MCMoveAbsolute(hCtlr, 1, 122.5);
if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
if (MCGetTargetEx(hCtlr, 2, &Target) == MCERR_NOERROR)
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
 if (Position < 122.0)
 (Target – Position = AuxEncDiff)
 MCMoveRelative(hCtlr, 1, AuxEncDiff);
 if (!MCIsStopped(hCtlr, 1, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
 }
if (MCGetAuxEncPosEx(hCtlr, 1, &Position) == MCERR_NOERROR)
 if (Position < 122.0)
 . . . // print error message

Homing the auxiliary encoder of an open loop stepper

Application Solutions

Precision MicroControl Corp.

144

The encoder of an open loop stepper may be homed in one of two ways:

 Home the encoder using the Auxiliary Encoder Index input
 Re-define the position of the encoder when the axis is homed

i

If no encoder index mark output is available, the position of the auxiliary
encoder can be redefined at anytime using the Motion Control API function
MCSetAuxEncPos().

If the encoder includes an index mark output it is recommended that this signal be used to home both the
reported position of the axis and the auxiliary encoder. The repeatability of a system homed using the
index mark will be significantly better than that of a system that uses a mechanical
switch/electromechanical sensor. The following programming example will reference both the reported
position of an open loop stepper and the auxiliary encoder at the location of the Index mark:

i

The following C example uses the MCFindAuxEncIdx() and MCSetPosition (
) functions to redefine the encoder position register and the step count register
of an open loop stepper with an auxiliary encoder. For complete C code homing
samples that can be cut and pasted into an application program please refer to
the Motion Control API on-line help (mcapi.hlp).

MCFindAuxEncIdx(hCtlr, 5, 0.0);
dwStatus = MCGetStatus(hCtlr, 5);
while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_AUX_IDX_FND))
 dwStatus = MCGetStatus(hCtlr, 5);
IdxPosition = MCGetPosition(hCtlr, 5);
MCStop(hCtlr, 5);
if (!MCIsStopped(hCtlr, 5, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
Position = MCGetPosition(hCtlr, 5);
HomePosn = (Position - IdxPosition) * -1
MCSetOperatingMode(hCtlr, 5, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 5, TRUE);
MCMoveRelative(hCtlr, 5, HomePosn);
if (!MCIsStopped(hCtlr, 5, 2.0)) {
 // Motor failed to stop within time limit (2 seconds),
 // error handling code goes here
}
MCSetPosition(hCtlr, 5, 0.0);

i

After issuing the MCFindAuxEncIdx() function the reported position of the
encoder of an open loop stepper will be redefined to equal parameter position
once the index has been captured.

Application Solutions

MultiFlex ETH 1000 Series User's Manual

145

;MCCL example - define positions at auxiliary encoder index mark
MD1,5MN,5VM,5DI0,5GO,WA.1,MJ10 ;start velocity mode move
MD10,5AF0,WA0.1,LU"STATUS",5RL@0,IS20,MJ11,NO,JR-5
 ;Enable aux. encoder index mark
 ;capture, loop until Aux. Index
 ;Found = True
MD11,LU"POSITION",5RD@0,AR100,5ST,5WS.1,LU"POSITION",5RD@0,AR101,5PM,5MN,
MJ12 ;load accumulator with step
count
 ;position at location of index
mark.
 ;Stop the move. Load current
position,
 ;enable position mode
AL@101,AS@100,AM-1,5MR@0,5WS.1,5DH0 ;calculate step count distance to
 ;index, move to index, define
step
 ;count to 0

i

For MCCL homing samples that can be downloaded to the controller and
executed please refer to PMC’s Motion CD.

Verifying the Operation of the encoder of an open loop stepper

To verify the operation of the encoder of an open loop stepper use either WinControl or Motor Mover.
From WinControl, issuing the Auxiliary encoder Tell position (aAT) command will cause the current
position of the open loop steppers encoder to be reported.

Figure 43. Verify auxiliary encoder operation using WinControl

To use Motor Mover you must configure the stepper axis for closed loop mode. This is because Motor
Mover uses the MCGetPositionEX() function for the position readouts. For an open loop stepper the
MCGetPositionEX() function returns the Step Count Position Register value (not the auxiliary encoder
count). To enable closed loop stepper mode, from the Motor Mover Setup menu select:

 Closed Loop Mode checkbox

OK

Application Solutions

Precision MicroControl Corp.

146

Toggle the Off & On buttons

The Motor Mover position display will report the position of the encoder.

Figure 44. Rotate the motor / encoder shaft back and forth.
Verify that the position is changing accordingly

i

If Motor Mover was used to verify proper auxiliary encoder operation don't forget
to disable Closed Loop Stepper mode.

Application Solutions

MultiFlex ETH 1000 Series User's Manual

147

PWM Servo Command

For cost sensitive DC servo motor applications the combination of the MultiFlex motion controller and an
inexpensive external analog H-Bridge Driver can provide a very cost-effective solution. The MultiFlex
controller provides the PWM command which the H-Bridge Driver then proportionally converts to motor
current to drive the servo motor.

i

PWM Command motion requires both MCAP 3.5.0 or higher AND firmware 2.8a
or higher

For each PWM servo axis the MultiFlex provides a PWM command output that can be configured for
Bipolar or Unipolar mode (PWM frequency = 19.53 kHz). For applications that require a different
frequency please contact the factory. In Biolar mode, when the motor is at its target position the PWM
output will be at 50% duty cycle. In Unipolar mode, when the motor is at its target position the PWM
output will be off (0% duty cycle). For many applications the Unipolar mode may be preferrable because it
is more heat efficient (no current across the motor when it is at its target and enabled).

Bipolar Mode Unipolar Mode

PWM Command output with axis 'at target'

25.6
usec's

25.6
usec's

25.6
usec's

25.6
usec's

Bipolar Mode Unipolar Mode

PWM Command output at 50% Torque

38.4
usec's

12.8
usec's

25.6
usec's

25.6
usec's

Application Solutions

Precision MicroControl Corp.

148

Bipolar Mode Unipolar Mode

PWM Command output at 100% Torque

38.4
usec's

12.8
usec's

25.6
usec's

25.6
usec's

Configuring PWM operation

To configure / enable a servo axis for PWM Command set the PWM mode use the Motion Control API
function (rev. 3.5.0 or higher) MCSetModuleOutputMode() with the mode parameter set to
MC_OM_UNI_PWM for Unipolar mode, or to MC_OM_BI_PWM for Bipolar mode.

MCSetModuleOutputMode(hCtlr, 1, MC_OM_UNI_PWM);
MCSetModuleOutputMode(hCtlr, 2, MC_OM_BI_PWM);

i

For Unipolar operation you will need to configure one of the TTL general
purpose digital output channels to be used for the PWM Direction (Sign).
For PWM Command wiring examples please refer to page 49.

The following screen captures detail how to associate Digital output #2 (channel
34) with the PWM Direction function by using PMC's Motion Control Panel.

Application Solutions

MultiFlex ETH 1000 Series User's Manual

149

i

The PWM Command output (pins 6 and/or 7) is provided via an Open Collector
driver. If the PWM input connection to the H-Bridge is a TTL input you will need
to add a pullup resistor to +5 volts.

Once the PWM Mode has been selected the servo can be tuned and exercised using any the standard
PMC tools (Servo Tuning utility and Motor Mover).

Application Solutions

Precision MicroControl Corp.

150

Record Motion Data

The controller supports capturing and retrieving motion data for closed loop axes and open loop steppers.
As many as 1024 'data sets' (actual, optimal, following error, DAC output) can be captured for each axis.
Captured position data is typically used to analyze servo motor performance and PID loop tuning
parameters. PMC's Servo Tuning utility uses this function to analyze servo performance. The Motion
Control API function MCCaptureData() is used to acquire motion data for a servo axis. This function
supports capturing:

 Actual Position versus time
 Optimal Position versus time
 Following error versus time
 DAC output versus time (Analog Command axes only)
 Auxiliary encoder position (for tuning an open loop Pulse Command servo axis)

The time base (4 kHz, 2 kHz, 1 kHz) for captured data is set by Rate member of the MCMotion data
structure. The function MCGetCapturedData() is used to retrieve the captured data. This example
captures 1000 data points from axis 3, then reads the captured data into an array for further processing.

double Data[1000];

MCBlockBegin(hCtlr, MC_BLOCK_COMPOUND, 0);
MCCaptureData(hCtlr, 3, 1000, 0.001, 0.0);
MCMoveRelative(hCtlr, 3, 1000.0);
MCWaitForStop(hCtlr, 3, 0.0);
MCBlockEnd(hCtrlr, NULL);

// Retrieve captured actual position data into local array
//
if (MCGetCaptureData(hCtlr, 3, MC_DATA_ACTUAL, 0, 1000, &Data) {
 . . . // process data

Application Solutions

MultiFlex ETH 1000 Series User's Manual

151

Resetting the Controller

The controller supports software controlled reset. To reset the controller CPU and all axes issue the
Motion Control API function MCReset(). For additional information please refer to the MultiFlex ETH
1000 Motion Control API Reference Manual.

Most PMC application programs (Motor Mover, Servo Tuning, WinControl) allow the user to reset the
controller by selecting Reset Controller from the WinControl File menu.

Figure 45. Resetting the Controller

Resetting the controller from a user application program (with MCReset()) or from one of a PMC’s
software programs (by selecting Reset Controller from: Motor Mover, WinControl, Servo Tuning, etc...)
will cause the controller to revert to default settings (PID, velocity, accel/decel, limits, etc...). For
information restoring the user defined settings please refer to the Initializing and Restoring Controller
Configuration section in this chapter.

!

In the event of a ‘hang up’ of the application program and/or controller, the
application program may fail to resume operation after issuing the MCReset()
function. The user will have to terminate and then re-open the application
program.

i

The contacts of a normally open relay are available on pins 1 and 2 of
connector J8. Following a reset (MCReset()) or after a PC re-boot / power
cycle the relay will not be energized until the controller has been fully initialized.

Application Solutions

Precision MicroControl Corp.

152

Single Stepping MCCL Programs

While the controller is executing any Motion Control Command Language (MCCL) macro program, the
user can enable single step mode by entering <ctrl> . Each time this keyboard sequence is entered,
the next MCCL command in the program sequence will be executed. The following macro program will be
used for this example of single stepping:

MD10,WA1,1MR1000,1WS.1,1TP,1MR-1000,1WS.1,1TP,RP

This sample program will: wait for 1 second, move 1000 encoder counts, report the position 100 msec’s
after the calculated trajectory is complete, move -1000 encoder counts, report the position 100 msec’s
after the calculated trajectory is complete, repeat the command sequence.

This command sequence can be entered directly into the controller’s memory by typing the command
sequence in the terminal interface program WinCtl32.exe or by downloading a text file via WinControl’s
file menu.

To begin single step execution of the above example macro enter MC10 (call macro #10) then <ctrl>
the following will be displayed:

 {C1,MC10} 1MR1000 <

The display format of single step mode is: {Command #,Macro #} Next command to be executed

To end single stepping and return to immediate MCCL command execution press <Enter>. To abort the
MCCL program enter <Escape>. Single step mode is not supported for a MCCL sequence that is
executing as a background task.

Single stepping can also be enabled from within a MCCL program by using the break command
immediately followed by a “string” parameter. When the break command is executed the controller will
display the characters in the string (inside the quotation marks) and then delay additional command
execution until the space bar (execute next command and then delay) or the enter key (terminate single
stepping and resume program execution) are selected. In the following example axis one will move 1000

Application Solutions

MultiFlex ETH 1000 Series User's Manual

153

counts, report the position, move –1000 counts, report the position, halt command execution until the
space bar is entered, repeat one time.

MC10 1MR1000,1WS0.100000,1TP,1MR-1000,1WS0.100000,1TP,BK"wait",RP1

>mc10
01 997
01 0
BREAK AT COMMAND 6, MACRO 10
wait
 {C7,M10} RP10 [REPEAT] <
 <space bar>
01 997
01 0
BREAK AT COMMAND 6, MACRO 10
wait
 {C7,M10} RP10 [REPEAT] <
>

Application Solutions

Precision MicroControl Corp.

154

Torque Mode Output Control

The +/- 10V Analog Command outputs channels provide two methods of directly and completely
controlling the Torque/Velocity of a axis. When executing closed loop servo motion in Position or Velocity
mode, the MCSetTorque() command allows the user to limit the output signal or duty cycle to a specific
level. The following graph depicts a simple position mode move of 1000 encoder counts with the default
torque setting of 10 volts (no limit).

Analog
 output

Time (msec's)

+10V

+7.5V

+2.5V

+5.0V

25 75 125 175 200 22550 100 150

Maximum voltage
output

The graphic below depicts the same 1000 encoder count move, but the maximum voltage output has
been limited to 5.0 volts.

MCSetTorque(hCtlr, 1, 5.0);
MCMoveRelative(hCtlr, 1, 1000.0);

Analog
 output

Time (msec's)

+10V

+7.5V

+2.5V

+5.0V

25 75 125 175 200 22550 100 150

Maximum voltage
output

Application Solutions

MultiFlex ETH 1000 Series User's Manual

155

Analog Command output channels as simple D/A output with encoder reader

Selecting Torque mode (Mode = MC_MODE_TORQUE) using the MCSetOperatingMode() function
allows the user to directly write values to the servo control DAC. This mode does not support closed loop
servo control, but the user can read the position of the encoder at any time.

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetTorque(hCtlr, 1, 2.5); ;axis 1 output to 2.5V (MC300)
MCSetTorque(hCtlr, 1, 7.5); ;set duty cycle to 75% (MC320)

i

When operating in Torque Mode the Following Error and Limit error checking is
disabled. If either or both of these error conditions exist the controller will not
command the axis to stop.

Application Solutions

Precision MicroControl Corp.

156

Turning off Integral gain during a move

Servo controllers primarily use Proportional gain to determine the current/velocity command signal that
the controller applies to the servo amplifier during a move. For motion control applications, integral gain is
used primarily to reduce the static position error at the end of a move. For additional information about
servo tuning and integral gain please refer to :

 the Servo Tuning description in the Motion Control chapter of this manual
 the Servo tuning tutorials on PMC’s Motion CD and available for download from the Support

section of PMC’s web site.

For some applications, integral gain has a tendency to cause bounce or oscillation of the command signal
during a move. This tendency can be is especially problematic in:
High gain servo systems

 Systems with high and / or irregular friction
 Systems with unbalanced loads
 Systems with unbalanced and / or high offset amplifiers

The following graphic shows the typical response of a high gain servo system when integral gain is
enabled through out the move. Even though the following error never exceeds 10 encoder counts during
the 100,000 count move, a significant oscillation (+/- 10 counts) occurred.

Figure 46. Typical servo response when integral gain is enabled throughout the move

Application Solutions

MultiFlex ETH 1000 Series User's Manual

157

By disabling the integral gain term until after the trajectory is complete (desired position = target position)
the same move is accomplished with a following error of +/- 3 counts versus +/- 10 counts.

Figure 47. Typical servo response when integral gain is disabled until the calculated is complete

The IntegralOption member of the MCFilterEx structure allows the user to select from three different
mode of integral gain operation for servo or closed loop stepper.

IntegralOptiont value Notes – (all other servo parameters

remaining unchanged)
MC_INT_NORMAL - integral term always on (default) Smallest following error during move. As the

integral term is increased the command output /
following error will tend to bounce

MC_INT_FREEZE - Freezes accumulation of
integration term during movement. Integration will
continued once the calculated trajectory (trajectory
complete, status bit 3 = 1) has been completed.

Ideal for applications with unbalanced loads
(robotic arm with vertical axis, hoist)

MC_INT_ZERO - Zero and freeze accumulation of
the integration term when motion begins. When the
calculated trajectory (trajectory complete, status bit 3
= 1) has completed, enable the integration term

Most stable command signal / servo
performance during the move. Largest following
error during the move. Not acceptable for
applications with unbalanced load.

From PMC application programs like Servo Tuning and Motor Mover the integral gain mode can be

Application Solutions

Precision MicroControl Corp.

158

selected from the Servo Setup Dialog.

Figure 48. Using Servo Tuning’s Servo Setup Dialog to set the integral gain mode of operation

Application Solutions

MultiFlex ETH 1000 Series User's Manual

159

Defining User Units

When power is applied or the controller is reset, it defaults to encoder counts or stepper pulses as its
units for motion command parameters. If the user issues a move command to a servo with a target of
1000, the controller will move the servo 1000 encoder counts. If the user issues the same command to a
stepper motor, it will issue 1000 step pulses.

In many applications there is a more convenient unit of measure than the encoder counts of the servo or
steps of the stepper motor. If there is a fixed ratio between the encoder counts or steps and the desired
'user units', the controller can be programmed with this ratio and it will perform conversions implicitly
during command execution.

Defining user units is accomplished with the function MCSetScale(), which uses the MCSCALE data
structure. This function provides a way of setting all scaling parameters with a single function call using
an initialized MCSCALE structure. To change scaling, call MCGetScale(), update the MCSCALE
structure, and write the changes back using MCSetScale().

i

Before changing any/all of the axis related scaling values (Scale, Rate, Offset,
or Zero) the axis must first be disabled (turned off). To complete a scaling
change enable (turn on) the axis.

MCScale Data Structure

typedef struct {

double Constant; // Define output constant
 double Offset; // Define the work area zero
 double Rate; // Define move (vel., accel, decel)
time units
 double Scale; // Define encoder scaling
 double Zero; // Define part zero
 double Time; // Define time scale

} MCMOTION;

Setting Move (Encoder/Step) Units

The value of the Scale member is the number of encoder counts or steps per user unit. For
example, if the servo encoder on axis 1 has 1000 quadrature counts per rotation, and the
mechanics move 1 inch per rotation of the servo, then to setup the controller for user units of
inches:

Application Solutions

Precision MicroControl Corp.

160

MCSCALE Scaling;

MCEnableAxis(hCtlr, 3, False);
MCGetScale(hCtlr, 3, &Scaling);
Scaling.Scale = 1000.0; // 1000 encoder counts/inch
MCSetScale(hCtlr, 3, &Scaling);
MCEnableAxis(hCtlr, 3, True);

Prior to issuing the Scale member, the parameters to all motion commands for a particular axis are
rounded to the nearest integer. After setting a new encoder scale and calling MCEnableAxis() to
initialize the axis, motion targets are multiplied by the ratio prior to rounding to determine the correct
encoder position. Calling the MCGetPosition() will load the scaled encoder position.

i

Note – setting a user scale other than 1:1 will require a change of trajectory
settings (Velocity, Acceleration, Deceleration, and Velocity Gain) but not PID
settings.

Trajectory Time Base

The value of the Rate member sets the time unit for velocity, acceleration and deceleration values, to a
time unit selected by the user. If velocities are to be in units of inches per minute, the user time unit is a
minute. The value of the Rate member is the number of seconds per 'user time unit'. If the velocity,
acceleration and deceleration are to be specified in units of inches per minute and inches per minute per
minute for axis 1, then the Rate value should be set to 60 seconds/1 minute = 60 (1UR60). The function
MCEnableAxis() must be issued before the user rate will take effect.

MCSCALE Scaling;

MCEnableAxis(hCtlr, 3, False);
MCGetScale(hCtlr, 3, &Scaling);
Scaling.Rate = 60.0; // set rate to inches per minute
MCSetScale(hCtlr, 3, &Scaling);
MCEnableAxis(hCtlr, 3, True);

Time Unit User Rate Conversion
second 1 (default)
minute 60
hour 3600

Figure 49. Typical Trajectory Rate Values

Defining the Time Base for Wait commands

For the MCWait(), WaitForStop() and WaitForTarget() functions, the default units are seconds. By
setting the member Time, these three commands can be issued with parameters in units of the user's
preference. The parameter to member is the number of 1 second periods in the user's unit of time. If the
user prefers time parameters in units of minutes, Time = 60 should be issued.

MCSCALE Scaling;

MCEnableAxis(hCtlr, 3, False);
MCGetScale(hCtlr, &Scaling);
Scaling.Time = 60.0; // set Wait time unit to minutes

Application Solutions

MultiFlex ETH 1000 Series User's Manual

161

MCSetScale(hCtlr, &Scaling);
MCEnableAxis(hCtlr, 3, True);

Defining a System/Machine zero

The member Offset allows the user to define a ‘work area’ zero position of the axis. The Offset value
should be the distance from the servo or stepper motor home position, to the machine zero position. This
offset distance must use the same units as currently defined by set User Scaling command. Offset does
not change the index or home position of the servo or stepper motor, it only establishes an arbitrary zero
position for the axis.

MCSCALE Scaling;

MCEnableAxis(hCtlr, 3, False);
MCGetScale(hCtlr, 3, &Scaling);
Scaling.Offset = 12.25; // define offset to 12.25 inches
MCSetScale(hCtlr, 3, &Scaling);
MCEnableAxis(hCtlr, 3, True);

Defining a Part Zero

The member Zero would typically be used in conjunction with Offset to define a ‘part zero’ position. A
PCB (Printed Circuit Board) pick and place operation is a good example of how this function would be
used. After a new PCB is loaded and clamped into place the X and Y axes would be homed. The Offset
member is used to define the ‘work area’ zero of the PCB. The Zero member is used to define the ‘part
program’ or ‘local’ zero position. This way a single ‘part placement program’ can be developed for the
PCB type, and a ‘step and repeat’ operation can be used to assemble multiple part assemblies.

MCSCALE Scaling;

MCEnableAxis(hCtlr, 3, False);
MCGetScale(hCtlr, 3, &Scaling);
Scaling.Offset = 12.25; // define offset to 12.25 inches
Scaling.Zero = 1.25; // define ‘part zero’ to 1.25
inches
MCSetScale(hCtlr, 3, &Scaling);
MCEnableAxis(hCtlr, 3, True);

Application Solutions

Precision MicroControl Corp.

162

XY Pick and Place Assembly

PCB clamp assembly

X & Y servo
motor home

Work area
zero

(UserOffset)

Part program zero
(User Zero)

Defining the output constant for velocity gain

The member Constant allows the user to define the units to be used for setting the Velocity Gain
parameters. Please refer to the description of Using Velocity Gain in the Application Solutions
chapter of this user manual.

Application Solutions

MultiFlex ETH 1000 Series User's Manual

163

 Watchdog Circuit

The controller incorporates a watchdog circuit to protect against improper CPU operation. After a
controller reset, PC reset, or PC power cycle, once the controller is initialized the watchdog circuit is
enabled.

If the controller’s processor fails to properly execute firmware code for a period of 200 msec's, the
watchdog circuit will 'time out' and the on-board reset will be latched by the ‘watchdog reset relay’. This in
turn will hold the controller in a constant state of reset. All motor outputs (+/- 10V & Step/Direction) will be
disabled. When the watchdog circuit has tripped, the green Run LED will be disabled. To clear the
watchdog error either:

 Cycle power to the computer (recommended)
 Reset the computer

Application Solutions

Precision MicroControl Corp.

164

MultiFlex ETH 1000 Series User's Manual

165

General Purpose I/O

Digital I/O

The controller board provides:

 16 TTL inputs (digital I/O channels 1 - 16)
 16 optically isolated inputs (digital I/O channels 17 - 32)
 16 TTL outputs (digital I/O channels 33 - 48)
 12 open collector outputs (digital I/O channels 49 - 64)

In addition, for MultiFlex ETH-1440, -1800 and -1840 controller models, the plug-on ICN-125
Interconnection Board provides an additional:

 16 optically isolated inputs
 4 open collector outputs

I/O Configuration Panel

By default the optically isolated inputs and open collector outputs are associated with 'hard coded' motion
control functions (Limits, Homing, Amp/Drive fault, Amp/Drive Enable). For maximum application flexibility
the controllerallows the user to reassign most of the default digital I/O assignments. The Windows I/O
Configuration dialog is used to change the default digital I/O configuration.

Figure 50. Digital I/O configuration panel

Chapter

7

General Purpose I/O

Precision MicroControl Corp.

166

The configuration dialog is launched from the Motion Control Panel (\Properties\Advanced\Configure)

i

The Stepper Home function cannot be reassigned to a different digital input
channel. An open loop stepper axis can only be 'homed' by applying an active
level on the ICN-100 SCSI connector, pin #27. Position Capture input (rising
edge) and Position Compare output (high active) functions cannot be
reassigned to different digital I/O channels.

Table 6. Default Function Assigned to Digital I/O Channels

Ch. # Description Ch. # Description
1 TTL input 1 (Capture axes 1 & 2) 33 TTL output 1 (Compare axes 1 - 4)
2 TTL input 2 34 TTL output 2
3 TTL input 3 35 TTL output 3
4 TTL input 4 36 TTL output 4
5 TTL input 5 (Capture axes 3 & 4) 37 TTL output 5
6 TTL input 6 38 TTL output 6
7 TTL input 7 39 TTL output 7
8 TTL input 8 40 TTL output 8
9 TTL input 9 (Capture axes 5 & 6) 41 TTL output 9 (Compare axes 5 - 8)
10 TTL input 10 42 TTL output 10
11 TTL input 11 43 TTL output 11
12 TTL input 12 44 TTL output 12
13 TTL input 13 (Capture axes 7 & 8) 45 TTL output 13
14 TTL input 14 46 TTL output 14
15 TTL input 15 47 TTL output 15
16 TTL input 16 48 TTL output 16

17
Opto isolated (3V - 25V)
Axis 1 Coarse Home
Axis 5 Home

49

Open collector (100mA)
Axis 1 Amp Enable

18
Opto isolated (3V - 25V)
Axis 1/5 Limit +

50

Open collector (100mA)
Axis 5 All Driver Disable

19
Opto isolated (3V - 25V)
Axis 1/5 Limit -

51

Open collector (100mA)
Axis 5 Half Current

20
Opto isolated (3V - 25V)
Axis 1/5 Amp Fault

21
Opto isolated (3V - 25V)
Axis 2 Coarse Home
Axis 6 Home

53

Open collector (100mA)
Axis 2 Amp Enable

22
Opto isolated (3V - 25V)
Axis 2/6 Limit +

54

Open collector (100mA)
Axis 6 Driver Disable

23
Opto isolated (3V - 25V)
Axis 2/6 Limit -

55

Open collector (100mA)
Axis 6 Half Current

24
Opto isolated (3V - 25V)
Axis 2/6 Amp Fault

25
Opto isolated (3V - 25V)
Axis 3 Coarse Home
Axis 7 Home

57

Open collector (100mA)
Axis 3 Amp Enable

26
Opto isolated (3V - 25V)
Axis 3/7 Limit +

58

Open collector (100mA)
Axis 7 Driver Disable

27
Opto isolated (3V - 25V)
Axis 3/7 Limit -

59

Open collector (100mA)
Axis 7 Half Current

28
Opto isolated (3V - 25V)
Axis 3/7 Amp Fault

29
Opto isolated (3V - 25V)
Axis 4 Coarse Home
Axis 8 Home

61

Open collector (100mA)
Axis 4 Amp Enable

30
Opto isolated (3V - 25V)
Axis 4/8 Limit +

62

Open collector (100mA)
Axis 8 Driver Disable

31
Opto isolated (3V - 25V)
Axis 4/8 Limit -

63

Open collector (100mA)
Axis 8 Half Current

32
Opto isolated (3V - 25V)
Axis 4/8 Amp Fault

General Purpose I/O

MultiFlex ETH 1000 Series User's Manual

167

All Digital I/O signals can be accessed via the connectors on the available plug-on interconnection boards
(please refer to Chapter 2 of the MultiFlex ETH 1000 Series Installation Manual for a description of the
available interconnection boards and detailed pin-outs).

i

Upon completion of General Purpose Digital I/O re-configuration, selecting OK
will cause the updated configuration to be written into the Windows registry.

Configuring and Exercising the Digital I/O

The configuration of the digital I/O is accomplished using either PMC’s Motion Integrator software or the
Motion Control API function MCConfigureDigitalIO(). The screen shot that follows shows the Motion
Integrator Digital I/O test panel. This tool can be used to configure and exercise each digital I/O channel.
Comprehensive on-line help is available from the Help menu.

Figure 51. Digital I/O Test Panel

The Digital I/O Test Panel groups the 64 digital I/O channels into 4 banks of 16:

 TTL inputs (channels 1 - 16) = Standard I/O tab
 Optically isolated inputs (channels 17 - 32) = Module 1 tab
 TTL outputs (channels 33 - 48) = Module 2 tab
 Open collector driver outputs (channels 49 - 64) = Module 3 tab

 Each channel is individually programmable as either:

 High true/Positive logic (MC_DIO_HIGH)
 Low true/Negative logic (MC_DIO_LOW)

For each digital I/O channel, the Test LED indicates the current state of the channel.

General Purpose I/O

Precision MicroControl Corp.

168

Using the Digital I/O

After configuring the Digital I/O channels with the MCConfigureDigitalIO() function, three Motion
Control API functions are available for activating and monitoring the digital I/O:

 MCEnableDigitalIO() set digital output channel state
 MCGetDigitalIO() get digital input channel state
 MCWaitForDigitalIO() wait for digital input channel to reach specific state

Enable Digital IO

Turns the specified digital I/O on or off, depending upon the value of bState.

 TRUE Turns the channel on
 FALSE Turns the channel off

Note that depending upon how a channel has been configured "on" (and conversely "off") may represent
either a high or a low voltage level.

see also: Configure Digital IO

C++ Function: void MCEnableDigitalIO(HCTRLR hCtlr, WORD wChannel, short int bState);
Delphi Function: procedure MCEnableDigitalIO(hCtlr: HCTRLR; wChannel: Word; bState: SmallInt);
VB Function: Sub MCEnableDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As

Integer)
MCCL command: CF, CN

LabVIEW VI:

Get Digital IO

Returns the current state of the specified digital I/O channel. This function will read the current state of
both input and output digital I/O channels. Note that this function simply reports if the channel is "on" or
"off"; depending upon how a channel has been configured "on" (and conversely "off") may represent
either a high or a low voltage level.

see also:

C++ Function: short int MCGetDigitalIO(HCTRLR hCtlr, WORD wChannel);
Delphi Function: function MCGetDigitalIO(hCtlr: HCTRLR; wChannel: Word): SmallInt;
VB Function: Function MCGetDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
MCCL command : TC

LabVIEW VI:

General Purpose I/O

MultiFlex ETH 1000 Series User's Manual

169

Wait for Digital IO

Waits for the specified digital I/O channel to go on or off, depending upon the value of bState.

see also: Wait for digital channel on

C++ Function: void MCWaitForDigitalIO(HCTRLR hCtlr, WORD wChannel, short int bState);
Delphi Function: procedure MCWaitForDigitalIO(hCtlr: HCTRLR; wChannel: Word; bState: SmallInt);
VB Function: Sub MCWaitForDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As
Integer)
MCCL command: WF, WN

LabVIEW VI:

General Purpose I/O

Precision MicroControl Corp.

170

A/D Inputs

One of the available controlleroptions is the capability of reading 8 A/D inputs (with 14 bit resolution). The
A/D option is available in two different voltage ranges: +/- 10V or 0 - +4V.

Because the controller is implemented in digital electronics, all analog input signals levels must be
converted into a digital value. Even though the current A/D device provides 14 bits of resolution, to
support future increases in resolution, the value returned by the MCGetAnalogEx() function is a 'left
justified' 16 bit value (0 - 65532). A returned value of 0 translates to the lowest analog voltage. A digital
value of 65532 translates to the highest analog voltage. These inputs are very high impedance with
leakage currents less than 10 nano amps.

Using the A/D inputs

You can read the analog input values using either the Motion Control API function MCGetAnalogEx(), or
by issuing the MCCL command Tell Analog (TAx, x=channel number) from PMC’s WinControl program.
The value returned for each input channel will be a number between 0 and 65536, corresponding to the
entire input voltage range. For example, if the input voltage range is -10V to +10V; then -10.0V=0,
0.0V=32768 and +10.0V=65536. If the input voltage range is 0.0 to +4.0V; then 0.0V=0, 2.0V=32768 and
4.0V=65536.

The screen capture that follows shows the Motion Integrator Analog I/O test panel, which can also be
used to report the measured voltage level. Comprehensive on-line help is available from the Help menu.

The Motion Control API function for reading an A/D input channel is:

 MCGetAnalogEx() get digital input channel digitized level

General Purpose I/O

MultiFlex ETH 1000 Series User's Manual

171

Get Analog

Reads the digitized level of the specified input wChannel. For each of A/D input channel, this function will
return a value between 0 and 65532.

C++ Function: WORD MCGetAnalogEx()(HCTRLR hCtlr, WORD wChannel);
Delphi Function: function MCGetAnalogEx()(hCtlr: HCTRLR; wChannel: Word): Word;
VB Function: Function MCGetAnalogEx() (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
MCCL command: TA

LabVIEW VI:

General Purpose I/O

Precision MicroControl Corp.

172

MultiFlex ETH 1000 Series User's Manual

173

Specifications

Motion Control Board

Function 1 - 12 Axis, servo, stepper and I/O controller
Installation Ethernet-connected, RS-232, or stand-alone
Main Processor Toshiba 64-bit MIPS RISC CPU
Processor Clock Rate 300 MHz
Memory Flash ROM: 8 MB
 Synchronous DRAM: 32 MB

Processor Fault Detection

Watchdog Circuit with Reset Relay (normally open)
 Max. switching power = 30W
 Max. switching current = 1A
 max. switching voltage: DC = 110V, AC=125V

Status LED's Power, Reset, Run, Ethernet Activity, Duplex, 100Mb, Link
Standard Communication Interface 10/100 Ethernet or RS-232

Connectors

Plug-on Interconnection Board Options:
 ICN-100: 68-pin SCSI (MultiFlex PCI compatible pint-outs)
 ICN-120/125: D-sub
 ICN-130: Screw terminal
 ICN-xxx: Custom, customer-defined

Required Supply Voltages

Options:
 Standard: +5 and +/-12 VDC
 With plug-on PWR-100-24 DC-DC converter: +12-36 VDC
 With plug-on PWR-100-48 DC-DC converter: +24-70 VDC

Form Factor 8” x 4.25” DIN-rail mountable PCB
Operating Temperature range 00 C to 550 C, non-condensing

Chapter

8

Specifications

Precision MicroControl Corp.

174

Analog Command Axis Specifications

Function Closed Loop Servo Motor Control

Operating Modes Position, Velocity, Contouring, Torque, and Gain
Filter Algorithm PID with Velocity, Accel / Decel Feed-Forward (PID-VAFF)
Servo Filter Update Rate 16, 8, 4, 2, or 1 kHz - software selectable

Trajectory Generator
Trapezoidal, Parabolic or S-Curve
Independent Acceleration and Deceleration

Command output Analog Signal (+/- 10 vdc @ 10 ma, 16 bit)

Position Feedback Incremental Encoders with Index and Hardware Error Detection
Position and Velocity Resolution 64 bit floating point
Encoder
 Encoder and Index Inputs Differential or Single-ended, -25 to +25 vdc max.
 Encoder Count Rate Up to 20,000,000 Quadrature Counts/sec. per axis
 Encoder Supply Voltage +5 vdc or +12 vdc
 Minimum Phase differential 200mV
 Hardware Error Checking Yes (for differential encoders)

Axis Inputs (Optically isolated) Limit+, Limit-, Home, Amplifier/Drive Fault

 Device conducting
minimum voltage = 3V
maximum voltage = 25V

 Minimum current required 0.25 mA

Axis Outputs (Open Collector) Amplifier/Drive Disable, Amplifier/Drive Enable
 Maximum voltage 30V
 Maximum current sink 100 ma

Position Capture (Latch) input TTL (0 - +5V), 1 per servo axis pair
 Active level Rising edge (TTL high, > 2.4 VDC)
 Minimum pulse duration 100 nanosecond
 Maximum trigger frequency 1 kHz

Position Compare (trigger) output TTL (0 - +5V), 1 per four servo axes
 Active level Programmable, default = TTL high
 Minimum pulse duration <1 nanosecond
 Maximum repeat frequency >1 MHz (programmable trigger modes)

Specifications

MultiFlex ETH 1000 Series User's Manual

175

Pulse Command Axis Specifications

Function
Open Stepper, Open Loop Stepper with Position Verification,
Closed Loop Stepper, or Pulse Command Servo

Operating Modes Position, Velocity, Contouring, Torque, and Gain

Trajectory Generator
Trapezoidal, Parabolic or S-Curve
Independent Acceleration and Deceleration

Position Feedback
Incremental Encoder with Index (for closed loop stepper
operation or position verification of an open loop stepper)

Position and Velocity Resolution 64 bit floating point

Step Outputs
Step/Direction or CW/CCW (software selectable), 50% duty
cycle open collector drivers (max. 30V, 100ma current sink)

Step Rates (Software Selectable)
High Speed - 153 Steps/Sec. - 5.0M Steps/Sec.
Medium Speed - 20 Steps/Sec. - 625K Steps/Sec.
Low Speed - .1 Steps/Sec. – 78K Steps/Sec.

Position Feedback Incremental Encoder with Index
Position and Velocity Resolution 32 bit
Encoder
 Encoder and Index Inputs Differential or single ended, -25 to +25 vdc max.
 Encoder Count Rate 20,000,000 Quadrature Counts/Sec.
 Encoder Supply Voltage +5 vdc or +12 vdc
 Minimum Phase differential 200mV
 Hardware Error Checking Yes (differential encoder only)

Axis Inputs (Optically isolated)
Limit+, Limit -, Home, Drive Fault (shared with analog command
axis)

 Device conducting
minimum voltage = 3V
maximum voltage = 25V

 Minimum current required 0.25 mA

Axis Outputs (Open Collector) Driver Disable, Driver Enable, Full/Half Current
 Maximum voltage 30V
 Maximum current sink 100ma

Position Capture (Latch) input TTL (0 - +5V)
 Active level Rising edge (TTL high, > 2.4 VDC)
 Minimum pulse duration 100 nanosecond
 Maximum re-trigger frequency 1 kHz

Position Compare output TTL (0 - +5V), 1 per four servo axes
 Active level Programmable, default = TTL high
 Minimum pulse duration < nanosecond
 Maximum re-trigger frequency >1 MHz, (programmable trigger modes)

Specifications

Precision MicroControl Corp.

176

General Purpose I/O Specifications
Digital Inputs 16 channels, TTL, Buffered (74LS541)
 Active level Programmable
 TTL high level input min. voltage 2.0V
 TTL high level input max. voltage 5.0V
 TTL low level input min. voltage 0.0V
 TTL low level input max. voltage 0.6V
 Input termination (pull up/down) None

Digital Outputs 16 channels, TTL, Buffered (74LS541)
 Active level Programmable
 TTL low level current sink max. 24 mA
 TTL high level curr. source max. 15 mA
 TTL high level out. min. voltage 2.4V
 TTL high level out. max. voltage 5.0V
 TTL low level output min. voltage 0.0V
 TTL low level out. max. voltage 0.5V

Analog Inputs 8 channels, 14 bit per channel
 Input voltage range -10.0V to +10.0V (standard), 0.0V to +4.0V (special order)
 Nominal read rates
 From Windows Program ~200 usec* (results will vary depending PC configuration)
 From on-board MCCL routine ~42 usec *

* results will vary based on the state of controller at time of A/D conversion.

MultiFlex ETH 1000 Series User's Manual

177

I/O Signal Descriptions & Schematics

i

For a comprehensive description of the available interconnection boards,
connectors and pin-outs, please see the MultiFlex ETH 1000 Series
Installation Manual, available for download from the Support section of PMC’s
web site at:

www.pmccorp.com/support/mfxeth1000.php

Figure 52. MultiFlex ETH 1000 Series Board Layout

Chapter

9

Ethernet RJ45
Connector

RS-232
Connector

LED Status
Indicator Lights

DIN Connectors
(for plug-on interconnection boards)

Power
Connector

Configuration
DIP Switches

Auxiliary I/O
Connector

Push-Button
Reset Switch

Boot
ROM

Push-Button
Reset Contacts

Watchdog
Relay Contacts

http://www.pmccorp.com/support/mfxeth1000.php�

I/O Signal Descriptions & Schematics

Precision MicroControl Corp.

178

Signal Descriptions

Motor Command Signals

+/- 10 Analog Command Outputs

signal type: +/- 10V analog, 16 bit
notes: Connects to servo amplifier motor command input (Ref+)
explanation: This output signal is used to control the servo amplifier's output. When connected to the

command input of a velocity mode amplifier, the voltage level on this signal should cause
the amplifier to drive the servo at a proportional velocity. For current mode amplifiers, the
voltage level should cause a proportional current to be supplied to the servo. The range
of the signal is -10 to +10 volts (with 16 bit resolution), with 0 volts being the null output
level. Positive voltages indicate a desired velocity or current in one direction. Negative
voltages indicate velocity or current in the opposite direction. The maximum drive current
of this signal is +/-10 milliamps.

By using the function MCSetModuleOutputMode(), the output can be changed to Unipolar, where the
analog signal range is 0 to +10 volts, and a separate signal (Unipolar Direction) is used to indicate the
desired direction of velocity or current.

Pulse and Direction Command Outputs

signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: External pull-up may be required
explanation: In the control of a stepper motor or Pulse command servo, the two primary control signals

are Pulse and Direction (or CW Pulse and CCW Pulse). These signals are connected to
the external driver that supplies current to the motor windings.

Both of these signals are driven by high current open collector drivers and are suitable for direct
connection to optically isolated inputs commonly found on stepper motor drivers. Because of the
characteristics of open collector drivers, no measurable voltages will be present on these output signals
unless a pull-up path to a supply voltage is provided.

Pulse: The motor driver should advance the motor by one increment for each pulse. The motor may
advance a full step or a micro step. This is determined by the mode of the stepper motor driver. The
Pulse signal is normally high, and is pulled low at the beginning of a step. It stays low for one half the step
period (50% duty cycle), and then goes back high. When it is time for the next step, the signal will be
pulled low again.

Direction: This signal indicates the direction the motor will move. When the stepper is incrementing the
current position (moving positive) this signal will remain high (pulled up). When the stepper is
decrementing the current position (moving negative) this signal will be pulled low. For a servo motor
configured for uniploar mode, this output is used to indicated the commanded direction of the servo.

The function MCSetModuleOutputMode() is used to change the operation of these signals to CW and
CCW. In this mode, pulses will be generated on the CW output when the current position is increasing,
and on the CCW output when the current position is decreasing.

I/O Signal Descriptions & Schematics

MultiFlex ETH 1000 Series User's Manual

179

Encoder Feedback Signals

Encoder Inputs (Phase A+, Phase A-, Phase B+, Phase B-, Z+, Z-)

signal type: TTL or Differential driver output
Minimum signal differential (Phase + to Phase -) = 200mV
Maximum range = (-25V to +25V)

notes: For single ended encoders connect the Encoder Reference Output (1.5V) to all unused
encoder (A-, B-, Z-) inputs

explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the Analog Command axes (1 - 4). The plus
(+) and minus (-) signs refer to the two sides of differential inputs. If no index is being
used connect Z+ and Z- to the Encoder Reference Output.

Encoder - Reference Output

signal type: 1.5 VDC (output from resistor voltage divider)
notes:
explanation: This output is made available so that any unconnected encoder inputs can be properly

terminated. Most typically this output would be used to terminate the phase '-' inputs of a
single ended encoders.

Default Axis Inputs

i

The default configuration for the controller is for an Analog Command axis and
a Pulse Command axis to share opto isolated inputs and open collector drivers.
The user can change any of the default I/O function assignments by using the
I/O Configuration Panel, described on pages 10 and 165.

Amp. / Drive Fault Input

signal type: Bi-directional optical isolator, 0.25 mA min., 3.0V – 25.0V range
notes:
explanation: This input is designed to be connected to the Fault or Error output signal of a servo

amplifier or stepper driver. The state of this signal will appear as a status bit in the axis
status word. By default this input is shared by an Analog command axis and a Pulse
command axis.

The EnableAmpFault member of the MCMotion structure will enable the axis to be disabled if the Amp /
Drive Fault input is activated. No further motion will occur until the fault signal is deactivated and the axis
has been enabled. The input device is a bi-directional optical isolator. The allowable voltage range for this
signal is 3.0 VDC to 25.0 VDC. For I/O systems operating outside of this range consult the factory.

I/O Signal Descriptions & Schematics

Precision MicroControl Corp.

180

Coarse Home / Stepper Home Input

signal type: Bi-directional optical isolator, 0.25 mA min., 3.0V – 25.0V range
notes: The Home operation of a Pulse command axis cannot be re-assigned to use a different

controllerinput
explanation: This input is used to determine the proper zero position of an axis. By default this input is

shared by an Analog command axis and a Pulse command axis.

Servo systems: If a rotary encoders with index outputs is used, an index pulse will be asserted once per
rotation of the encoder. While this signal occurs at a very repeatable angular position on the encoder, it
may occur many times within the motion range of the servo. In these cases, a Coarse Home switch is
required to qualify which index pulse is to be the true zero position of the servo.
The Coarse Home switch should be installed (and the encoder adjusted) so that while the switch is active,
the index pulse that is to be used to define the 'home position' will be asserted.

The input device for this signal is a bi-directional optical isolator. The allowable voltage range for this
signal is 3.0 VDC to 25.0 VDC. For I/O systems operating outside of this range please contact the factory.
For additional information on homing a servo axis please refer to the section titled Homing Axes in the
Motion Control chapter. Typical wiring examples for the Coarse Home / Stepper Home Input can be
found in Chapter 5.

Stepper systems: This input is used to set the zero position of an open loop stepper axis. It is typically
connected to a sensor/switch that is activated at a fixed position in the motor’s range of motion. The input
device is a bi-directional optical isolator. The allowable voltage range for this signal is 3.0 VDC to 25.0
VDC.

The allowable voltage range for this signal is 3.0 VDC to 25.0 VDC. For I/O systems operating outside of
this range please contact the factory. For additional information on homing a stepper axis please refer to
the section titled Homing Axes in the Motion Control chapter. Typical wiring examples for the Coarse
Home / Stepper Home Input can be found in Chapter 5.

Limit Positive Input

signal type: Bi-directional optical isolator, 0.25 mA min., 3.0V – 25.0V range
notes:
explanation: The limit switch inputs are used to cause the controller to stop the motion of a servo or

stepper axis when it reaches the end of travel. By default this input is shared by both an
Analog command axis and a Pulse command axis. In Position and Velocity mode the
response to an activated limit input is direction sensitive, the axis will only be stopped if it
is moving in the direction of the activated limit switch. In Contour mode, the response to
an activated limit input is not direction sensitive, the axis will be stopped regardless of the
direction it is moving if either limit switch is activated. In Torque mode, the controller will
ignore the activation of a limit input, the axis will continue to move. For I/O systems
operating outside the range of 3V to 25V contact the factory.

There are three modes of stopping (decelerate to a stop, stop immediately, turn off the axis) that can be
configured by the function MCSetLimits(). The limit switch inputs can be enabled and disabled by
MCSetLimits(). See the description of Motion Limits in the Motion Control chapter.

I/O Signal Descriptions & Schematics

MultiFlex ETH 1000 Series User's Manual

181

Limit Negative Input

signal type: Bi-directional optical isolator, 0.25 mA min., 3.0V – 25.0V range
notes:
explanation: The limit switch inputs are used to cause the controller to stop the motion of a servo or

stepper axis when it reaches the end of travel. By default this input is shared by both an
Analog command axis and a Pulse command axis. In Position and Velocity mode the
response to an activated limit input is direction sensitive, the axis will only be stopped if it
is moving in the direction of the activated limit switch. In Contour mode, the response to
an activated limit input is not direction sensitive, the axis will be stopped regardless of the
direction it is moving if either limit switch is activated. In Torque mode, the controller will
ignore the activation of a limit input, the axis will continue to move. For I/O systems
operating outside the range of 3V to 25V contact the factory.

There are three modes of stopping (decelerate to a stop, stop immediately, turn off the axis) that can be
configured by the function MCSetLimits(). The limit switch inputs can be enabled and disabled by
MCSetLimits(). See the description of Motion Limits in the Motion Control chapter.

Position Capture (Latch) Input

signal type: TTL (buffered by 74LS541)
 Active level = Rising edge, (TTL high, > 2.4 volts)
 Minimum pulse duration = 100 nano second
 Maximum re-trigger frequency = 1 kHz
 TTL high level input min. voltage = 2.0V
 TTL high level input max. voltage = 5.0V
 TTL low level input min. voltage = 0.0V
 TTL low level input max. voltage = 0.6V
notes: Dual purpose signal, can also be used as a general purpose TTL digital input
explanation: Used to initiate the capture of position data. See the description of Position Capture in

the Application Solutions chapter.

Default Axis Outputs

i

The default configuration for the controller is for an Analog Command axis and
a Pulse Command axis to share opto isolated inputs and open collector drivers.
The user can change any of the default I/O function assignments by using the
I/O Configuration Panel, described on pages 10 and 165.

I/O Signal Descriptions & Schematics

Precision MicroControl Corp.

182

Drive Disable

signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: External pull-up may be required
explanation: This output signal should be connected to the disable input of the stepper driver or

servo amplifier. When the axis is disabled (or the controller is reset) the open collector
driver will be turned on, sinking current through the interface device of the stepper driver /
servo amplifier. When the axis is turned on this signal will immediately go to its' inactive
high level. Anytime there is an error on the respective axis, including exceeding the
following error, a limit switch input activated or the Amplifier / Driver Fault input
activated, the Driver Disable signal will be activated.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically
isolated inputs commonly found on a amplifier / driver. Because of the characteristics of open collector
drivers, no voltages will be present on these output signals unless signals unless a pull-up path to a
supply voltage is provided.

Amplifier / Driver Enable

signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: External pull-up may be required
explanation: This output signal should be connected to the enable input of the servo amplifier or

stepper driver. When the axis is enabled the open collector driver will be turned on,
sinking current through the interface device of the servo amplifier / stepper driver. When
the axis is turned off (or the controller is reset) this signal will immediately go to its'
inactive high level. Anytime there is an error on the respective axis, including exceeding
the following error, a limit switch input activated or the Amplifier / Driver Fault
input activated, the Amplifier Enable signal will be deactivated.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically
isolated inputs commonly found on a amplifier / driver. Because of the characteristics of open collector
drivers, no voltages will be present on these output signals unless a pull-up path to a supply voltage is
provided.

Position Compare Output

signal type: TTL (buffered by 74LS541)
 Active level = programmable, default = TTL high
 Minimum pulse duration (one Shot mode) = 1 msec. (+/- 0.5 msec.)
 Servo Maximum re-trigger frequency = 4 kHz
 Stepper Maximum re-trigger frequency = 1 kHz
 TTL low level current sink max. = 24 mA
 TTL high level current source max. = 15 mA
 TTL high level output min. voltage = 2.4V
 TTL high level output max. voltage = 5.0V
 TTL low level output min. voltage = 0.0V
 TTL low level output max. voltage = 0.5V
notes: Dual purpose, also can be used for general purpose TTL digital output
explanation: Used to indicate when a position compare event has occurred. See the description of

Position Compare in the Application Solutions chapter.

I/O Signal Descriptions & Schematics

MultiFlex ETH 1000 Series User's Manual

183

Full/Half Current & Unipolar Direction Output

signal type: Open collector, current sink, 100ma max. current sink, 30V max.
notes: External pull-up may be required
explanation: (Full/Half current) This signal is used if the stepper driver has a digital input for current

control. The default condition of this signal is to be inactive (pulled high). Setting the
MC_CURRENT_FULL parameter of the MCMotion structure will cause the signal to be
pulled low.

This signal is driven by a high current open collector driver and is suitable for direct connection to optically
isolated inputs commonly found on a amplifier / driver. Because of the characteristics of open collector
drivers, no voltages will be present on these output signals unless a pull-up path to a supply voltage is
provided.

explanation (Unipolar Direction): For servo drives requiring a Unipolar output. The velocity or current
command input consists of a magnitude signal and a separate direction signal . The magnitude signal is
provided by the modules Analog Command Signal, while this signal provides a digital direction command.

Default Configuration of General Purpose I/O

i

The default configuration for the controller is for a Analog Command axis and a
Pulse Command axis to share opto isolated inputs and open collector drivers.
The user can change any of the default I/O function assignments by using the
I/O Configuration Panel, described on pages 10 and 165.

TTL Digital Inputs

signal type: TTL (buffered by 74LS541)
 Active level = programmable
 TTL high level input min. voltage = 2.0V
 TTL high level input max. voltage = 5.0V
 TTL low level input min. voltage = 0.0V
 TTL low level input max. voltage = 0.6V
notes: Dual purpose, channels 1, 5, 9, and 13 can also be used for capturing the position of

axes 1/2, 3/4, 5/6, and 7/8
explanation: Two 74LS541 octal buffers are used to provide 16 TTL level digital inputs that allow the

user to monitor external events. For additional information please refer to the General
Purpose I/O chapter.

I/O Signal Descriptions & Schematics

Precision MicroControl Corp.

184

TTL Digital Outputs

signal type: TTL (buffered by 74LS541)
 Active level = programmable, default = TTL high
 TTL low level current sink max. = 24 mA
 TTL high level current source max. = 15 mA
 TTL high level output min. voltage = 2.4V
 TTL high level output max. voltage = 5.0V
 TTL low level output min. voltage = 0.0V
 TTL low level output max. voltage = 0.5V

notes: Dual purpose, channels 1 and 9 can also be used for indicating when a position compare

event has occurred on axes 1 - 8
explanation: Two 74LS541 octal buffers are used to provide 16 TTL level digital outputs that allow the

user to control external devices. For additional information please refer to the General
Purpose I/O chapter.

Analog Inputs (optional)

signal type: Analog input range: -10.0V to +10.0V (standard) or 0.0V to +4.0V (special order)
 A/D resolution = 14 bit
 Nominal read rates:

From a Windows program = ~200 usec
From on-board MCCL routine = ~42 usec

notes: Reported value = 0 to 65536 corresponding to the available input range
explanation: Eight (8) 14 bit analog inputs that allow the user to monitor external events. For additional

information please refer to the General Purpose I/O chapter.

I/O Signal Descriptions & Schematics

MultiFlex ETH 1000 Series User's Manual

185

Circuit Schematics

+/- 10V servo command circuit schematic

DAC
(4 channel, 16 bit)

+

_

-12V

+12V

Axis 2 +/- 10V output J1 - 2

+VREF

POT2

+

_ J1 - 36

+

_

-12V

+12V

Axis 3 +/- 10V output J2 - 1

+VREF

POT3

+

_ J2 - 35

+

_

-12V

+12V

Axis 1 +/- 10V output J1 - 1

+VREF

POT1

+

_ J1 - 35

+

_

-12V

+12V

Axis 4 +/- 10V output J2 - 2

+VREF

POT4

+

_ J2 - 36

(connector pin-outs reference connectors on ICN-100 Interconnection Board)

I/O Signal Descriptions & Schematics

Precision MicroControl Corp.

186

Pulse Command Circuit Schematic

J3 - 2

4.7K

+5VDC

SN75453B

Axis 1 Step / CCW

J3 - 36

4.7K

+5VDC

SN75453B

Axis 1 Direction / CW

J3 - 37

J3 - 3

J3 - 7

4.7K

+5VDC

SN75453B

Axis 2 Step / CCW

J3 - 41

4.7K

+5VDC

SN75453B

Axis 2 Direction / CW

J3 - 42

J3 - 8

J4 - 2

4.7K

+5VDC

SN75453B

Axis 3 Step / CCW

J4 - 36

4.7K

+5VDC

SN75453B

Axis 3 Direction / CW

J4 - 37

J4 - 3

J4 - 7

4.7K

+5VDC

SN75453B

Axis 4 Step / CCW

J4 - 41

4.7K

+5VDC

SN75453B

Axis 4 Direction / CW

J4 - 42

J4 - 8

+5VDC

+5VDC

+5VDC

+5VDC

+5VDC

+5VDC

+5VDC

+5VDC

(connector pin-outs reference connectors on ICN-100 Interconnection Board)

I/O Signal Descriptions & Schematics

MultiFlex ETH 1000 Series User's Manual

187

Axis I/O circuit schematic

J1 - 29

J1 - 63, J3 - 63
Axes 1/5 Limit + return /
supply

Axis 5 Limit + J3 - 29

Axis 1 Limit +

4.7K

J1 - 31

J1 - 65, J3 - 65Axes 1/5 Limit - return / supply

Axis 5 Limit - J3 - 31

Axis 1 Limit -

4.7K

4.7K

4.7K

ILD256

J1 - 27

J1 - 61, J3 - 61Axis 1/5 Home return / supply

Axis 5 Home J3 - 27

Axis 1 Coarse Home

4.7K

J1 - 17

J1 - 51Axis 1/5 Amp Fault return / supply

Axis 1 Amp Fault4.7K

4.7K

ILD256 Axis 5 Home J3 - 17
4.7K

J1 - 5Axis 1 Amp Enable

J1 - 39

4.7K

+5VDC

Axis 1 Amp Enable

+5VDC

SN75453B

J3 - 1Axis 5 All Windings off

J3 - 35

4.7K

+5VDC

Axis 5
All Windings Off

+5VDC

SN75453B

Axis 1 Phase A-

Axis 1 Phase A+

Axis 1 Phase B-

Axis 1 Phase B+

Axis 1 Phase Z-

Axis 1 Phase
Z+

MAX3097
J1 - 11

J1 - 45

J1 - 12

J1 - 46

J1 - 13

J1 - 47

Axis 1 Enc A

Axis 1 Enc B

Axis 1 Enc Z

Axis 1 Enc. Error

Axis 5 Phase A-

Axis 5 Phase A+

Axis 5 Phase B-

Axis 5 Phase B+

Axis 5 Phase Z-

Axis 5 Phase
Z+

MAX3097
J3 - 11

J3 - 45

J3 - 12

J3 - 46

J3 - 13

J3 - 47

Axis 5 Enc A

Axis 5 Enc B

Axis 5 Enc Z

Axis 5 Enc. Error

Encoder Reference (1.5V)

200+5VDC

82 J1 - 10

J1 - 44

J3 - 10

J3 - 44

(connector pin-outs reference connectors on ICN-100 Interconnection Board)

I/O Signal Descriptions & Schematics

Precision MicroControl Corp.

188

General purpose I/O circuit schematic

J2 - 19

J2 - 53

Dig. Out #5

J2 - 20

J2 - 54

Dig. Out #6

J2 - 21

J2 - 55

Dig. Out #7

J2 - 22

J2 - 56

Dig. Out #8

74LS541
J1 - 19

J1 - 53

Dig. Out #1 / 1- 4 Pos. Compare

J1 - 20

J1 - 54

Dig. Out #2

J1 - 21

J1 - 55

Dig. Out #3

J1 - 22

J1 - 56

Dig. Out #4

74LS541
18

17

16

15

18

17

16

15

J2 - 23

J2 - 57

Dig. In #5 / Ax 3&4 Pos. Capture

J2 - 24

J2 - 58

Dig. In #6

J2 - 25

J2 - 59

Dig. In #7

J2 - 26

J2 - 60

Dig. In #8

74LS541
J1 - 23

J1 - 57

Dig. In #1 / Ax 1&2 Pos. Capture

J1 - 24

J1 - 58

Dig. In #2

J1 - 25

J1 - 59

Dig. In #3

J1 - 26

J1 - 60

Dig. In #4

74LS541
6

7

8

9

2

3

4

5

+5 VDC

10K

+5 VDC

10K

+5 VDC

10K

+5 VDC

10K

+5 VDC

10K

+5 VDC

10K

+5 VDC

10K

+5 VDC

10K

+5 VDC +5 VDC

J1 - 33

J1 - 67_

+ Analog In
#1J1 - 34

J1 - 68_

+ Analog In
#2

A In 1A In 2

J2 - 33

J2 - 67_

+ Analog In
#3J2 - 34

J2 - 68_

+ Analog In
#4

A In 3A In 4

A In 1

A In 2

A In 3

A In 4

A/D
(8 channel,

14 bit)

AI Pos

AI
Neg

AI
Neg

AI
Neg

AI
Neg

AI Pos AI Pos

AI Pos

AI Pos

+12
VDC

+5 VDC

AI Neg

-12 VDC

Gnd

Optional A/D inputs

(connector pin-outs reference connectors on ICN-100 Interconnection Board)

MultiFlex ETH 1000 Series User's Manual

189

Troubleshooting

On the following pages you will find troubleshooting flow charts to assist the with diagnosis of motion
control system failures.

The steps described in these flow charts will direct you to programs installed with PMC’s Motion Control
API (Motion Integrator, Motor Mover, CWDemo, Servo Tuning, WinControl, etc.). These programs can be
used to help diagnose and resolve system problems.

Chapter

10

Troubleshooting

Precision MicroControl Corp.

190

System Troubleshooting

Servo motors working
 as expected?

Go to the
Communications

Troubleshooting flow
chart

Is theI
 controller communicating

with the PC?
No

Go to the Servo
Motor

Troubleshooting flow
charts

Yes

No

Contact PMC technical
support.

General
purpose I/O (digital I/O

and/or analog I/O) working
 as expected?

No

Go to the General
Purpose I/O

Troubleshooting flow
charts

Is the
controller operating as

expected?

Yes

No

Go to the
Miscellaneous

operation
Troubleshooting flow

charts

Stepper motors working
 as expected?

Yes

No

Go to the Stepper
Motor

Troubleshooting flow
charts

Axis I/O (Limits,
Home, Index, Amp
Enable, Amp Fault)

working as expected?

Yes

No

Go to the Limits and
Home

Troubleshooting flow
charts

Yes

Troubleshooting

MultiFlex ETH 1000 Series User's Manual

191

Communications Troubleshooting

Open the
Windows Motion

Control Panel (Control
Panel / Motion Control).

Is the controller
 listed?

The controller is not responding
 as expected to: Motion Control

Panel, Motor Mover, Servo
Tuning, or WinControl.

Either nothing happens (lockup)
or an error message is displayed.

No

Verify
the

Driver version.
Open MCAPI Readme.txt.

(Program FIles/Motion Control/
Motion Control API/

Readme.txt.
 Version >= 4.1

Update the drivers
(MCAPI). Uninstall

the old MCAPI, then
install the current
MCAPI. Refer to
chapter 3 of the
user's manual.

Does the
status of the

controller = OK?

If problem persists contact
PMC technical support.Yes

Yes

Contact PMC
 technical support.No

No

Go to the Controller
Initialization

Troubleshooting
flowchart.

Yes

Troubleshooting

Precision MicroControl Corp.

192

Controller Initialization Troubleshooting

Is the controller's' power
OK" LED on?

The controller has
properly completed

initialization. Open the
Motion Control Panel
(Control Panel/Motion

Control) and verify that the
controller is present and

Status = OK.

Turn on the
PC power.

No

Within 1
second does the

controller's 'Reset' LED turn
off?

No

By the time
that Windows has

completed loading has the
controller's'Run' LED

 turned on?

Yes

The controller has
failed to load and/or

launch its motion
control code.

No

For additional information
contact PMC technical

support..

The controller
requires +5 & +/- 12
VDC power. Check

your power supply or
call PMC.

No
The controller is not
properly 'coming out

of Reset'.

Contact PMC technical
support..

Shutdown the PC
and disconnect the

controller. Follow the
installation

procedures in
chapter 3.

Does the
controller 'show up' in the

Windows Device
 Manager?

Yes

Are PMC's
Windows Drivers (MCAPI

4.1.X or higher)
 installed?

Yes

Contact PMC technical
support..

Yes

Yes

No

Troubleshooting

MultiFlex ETH 1000 Series User's Manual

193

Troubleshooting - Tuning a Servo Motor

Does the
 axis reach the

target?

Yes

Increase the Proportional
gain and/or Integral gain

Does motion
occur without

errors?

Yes

No

The servo motor is moving
 but the performance is

 not acceptable

No

Either:
1) Increase Derivative gain
2) Decrease the
proportional gain.
3) Decrease Integral gain

Does the axis
oscillate?

No

Derivative gain may be
gain too high. Either:
1) Decrease derivative
gain
2) Increase the derivative
sampling period

If the problem persists contact
PMC technical support.

If the axis errors out, either:
1) Velocity is too high
2) Accel / decel too high
2) Proportional gain too
 low
3) Following error too low

Yes

Do you hear a
grinding noise?

Yes

No

Near but not
 at target?

Increase the Integral gain /
Integral limit.

Yes

Troubleshooting

Precision MicroControl Corp.

194

Troubleshooting - Servo Motion chart #1

Status Panel
Red error LED's

off?

Yes

Resolve the error
condition (limit+/-,

following error,
amp fault, ...)

Is the
motor on?

Yes

No

The servo control system
has failed.

Contact PMC technical
support

A servo motor does not
move when commanded

No

Turn the motor on
MCEnable Axis()

No

The encoder may
have failed, refer to
Motion Integrator
encoder checkout

Does
the motor resist

rotation?

Yes

No

Yes

Did
the encoder
checkout?

Tune the
servo using
the Servo

Tuning utility

Is the
motion OK?

Motor moving as commanded.

If problem persists contact
PMC technical support.

Yes

Replace the
encoder

No

Troubleshooting

MultiFlex ETH 1000 Series User's Manual

195

Troubleshooting - Servo Motion chart #2

Any red
 error LED's

on?

Yes

The
encoder or
wiring has

failed,
remove and

replace.

Encoder
properly
phased?

Yes

No

A servo motor 'takes off'
 at full velocity when
 'turned on' (aMN)

No

The controller is decoding
noise as valid encoder

counts. Checkout wiring. A
differential encoder may
be required. If problem
persists contact PMC

technical support.

Change encoder
phasing or 'swap' the

encoder inputs
 (A to B, B to A) .

Troubleshooting

Precision MicroControl Corp.

196

Troubleshooting - Servo Motion chart #3

Yes

Does motion
occur without

errors?

Yes

A commanded move begins
as expected but fails to reach

the commanded target

Tune the
servo using
the Servo

Tuning utility

No

Increase the Integral gain
and/ ot Integral limit to 'over

come' system friction.
Increase Integral gain (by 2%

each move) until the axis
reaches the target.

If axis oscillates at the end of
the move reduce the

Proportional gain

The commanded
maximum velocity,

accel, or decel exceeds
the system capability.

Reduce the trajectory
parameters

Friction may
 be present in mechanical

components. Has mechanical
system operation been

optimized?

Clean and
adjust

mechanics
No

Troubleshooting

MultiFlex ETH 1000 Series User's Manual

197

Troubleshooting - Stepper Motion chart #1

Any errors
present

Yes

Resolve the
error condition
(limit+, Limit -)

Is the
motor turned

on?

Yes

No

A stepper motor does not
move when commanded

No

Turn the motor
on

MCEnableAxis
No

Is the stepper
driver enabled?

No

The controller has failed.

Contact PMC technical
support.

Verify wiring/operation.
Referring to chpater 5

connect a voltmeter and
verify the operation of

the Drive Enable/
Disable.

Yes

From
CWDemo; zero position,

move relative 50 steps. Did
the motor move

Do the Actual,
 Optimal, and Target position

readouts all display 50?
No

Yes

 Either:
 1) The stepper motor driver
 has failed

or
 2) The Step/Dir
 open collector output has
 failed

Yes

The controller has failed.

Contact PMC technical
support.

No

Motor moving as
commanded.

If problem persists contact
PMC technical support.

Yes

Troubleshooting

Precision MicroControl Corp.

198

Troubleshooting - Limits and Home

Limit
 input wired

correctly

Connect
voltmeter across the 2

Limit pins. Activate Limit
sensor. Voltage 5 to

24volts?

Yes

The controller is
recognizing the state of
the Limt sensor. Make

sure that Limts are
enabled {MCSetLimits()}.

If problem persists
contact PMC technical

support.

Refer to
the User's
Manual for

wiring
examples

Problem
 with a Limit

input?

Yes

No

With sensor
active, does the Motion
Integrator Test Panel
indicate that the Limit

sensor is active?

Yes

Yes

Home
 input wired

correctly

Connect
voltmeter across

the 2 Home pins. Activate
Limit sensor. Voltage 5 to

24volts?

Yes

Refer to
User's

Manual for
wiring

examples

No

With sensor
active, does the Motion
Integrator Test Panel

indicate that the Home
sensor is active?

Yes

The controller is
recognizing the Home
and/or Index sensor.

 Contact PMC technical
support.

Issue
move command

toward home sensor,
followed by Find Index/

Find Edge and Stop. Did
the motor stop?

Yes

Yes

Input voltage range
is 5 to 24 volts. Min.
current for is 10ma.

Contact PMC
technical support.

No

controller's sensor
input circuit has

failed.

Contact PMC
technical support

The MFX-PC does not handle
Limits and/or Home inputs as

expected

Input voltage range
is 5 to 24 volts. Min.
current for is 10ma.

Contact PMC
technical support.

No

controller's sensor
input circuit has

failed.

Contact PMC
technical support

No

Contact PMC
technical support

No

No

No

MultiFlex ETH 1000 Series User's Manual

199

Controller Error Codes

Both the Motion Control API functions and the Motion Control Command Language (MCCL) provide error
code and interface status information to the user.

Chapter

11

Controller Error Codes

Precision MicroControl Corp.

200

Motion Control API Error Codes

Motion Control API defined error messages are listed numerically in the table below. Where possible
corrective action is included in the description column. Please note that many Motion Control API function
descriptions also include information regarding errors that are specific to that function.

Error Constant Description
0 MCERR_NOERROR No error has occurred
1 MCERR_NO_CONTROLLER No controller assigned at this ID. Use MCSETUP to configure a controller.

2 MCERR_OUT_OF_HANDLES

Motion Control API driver out of handles. The driver is limited to 32 open
handles. Applications that do not call MCClose() when they exit may leave
handles unavailable, forcing a reboot.

3 MCERR_OPEN_EXCLUSIVE Cannot open - another application has the controller opened for exclusive use

4 MCERR_MODE_UNAVAIL
Controller already open in different mode. Some controller types can only be
open in one mode (ASCII or binary) at a time

5 MCERR_UNSUPPORTED_MODE Controller doesn't support this mode for MCOpen() - i.e. ASCII or binary
6 MCERR_INIT_DRIVER Couldn't initialize the device driver
7 MCERR_NOT_PRESENT Controller hardware not present

8 MCERR_ALLOC_MEM
Memory allocation error. This is an internal memory allocation problem with the
DLL, contact Technical Support for assistance

9 MCERR_WINDOWSERROR
A windows function returned an error - use GetLastError () under WIN32 for
details

10 reserved
11 MCERR_NOTSUPPORTED Controller doesn't support this feature
12 MCERR_OBSOLETE Function is obsolete
13 MCERR_AXIS_TYPE Axis type doesn't support this feature
14 MCERR_CONTROLLER Invalid controller handle
15 MCERR_WINDOW Invalid window handle
16 MCERR_AXIS_NUMBER Axis number out of range
17 MCERR_ALL_AXES Cannot use MC_ALL_AXES for this function
18 MCERR_RANGE Parameter was out of range
19 MCERR_CONSTANT Constant value inappropriate
20 MCERR_UNKNOWN_REPLY Unexpected or unknown reply
21 MCERR_NO_REPLY Controller failed to reply
22 MCERR_REPLY_SIZE Reply size incorrect
23 MCERR_REPLY_AXIS Wrong axis for reply
24 MCERR_REPLY_COMMAND Reply is for different command
25 MCERR_TIMEOUT Controller failed to respond

26 MCERR_BLOCK_MODE
Block mode error. Caused by calling MCBlockEnd() without first calling
MCBlockBegin() to begin the block

27 MCERR_COMM_PORT Communications port (RS232) driver reported an error

28 MCERR_CANCEL
User canceled action (such as when an MCDLG dialog box is dismissed with
the CANCEL button

29 MCERR_NOT_INITIALIZED Feature was not correctly initialized before being enabled or used

Controller Error Codes

MultiFlex ETH 1000 Series User's Manual

201

MCCL Error Codes

When executing MCCL (Motion Control Command Language) command sequences the command
interpreter will report the following error code when appropriate:

Table 7. MCCL Error Codes

Description Error code
No error 0
Unrecognized command 1
Bad command format 2
I/O error 3
Command string to long 4
Command Parameter Error -1
Command Code Invalid -2
Negative Repeat Count -3
Macro Define Command Not First -4
Macro Number Out of Range -5
Macro Doesn't Exist -6
Command Canceled by User -7
Contour Path Command Not First -8
Contour Path Command Parameter Invalid -9
Contour Path Command Doesn't Specify an AXIS -10
Axis error (over travel error, max. following error exceeded -13
No axis specified -14
Axis not assigned -15
Axis already assigned -16
Axis duplicate assigned -17
Insufficient memory -18
Unrecognized variable name -19
Invalid background task ID -20
Command not supported -21

Many error code reports will not only include the error code but also the offending command. In the
following example the Reset Macro command was issued. This command clears all macro’s from
memory. The next command sequence turns on 3 motors and then calls macro 10. The command MC10
is a valid command but with no macros in memory error code –6 is displayed.

Controller Error Codes

Precision MicroControl Corp.

202

MultiFlex ETH 1000 Series User's Manual

203

Glossary

Accuracy - A measure of the difference between the expected position and actual position of a motion
system.

Actuator - Device that creates mechanical motion by converting energy to mechanical energy.

Axis Phasing - An axis is properly phased when a commanded move in the positive direction causes the
encoder decode circuitry of the controller to increment the reported position of the axis.

Back EMF - The voltage generated when a permanent magnet motor is rotated. This voltage is
proportional to motor speed and is present regardless of whether the motor windings are energized or de-
energized.

Closed Loop - A broadly applied term, relating to any system in which the output is measured and
compared to the input. The output is then adjusted to reach the desired condition. In motion control, the
term typically describes a system utilizing a velocity and/or position transducer to generate correction
signals in relation to desired parameters.

Command Set – Defines the operations that can be executed by the motion controller

Commutation - The action of applying currents or voltages to the proper motor phases in order to produce
optimum motor torque.

Critical Damping - A system is critically damped when the response to a step change in desired velocity
or position is achieved in the minimum possible time with little or no overshoot.

DAC - The digital-to-analog converter (DAC) is the electrical interface between the motion controller and
the motor amplifier. It converts the digital voltage value computed by the motion controller into an analog
voltage. The more DAC bits, the finer the analog voltage resolution. DACs are available in three common
sizes: 8, 12, and 16 bit. The bit count partitions the total peak-to-peak output voltage swing into 256,
4096, or 65536 DAC steps, respectively.

Dead Band - A range of input signals for which there is no system response.

Driver - Electronics that convert step and direction inputs to high power currents and voltages to drive a
step motor. The step motor driver is analogous to the servo motor amplifier.

Glossary

Precision MicroControl Corp.

204

Dual Loop Servo – A servo system that combines a velocity mode amplifier/tachometer with a position
loop controller/encoder. It is recommended that the encoder not be directly coupled to the motor. The
linear scale encoder should be mounted on the external mechanics, as closely coupled as possible to the
‘end effector’

Duty Cycle - For a repetitive cycle, the ratio of on time to total time:

Efficiency - The ratio of power output to power input.

Encoder - A type of feedback device that converts mechanical motion into electrical signals to indicate
actuator position or velocity.

End Effector – The point of focus of a motion system. The tools with which a motion system will work.
Example: The leading edge of the knife is the end effector of a three axis (XYZ) system designed to cut
patterns from vinyl.

Feed Forward - Defines a specific voltage level output from a motion controller, which in turn commands
a velocity mode amplifier to rotate the motor at a specific velocity.

Following Error - The difference between the calculated desired trajectory position and the actual position.

Friction - A resistance to motion caused by contacting surfaces. Friction can be constant with varying
speed (Coulomb friction) or proportional to speed (viscous friction).

Holding Torque - Sometimes called static torque, holding torque specifies the maximum external torque
that can be applied to a stopped, energized motor without causing the rotor to rotate continuously.

Inertia - The measure of an object's resistance to a change in its current velocity. Inertia is a function of
the object's mass and shape.

Kd - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant. The
lower case ‘d’ designates derivative gain.

Ki - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant. The
lower case ‘i’ designates integral gain.

Kp - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant. The
lower case ‘p’ designates proportional gain.

Limits - Motion system sensors (hard limits) or user programmable range (soft limits) that alert the motion
controller that the physical end of travel is being approached and that motion should stop.

MCAPI - The Motion Control Application Programming Interface - this is the programming interface used
by Windows programmers to control PMC's family of motion control cards.

MCCL - Motion Control Command Language - this is the command language used to program PMC's
family of motion control cards.

Glossary

MultiFlex ETH 1000 Series User's Manual

205

Micro-Stepping - Stepper drive systems have a fixed number of electromechanical detents or steps. Micro
stepping is an electronic technique to break each detent or step into smaller parts. This results in higher
positional resolution and smoother operation.

Open Loop – A control system in which the control output is not referenced or scaled to an external
feedback.

Position Error - see following error.

Position Move - Unlike a velocity move, a position move includes a predefined stopping position. The
trajectory generator will determine when to begin deceleration in order to ensure the actual stopping point
is at the desired target position.

PWM - Pulse Width Modulation is a method of controlling the average current in a motor’s phase
windings by varying the duty cycle of transistor switches.

Repeatability - The degree to which the positioning accuracy for a given move performed repetitively can
be duplicated.

Resonance - A condition resulting from energizing a motor at a frequency at or close to the motor's
natural frequency.

Resolution - The smallest positioning increment that can be achieved.

Resolver - A type of feedback device that converts mechanical position into an electrical signal. A
resolver is a variable transformer that divides the impressed AC signal into sine and cosine output
signals. The amplitude of these signals represents the absolute position of the resolver shaft.

Servo - An automatic system in which the output is constantly compared with the input through some form
of feedback. The error (or difference) between the two quantities can be used to bring about the desired
amount of control.

Servo tuning – the process in which the appropriate gain values for the PID filter are determined

Slew - That portion of a move made at constant, non-zero velocity.

Step Response - An instantaneous command to a new position. Typically used for tuning a closed loop
system, ramping (velocity, acceleration, and deceleration) is not applied nor calculated for the move.

Tachometer - A device attached to a moving shaft that generates a voltage signal directly proportional to
rotational speed.

Torque -

Velocity Mode Amplifier – An amplifier that requires a tachometer to provide the feedback used to close
the velocity loop within the amplifier.

Velocity Move - A move where no final stopping position is given to the motion controller. When a start
command is issued the motor will rotate indefinitely until it is commanded to stop.

Precision MicroControl Corp.

206

MultiFlex ETH 1000 Series User's Manual

207

Appendix

Default Axis Configuration Settings

Table 8. Default Axis Configuration Settings

Description Setting
Programmed Velocity 10,000
Programmed Acceleration 10,000
Programmed Deceleration 10,000
Minimum Velocity 1,000
Current Velocity 0
Velocity Gain 0
Acceleration Gain 0
Deceleration Gain 0
Velocity Override 1
Torque Limit 10

Proportional Gain .2
Derivative Gain .1
Integral Gain .01
Integration Limit 50

Maximum Following Error 1024
Motion Limits disabled
Low Limit of Movement 0
High Limit of Movement 0

Servo Loop Rate HS
Stepper Pulse Range HS

Position Count 0
Optimal Count 0
Index Count 0
Auxiliary Status 0
Position 0
Target 0
Optimal Position 0
Breakpoint Position 0
Position Dead band 0

Appendix

Precision MicroControl Corp.

208

User Scale 1
User Zero 0
User Offset 0
User Rate Conversion 1
User Output Constant 1

Sampling Frequency 4 kHz
Slave Ratio 1

MultiFlex ETH 1000 Series User's Manual

209

Index

A

A/D inputs
description ..170
wiring ..63

Acceleration
default units ..86
disable ..42
setting 8, 37, 67, 77, 86

Active level
limit switches ..103

Amplifier
Torque mode ..25
Velocity mode ...25

Amplifier fault
wiring ..55

Analog I/O
configuring ..170
testing ...170

Analog I/O test panels......................................41
Analog input

reporting ...170
Analog inputs

description ..170
signal description..184
specifications ..176

Anplifier Enable
wiring ..52, 54

Application program samples... 8, 32, 33, 34, 35,
37

Application programming
C++...32
Delphi..34
LabVIEW ..35
Visual Basic ..33

Arc motion ..91
Contour buffer...92
enable...94

on the fly changes ..97
Vector acceleration91
Vector deceleration91
Vector velocity ..91

At target
commanding...118
description ..117

Auto Initialize
loading user defined settings130

Auxiliary encoder
stepper ...143
testing...145

Axis settings
saving user defined settings...............122, 129

B

Backlash compensation
description ..123
enable...123

C

C++ programming..32
Capture data

actual position ..150
DAC output...150
following error...150
optimal position ..150

Capture position...140
Closed loop mode

described..20
Closed loop stepper control

described..80
homing..107
wiring ..80

Coarse home sensor
wiring ..60

Coarse Home switch/sensor
voltage range..180

Command format
MCCL..17

Compare output
described ..141
mode,

toggle ..141
mode, one-shot...141
mode, period...141

Connector
mating connector, J864

Contour buffer
description ..92
tell contour count ..92

Cubic spline interpolation.................................97

D

DAC output
plotting ..42

Debug application programs36
Deceleration

default units ..86
disable ..42
setting 8, 37, 67, 77, 86

Default settings ..207
Delphi programming...34
Derivative gain

description ..13
Digital I/O

configuraing as an overtravel limit................14
configuring ..167
description ..165
reconfigure..148, 166
specifications ..176
testing ...167
turn off...168
turn on...168

Digital I/O test panels41
Digital inputs

signal description..183
wiring ..61

Digital outputs
signal description..184
wiring ..62

Direction
configure for Unipolar PWM148
setting ...90

Documentation
MFX-PCI 1000 Series controllers motion

controller ...3
Driver disable

wiring ..53
Driver fault

wiring ..55

E

Encoder
auxiliary ..143
checkout ...65
checkout, stepper...80
description ..14
descritpion ..24
fault...14, 24, 57
reverse phased...83
rollover..127
wiring, differential ...56
wiring, single ended57

Encoder Index
checkout ...105
description ..24

Error codes
MCAPI ..200
MCCL ...201

E-stop
enable...125
examples ..125
hard wired...125

Example
homing routine ...114

F

Fail safe operation
watchdog circuit..163

Fault
encoder ..14, 24, 57

Feed forward....................................71, 120, 162
acceleration..76, 121
calculating ..72, 120
deceleration..76, 121
described..71
setting...72, 120

Firmware
update ..44
Version ...43

Following error
default setting ...66
description ..66
disable ..66
plotting..42

Friction ...76
Frictionless servo

using output deadband.................................76

G

Gearing
enable...100
setting ratio...100
terminate ..100

MultiFlex ETH 1000 Series User's Manual

211

H

Home sensor
checkout ...105
wiring ..60, 105

Home switch/sensor
voltage range..180

Homing an axis
closed loop stepper107
encoder index ...109
home sensor...113
limit sensor ...111, 115
servo...27, 105, 107
stepper..27
stepper, open loop................................27, 112

Host interrupt support
limit switches ..103

I

I/O Configuration Panel....................................14
Integral gain

description ..13
disable while moving156

Interrupt PCI host
limit switches ..103

J

Jogging
description ..101

Joystick controlled motion..............................101

L

LabVIEW programming....................................35
Learning points...133
Limit switch/sensor

voltage range......................................180, 181
Limiting the servo command output154
Limits

active level..103
checkout ...102
disable ..102
enable...102
hard (switch / sensor)102
homing an axis111, 115
inverting active level102, 103
normally closed switch........................102, 103
programmable ..102
TTL vs. opto isolated14
wiring ..58, 59, 102

Linear interpolation...91
Contour buffer...92
enable...93, 133
on the fly changes ..97

specifying ...91
Vector acceleration91
Vector deceleration91
Vector velocity ..91

M

Macro command
as background task137
defining...135
described..135
memory size...136
reporting ...135
single stepping a program..........................152
volatile ..136

Manual positioning...101
Master / Slave

description ..100
enable...100
slave ratio ...100
termination..100

Mating connector
J8..64

MCAPI
Version ...43

MCCL command
move absolute ..7

MCCL commands
single stepping a program..........................152

MCCL mnemonic
MA ..7

MCSpy
debug application programs.........................36

MFX-PCI
documentation..3
resetting..151

MFX-PCI command (MCCL)
format ...17
pausing a command / sequence19
repeating ..18
single stepping ...152
terminating a command / sequence.............19

MFX-PCI1000 command (MCCL)
description ..17

Minimum PC requirements6
Motion complete

at target ..117
description ..117
trajectory complete.....................................117

Motion control
backlash compensation..............................123
Constant velocity move90
Contour move...91
Learning / Teaching points.........................133
Master / Slave ..100
Point to point ..89
required settings...86
theory of operation13, 14

Torque mode ..154
Motion Control

defined..11
Motion Integrator

analog I/O ...170
description ..40
digital I/O ..167
encoder checkout ...65
encoder index checkout..............................105
home sensor checkout105
limit sensor checkout...............................102
troubleshooting ...189

Motor control output
limiting...154

Move
absolute ..7

Moving motors
Motor Mover program.............................77, 85
required settings ...18
Servo motor ..65
Stepper motor...78, 79

Multiple moves sequences
servo tuning ..70

Multi-tasking
commands not supported...........................137
CPU utilization ..138
described ..137
example 7, 137, 138, 139
global data registers138
passing data between.................................138
private data registers138
termination..139
testing ...137

N

Normally closed limit switch102, 103

O

On the fly changes
arc and linear motion97
Constant velocity motion119
Point to point...119
Trapezoidal velocity profile.........................119

Open loop mode
described ..20

Operating systems ...6
Opto isolated inputs

wiring ..58, 59, 60

P

Parabolic velocity profile
description ..88

Pausing
MCCL command / sequence........................19

PC requirements

minimums...6
Phasing

output/encoder ...66
PID digital filter...................See Tuning the servo

algorithm...13
'D’ term ...13
description ..13
'I' term...13
'P' term ...13
restoring settings................................122, 129

Point to point motion
execution ..89

Position
Recording ...150

Position capture
description ..140

Position Capture
signal description181

Position compare
description ..141
fixed increment distances...........................141
user defined positions141

Position Compare
signal description182

Position mode
enable...89

Position verification
open loop stepper21, 79
stepper ...143

Program samples.................8, 32, 33, 34, 35, 37
Proportional gain

description ..13
Pulse command servo

described ..20, 175
PWM command

description ..147
wiring ..49

PWM direction
configure...148

R

Recording position data150
Registry

updating I/O configuring167
Relay

reset..151
Repeating

command or sequence.................................18
Report

axis 'at target' ...118
captured data ...150
current position of axis17, 18, 79
status of axis103, 104
trajectory complete.....................................117

Reset
relay..151
the controller...151

Restore

MultiFlex ETH 1000 Series User's Manual

213

controller settings122, 129
Restoring user defined axis settings122
Reverse phased

encoder...83
Rollover

encoder...127

S

Saving user defined axis settings122, 129
Scaling

defining user units159
S-curve velocity profile

description ..88
Servo - Pulse control

described...20
specifications ..175
wiring ..51

Servo command output
limiting...154

Servo control
description ..13
specifications ..174

Servo motor control
homing..27, 105, 107
tuning the servo ..68

Single stepping a program152
Software

Demo programs......................................37, 38
Flash Wizard...44
Game port joystick..44
Motion Integrator 40, 102, 167, 170, 189
Motor Mover ...77, 85
On-line help ..38
Servo Tuning utility68
source code ..37, 38
Status Panel 45, 66, 103, 117
WinControl43, 152, 201

Specifications
analog command axis.................................174
analog inputs ..176
digital I/O ..176
pulse command axis...................................175
stepper control..175

Status Panel utility............................66, 103, 117
Stepper motor

reverse phased...83
Stepper motor control

changing the direction of motor79
closed loop ...80, 107
encoder position verification...................21, 79
homing..27, 112
open loop..78
specifications ..175

T

Teaching points..133
Terminating

MCCL command / sequence........................19
Testing

analog I/O...170
digital I/O ..167

Torque mode amplifier25
Trajectory complete

description ..117
Trajectory generator

description ..13, 14
Trapezoidal velocity profile

description ..88
Troubleshooting

axis reverse phased22
communications ...191
encoder checkout...65
encoder checkout, stepper...........................80
general ...190
initialization...192
no motion by a servo....................................22
oscillation by a servo....................................22
servo motion.......................................194, 196
servo tuning..193

Troubleshooting application programs
MCSpy..36

TTL inputs
wiring ..61

TTL outputs
wiring ..62

Tuning the servo
description ..22, 68
multiple move sequences.............................70
range of slide controls70
saving settings..69, 76
Servo tuning utility ..68
Velocity mode amplifier71

U

Update
firmware..44

User units
controller time base....................................160
description ..159
machine zero..161
output constant...162
part zero ...161
setting...159
trajectory time...160
user scale ...159, 160

V

Vector acceleration ..91

Vector deceleration ..91
Vector velocity..91
Velocity

default units ..86
disable ..42
restoring settings122, 129
set too high ...66
setting ...8, 37, 77

Velocity gain...162
Velocity mode

enable...90
Velocity mode amplifier25

description ..71, 120
tuning..71

Velocity mode move
execution ..90
setting the direction90
starting..90

Velocity profiles
Contour mode motion91
Parabolic...88
S-curve ...88
Trapezoidal...88

Velocity, maximum
setting ...67, 86

Version
firmware..43
MCAPI ..43

Visual Basic programming33

W

Wait
for 'at target' ..118

for trajectory complete................................117
Watchdog circuit

description ..163
Watchdog relay

wiring ..64
Windows

registry, updating I/O configuring167
Wiring

+/- 10V command output..............................48
A/D inputs...63
Anplifier Enable output52, 54
Anplifier Fault input55
closed loop stepper80
Driver Disable output..............................53, 54
Driver Enable output54
Driver Fault input..55
encoder, differential......................................56
encoder, single ended..................................57
E-stop ...125
home sensor...105
home sensor inputs......................................60
Limit +/- inputs..58, 59
limit sensor ...102
Opto isolated inputs58, 59, 60
Pulse command output51
PWM command output.................................49
servo, analog command.........................48, 51
servo, pulse command51
servo, PWM command.................................49
stepper, pulse command..............................51
TTL digital inputs..61
TTL digital outputs..62
watchdog relay ...64

MultiFlex ETH 1000 Series User's Manual

215

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

	Prologue
	Motion Controller Installation

	Introduction
	Processor
	PC computer minimum requirements
	Programming
	Motion Control API example
	MCCL command example
	Programming Tools
	Software Tools & Utilities
	I/O Configuration Panel

	Motion Control Primer
	Motion Control Architecture
	Motion Controller Functional Block Diagram
	Motion Controller Tasks
	+/- 10 Volt Analog Servo Control
	PID Filter
	Position Feedback via Incremental Encoder
	Pulse (Step/Dir/CW/CCW) Command for Stepper or Pulsed Servo Systems
	Position Feedback via Incremental Encoder
	Axis I/O
	Digital I/O
	High-speed I/O

	The Command Set - the heart of the motion controller
	Executing Operations with MCCL
	Closed loop, open loop, and position verification
	Closed loop control
	Open Loop control
	Open loop with position verification

	Why does a servo need to be tuned?
	Position Feedback - Quadrature Incremental Encoder
	Servo Amplifiers: Current Mode versus Velocity Mode
	Current Mode amplifier (sometimes called Torque Mode)
	Velocity Mode amplifier

	Stepper Motors - Full Step versus Micro Step
	Homing - Why, When, and How
	Homing closed loop systems
	Homing open loop systems

	Software, Programming and Utilities
	Controller Interface Types
	Building Application Programs using Motion Control API
	C/C++ Programming
	Visual Basic Programming
	Delphi Programming
	LabVIEW Programming

	MCSpy - application program diagnostic tool
	PMC Sample Programs
	Motion Control API On-line Help
	Motion Integrator
	Digital and Analog I/O Test Panels
	Tuning servo’s with Motion Integrator

	PMC Utilities
	PMC’s Motion Control Panel
	WinControl – MCCL (Motion Control Command Language) command set interface utility
	Flash Wizard
	Joystick Applet
	Status Panel

	Connecting to the Controller
	+/- 10V Analog Servo Command Connections
	PWM (Pulse Width Modulation) Command Connections
	Unipolar PWM

	Pulse Command Connections
	Amplifier / Driver Enable Connections - Low Active
	Driver Disable Connections - Low Active
	Amplifier / Driver Enable Connections - High Active
	Amplifier / Driver Fault Connections
	Differential Incremental Encoder Connections
	Single Ended Incremental Encoder Connections
	Over-Travel Limit Connections
	Sourcing Sensor
	Sinking Sensor

	Home Sensor Connections
	TTL Digital Input Connections
	TTL Digital Output Connections
	A/D Input Connections wiring example

	Motion Control
	Servo (analog command) Axis Setup
	Verify proper encoder operation
	Define trajectory parameters

	Tuning the Servo
	Saving the Tuning Parameters
	Changing the Scale of the Slide Controls
	Executing cycle operations from the Servo Tuning program.
	Tuning Velocity Mode Amplifier Servo Systems
	Tuning the Servo
	Saving the Tuning Parameters
	Acceleration and Deceleration Feed Forward
	Systems with Electrical or Mechanical Deadband

	Moving Servo Axes with Motor Mover
	Stepper (pulse command) Axis Setup
	Open Loop Pulse Command Motion
	Open Loop Pulse Command Motion with Position Verification Encoder
	Closed Loop Steppers
	Define the motor steps per rotation / encoder counts per rotation ratio
	Set the trajectory parameters
	Tune the axis
	Reverse Phasing of a closed loop stepper
	Closed loop stepper example

	Moving Stepper Axes with Motor Mover
	Defining the Characteristics of a Move
	Velocity Profiles
	Point to Point Motion
	Constant Velocity Motion

	Contour Motion (arcs and lines)
	Define the contour group
	Define the trajectory parameters
	Define the type of contour move
	Loading the Contour Buffer for Continuous Path Contouring
	Multi Axis Linear Interpolated moves
	Arc Motion
	Arc motions by specifying the center point and end point
	Arc motions by specifying the radius and end point
	Arc motions by specifying the center point and ending angle
	Changing the velocity ‘on the fly’
	Cubic Spline Interpolation of linear moves
	User Defined Contour path
	Special case: setting the Maximum Velocity of an Axis

	Electronic Gearing
	Jogging
	Jogging without writing software
	Using the Joystick Demo in your application program

	Defining Motion Limits
	Hard Limits
	Soft Limits

	Homing Axes
	Connecting a Home Sensor
	Verifying the operation of the Index Mark of an Encoder
	Programming Homing Routines
	Homing a Rotary Stage (closed loop servo or closed loop stepper) with the Encoder Index
	Homing a Closed Loop Axis with Coarse Home and Encoder Index Inputs
	Homing a Closed Loop Axis with a Limit sensor
	Homing open loop steppers
	Homing a Open Loop Stepper with a Limit sensor

	Motion Complete Indicators
	On the Fly changes
	Feed Forward (Velocity, Acceleration, Deceleration)
	Acceleration and Deceleration Feed Forward

	Save and Restore Axis Configuration Settings

	Application Solutions
	Backlash Compensation
	Emergency Stop
	E-stop switch connected to Amplifier Fault servo module input

	Encoder Rollover
	Flash Memory Firmware Update
	Saving and Restoring Axis Configuration Settings
	Saving and restoring configuration settings using PMC application programs
	Saving and restoring configuration settings using the MCDLG functions
	Saving and restoring configuration settings via individual function or MCCL calls

	Learning/Teaching Points
	Building MCCL Macro Sequences
	MCCL Multi-Tasking
	Position Capture
	Position Compare
	Compare predefined positions
	Compare at incremental distances
	Compare frequency and output latency
	Compare output signal configuration

	Position Verification of an Open Loop Pulse Axis
	Homing the auxiliary encoder of an open loop stepper
	Verifying the Operation of the encoder of an open loop stepper

	PWM Servo Command
	Configuring PWM operation

	Record Motion Data
	Resetting the Controller
	Single Stepping MCCL Programs
	Torque Mode Output Control
	Analog Command output channels as simple D/A output with encoder reader

	Turning off Integral gain during a move
	Defining User Units
	MCScale Data Structure
	Setting Move (Encoder/Step) Units
	Trajectory Time Base
	Defining the Time Base for Wait commands
	Defining a System/Machine zero
	Defining a Part Zero
	Defining the output constant for velocity gain

	 Watchdog Circuit

	General Purpose I/O
	Digital I/O
	I/O Configuration Panel

	Configuring and Exercising the Digital I/O
	Using the Digital I/O
	Enable Digital IO
	Get Digital IO
	Wait for Digital IO

	A/D Inputs
	Using the A/D inputs
	Get Analog

	Specifications
	Motion Control Board
	Analog Command Axis Specifications
	Pulse Command Axis Specifications

	I/O Signal Descriptions & Schematics
	Signal Descriptions
	Motor Command Signals
	+/- 10 Analog Command Outputs
	Pulse and Direction Command Outputs

	Encoder Feedback Signals
	Encoder Inputs (Phase A+, Phase A-, Phase B+, Phase B-, Z+, Z-)
	Encoder - Reference Output

	Default Axis Inputs
	Amp. / Drive Fault Input
	Coarse Home / Stepper Home Input
	Limit Positive Input
	Limit Negative Input
	Position Capture (Latch) Input

	Default Axis Outputs
	Drive Disable
	Amplifier / Driver Enable
	Position Compare Output
	Full/Half Current & Unipolar Direction Output

	Default Configuration of General Purpose I/O
	TTL Digital Inputs
	TTL Digital Outputs
	Analog Inputs (optional)

	Circuit Schematics

	Troubleshooting
	Controller Error Codes
	Motion Control API Error Codes
	MCCL Error Codes

	Glossary
	Appendix
	Default Axis Configuration Settings

	Index

