

DCX-PCI100
Modular Multi-Axis Motion Control System

User’s Manual
Revision 1.0c

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed to be
free from defects in material and workmanship, for a period of five years from the date of shipment.
Liability is limited to FOB Factory repair, or replacement, of the product. Other products supplied as
part of the system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use or
installation or consequential damage.

(c)Copyright Precision Micro Control Corporation, 1994-2004. All rights reserved.

Information in this document is subject to change without notice.

IBM and IBM-AT are registered trademarks of International Business Machines Corporation.
Intel and is a registered trademark of Intel Corporation.
Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.
Acrobat and Acrobat Reader are registered trademarks of Adobe Corporation.

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101
Fax: (760)930-0222
World Wide Web: www.pmccorp.com
Email:
 Information: info@pmccorp.com
 Technical support: support@pmccorp.com
 Sales: sales@pmccorp.com
Precision MicroControl

Table of Contents

D

I

S

D

P

C

D

M

A

 Table of Contents
CX-PCI100 User’s Manual i

ntroduction.. 9
The Modular DCX System... 11

oftware and Controller Installation .. 15
DCX-PCI100 Motion Control System Installation .. 15
Installing the DCX Software (MCAPI).. 16
Installing the DCX-PCI100 Motion Control Motherboard... 19
Plug & Play (Windows XP/2000/Me/98) Installation.. 20
Verify Communication with the PC .. 22
Windows NT Installation .. 24

CX Module Installation.. 29
Installing DCX Motor Control and I/O Modules.. 29
DCX-MC100 – Servo Motor Module Installation.. 31
DCX-MC110 – Servo Motor Module Installation.. 35
DCX-MC400 – Digital I/O Expansion Module Installation ... 39
DCX-MC500 – Analog I/O Expansion Module Installation .. 40

rogramming, Software and Utilities... 43
Controller Interface Types ... 44
Building Application Programs using Motion Control API.. 45
PMC Sample Programs... 50
Motion Integrator.. 51
PMC Utilities .. 54
MCAPI On-line Help .. 56

ommunication Interfaces... 59
High Speed Binary interface.. 59
ASCII MCCL Interface ... 59

CX Operation Basics .. 63
Introduction .. 63
Low Level DCX Operations ... 64
otion Control ... 69
Theory of DCX Motion Control .. 69
DCX Servo Basics ... 70
Tuning the Servo ... 74
Moving Motors with Motor Mover .. 83
Defining the Characteristics of a Move.. 84
Velocity Profile ... 85
Point to Point Motion.. 86
Constant Velocity Motion... 86
Jogging .. 87
Defining Motion Limits ... 88
Homing Axes ... 91
Motion Complete Indicators ... 96
On the Fly changes.. 97
Save and Restore Axis Configuration.. 98

pplication Solutions ... 101
Converting from an ISA bus DCX-PC100 motion controller.. 101
Emergency Stop .. 103
Encoder Rollover ... 105
Flash Memory Firmware Upgrade ... 106
Learning/Teaching Points .. 107
Record Motion Data... 108
Resetting the DCX... 109
Single Stepping MCCL Programs.. 110
Defining User Units.. 111
DCX Watchdog .. 114

Table of Contents

Precision MicroControl

ii

General Purpose I/O ... 117
DCX Motherboard Digital I/O... 117
Configuring the DCX Digital I/O... 118
Using the DCX Digital I/O .. 120
DCX Module Analog I/O .. 122
Using the Analog I/O.. 123
Calibrating the MC500/MC520 +/- 10V Analog Outputs: .. 125

Motion Control API Introduction .. 129
Function Listing Introduction.. 129
Motion Control API Function Quick Reference Tables.. 133

Data Structures ... 139
MCAXISCONFIG ... 139
MCCOMMUTATION.. 142
MCCONTOUR ... 142
MCFILTEREX .. 143
MCJOG.. 145
MCMOTIONEX .. 146
MCPARAMEX.. 148
MCSCALE ... 151

MCAPI Parameter Setup Functions .. 155
MCConfigureCompare... 155
MCSetAcceleration .. 157
MCSetAuxEncPos ... 158
MCSetCommutation .. 159
MCSetContourConfig... 160
MCSetDeceleration.. 161
MCSetDigitalFilter.. 162
MCSetFilterConfigEx ... 163
MCSetGain .. 164
MCSetJogConfig.. 165
MCSetLimits .. 166
MCSetModuleInputMode... 167
MCSetModuleOutputMode .. 169
MCSetMotionConfigEx .. 170
MCSetOperatingMode... 171
MCSetPosition ... 172
MCSetRegister .. 173
MCSetScale... 175
MCSetServoOutputPhase ... 176
MCSetTorque .. 177
MCSetVectorVelocity... 178
MCSetVelocity ... 179

MCAPI Motion Functions... 183
MCAbort... 183
MCArcCenter ... 184
MCArcEndAngle .. 185
MCArcRadius... 187
MCCaptureData... 187
MCContourDistance .. 189
MCDirection ... 190
MCEdgeArm .. 191
MCEnableAxis ... 192
MCEnableBacklash ... 193
MCEnableCapture ... 195
MCEnableCompare ... 196
MCEnableDigitalFilter .. 197
MCEnableGearing ... 198
MCEnableJog .. 199

Table of Contents

DCX-PCI100 User’s Manual

iii

MCEnableSync .. 200
MCFindAuxEncIdx ... 201
MCFindEdge.. 202
MCFindIndex ... 204
MCGoEx .. 205
MCGoHome... 206
MCIndexArm.. 207
MCLearnPoint.. 208
MCMoveAbsolute .. 210
MCMoveRelative ... 211
MCMoveToPoint .. 212
MCReset .. 212
MCStop.. 214
MCWait .. 215
MCWaitForEdge .. 216
MCWaitForIndex.. 217
MCWaitForPosition.. 218
MCWaitForRelative.. 219
MCWaitForStop ... 220
MCWaitForTarget .. 222

MCAPI Reporting Functions.. 225
MCDecodeStatus... 225
MCErrorNotify .. 226
MCGetAccelerationEx ... 228
MCGetAuxEncIdxEx .. 229
MCGetAuxEncPosEx... 230
MCGetAxisConfiguration ... 231
MCGetBreakpointEx .. 232
MCGetCaptureData ... 233
MCGetContourConfig .. 234
MCGetContouringCount .. 235
MCGetCount.. 236
MCGetDecelerationEx... 238
MCGetDigitalFilter ... 239
MCGetError ... 240
MCGetFilterConfigEx... 241
MCGetFollowingError .. 242
MCGetGain.. 243
MCGetIndexEx .. 244
MCGetInstalledModules .. 246
MCGetJogConfig ... 247
MCGetLimits .. 248
MCGetModuleInputMode... 249
MCGetMotionConfigEx .. 250
MCGetOperatingMode... 252
MCGetOptimalEx... 253
MCGetPositionEx .. 254
MCGetProfile ... 255
MCGetRegister .. 256
MCGetScale .. 258
MCGetServoOutputPhase... 259
MCGetStatus ... 260
MCGetTargetEx... 261
MCGetTorque .. 262
MCGetVectorVelocity .. 264
MCGetVelocityEx... 265
MCIsAtTarget... 266
MCIsDigitalFilter .. 267

Table of Contents

Precision MicroControl

iv

MCIsEdgeFound.. 268
MCIsIndexFound ... 269
MCIsStopped ... 270
MCTranslateErrorEx .. 271

MCAPI I/O Functions... 275
MCConfigureDigitalIO.. 275
MCEnableDigitalIO .. 277
MCGetAnalog .. 278
MCGetDigitalIO.. 279
MCGetDigitalIOConfig ... 280
MCSetAnalog... 282
MCWaitForDigitalIO... 283

Macros and Multi-tasking Functions.. 287
MCCancelTask .. 287
MCMacroCall ... 288
MCRepeat.. 289

MCAPI Driver Functions.. 293
MCBlockBegin ... 293
MCBlockEnd .. 295
MCClose .. 296
MCGetConfigurationEx.. 297
MCGetVersion ... 298
MCOpen... 299
MCReopen... 301
MCSetTimeoutEx... 302

MCAPI OEM Low Level Functions.. 305
pmccmd ... 305
pmccmdex ... 306
pmcgetc ... 307
pmcgetram... 308
pmcgets ... 310
pmcputc ... 311
pmcputram... 312
pmcputs ... 313
pmcrdy ... 314
pmcrpy ... 314
pmcrpyex ... 315

MCAPI Common Motion Dialog Functions.. 319
MCDLG_AboutBox .. 319
MCDLG_CommandFileExt .. 320
MCDLG_ConfigureAxis ... 321
MCDLG_ControllerDescEx.. 323
MCDLG_ControllerInfo .. 324
MCDLG_DownloadFile .. 325
MCDLG_Initialize... 326
MCDLG_ListControllers... 327
MCDLG_ModuleDescEx.. 327
MCDLG_RestoreAxis .. 328
MCDLG_RestoreDigitalIO ... 330
MCDLG_SaveAxis... 331
MCDLG_SaveDigitalIO.. 333
MCDLG_Scaling .. 334
MCDLG_SelectController .. 335

MCAPI Controller Error Codes.. 339
MCAPI Constants.. 343
MCAPI Status Word Constants Lookup Table .. 353
Motion Dialog Windows Classes... 357

MCDLG_LEDCLASS... 357

Table of Contents

DCX-PCI100 User’s Manual

v

MCDLG_READOUTCLASS .. 358
DCX Specifications.. 361

Motherboard: DCX-PCI100.. 361
DCX-MC100 - +/- 10 Volt Analog Servo Motor Control Module .. 362
DCX-MC110 – Direct Drive Servo Control Module ... 363
DCX-MC400 - 16 channel Digital I/O Module.. 364
DCX-MC5X0 - Analog I/O Module... 364

Connectors, Jumpers, and Schematics .. 367
DCX-PCI100 Motion Control Motherboard.. 367
DCX-MC100 +/- 10V Servo Motor Control Module ... 370
DCX-MC110 Motor Drive Servo Control Module... 374
DCX-MC400 Digital I/O Module... 378
DCX-MC500/510/520 Analog I/O Module ... 380
DCX-BF022 Relay Rack Interface... 382
DCX-BF100 Servo Module Interconnect Board .. 386

Command Set Introduction.. 393
Introduction to MCCL (low level command set)... 393
MCCL Command Quick Reference Tables ... 395
Building MCCL Macro Sequences... 397
MCCL Multi-Tasking .. 399
Downloading MCCL Text Files .. 402
Outputting Formatted Message Strings... 403
Reading Data from DCX Memory.. 404
DCX User Registers .. 406

MCCL Setup Commands .. 409
MCCL Mode Commands... 417
MCCL Motion Commands... 419
MCCL Reporting Commands .. 425
MCCL I/O Commands ... 435
MCCL Macro and Multi-tasking Commands ... 441
MCCL Register Commands .. 445
MCCL Sequence (If/Then) Commands... 453
Miscellaneous Commands .. 461
MCCL Error Codes.. 465

MCCL Error Codes .. 466
Printing a PDF Document.. 469
Glossary .. 471
Appendix.. 477

Power Supply Requirements ... 477
Default Settings ... 478
Troubleshooting Controller Operations.. 479

Index.. 487

Table of Contents

vi

User manual revision history
Revision Date Description

1.0Pre 10/8/2001 Preliminary release
 1/18/2002 Added Amplifier Fault axis shut down options

1.0 5/8/2002 Release 1.0
1.0b 8/16/2002 Fixed DCX-MC110 J3 connector pin #2 description

 Edited DCX-MC110 jumper descriptions
 Edited DCX-MC110 graphics (pages 376 & 377)
 Edited DCX-MC100 graphic (page 373)
 Fixed DCX-MC400 connector pinout (all channels labeled as #1)
 Updated ribbon cable connector manufacturer part number

1.0c 12/16/2003 Updated installation instructions for MCAPI 3.4.1 or later
 12/17/2003 Added Troubleshooting flowcharts to the Appendix
 12/19/2003 Edited 'Setting Following Error' description (disabled by default)

Contact us at:

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101
Fax: (760)930-0222
World Wide Web: www.pmccorp.com
Email:
 Information: info@pmccorp.com
 Technical support: support@pmccorp.com
 Sales: sales@pmccorp.com

Precision MicroControl

Table of Contents

DCX-PCI100 User’s Manual

vii

Table of Contents

Precision MicroControl

viii

DCX-PCI100 User’s Manual

9

Introduction

Motion controller - a device that uses a digital processor to coordinate the movement of
mechanical systems.

The DCX-PCI100 is an Intel compatible PC computer based servo motor and I/O controller.

3

QED

#1#3#5#7

#8 #6 #4 #2

D
C

X-M
C

110

D
C

X-M
C

100
D

C
X-M

C
100

D
C

X-M
C

110
D

C
X-M

C
100

Figure 1: A DCX-PCI100 Motion Controller configured for 5 axes of servo motor control

In Windows 2000/Me/98 systems the DCX-PCI 100 is a true PCI ‘plug and play’ card. When the PC is
turned on, the DCX-PCI100 is dynamically addressed into the memory map of the PC. The PC
communicates with the motion controller via dual ported memory on the DCX-PCI100. The PC can
issue commands (move a motor, change the velocity, etc.) to the controller, and retrieve data from the
controller (report to position of an axis, report the state of a digital input, etc.) without interrupting the
basic operations of the controller.

But a hardware based motion control card provides only one half of the overall motion control solution.
State of the art motion control systems typically require sophisticated multi-threaded application
programs and eye catching operator interfaces. PMC’s Motion Control Application Programming

Chapter

1

Introduction

Precision MicroControl

10

Interface (MCAPI) provides the machine designer with device drivers and a powerful function library
for Windows 2000/NT/Me/98 based applications.

Figure 2: PMC's Windows Motion Control Panel

MCEnableAxis(HCTRLR hCtlr, Word xAxis, short int bState);
MCMoveRelative(HCTRLR hCtlr, Word xAxis, double Distance);
MCIsStopped(HCTRLR hCtlr, Word xAxis, double Timeout);

Figure 3: Function Library examples

The MCAPI supports today’s popular programming environments including:

• C/C++
• Visual Basic
• Delphi
• LabVIEW

The DCX-PCI100 Motion Controller can be installed in most any Windows PC computer. It executes
motion functions independent of the host, so other than the minimum requirements for the selected
operating environment (2000/NT/ME/98), the DCX-PCI100 does not require or use any additional
PC resources (CPU speed, PC memory, hard disk space, etc...).

All documentation, tutorials, and software (drivers, function library, diagnostics and utilities) are
available on PMC’s MotionCD.

DCX Motion
Control System

PC computer

PMC
Motion CD
Volume 2.0

Documentation
Applications
Drivers

PMC's Motion CD
 Device drivers
 Integration software tools
 Sample programs
 User manuals
 Powerpoint tutorials

Introduction

DCX-PCI100 User’s Manual

11

The Modular DCX System
The modular architecture of the DCX system allows the user to ‘mix and match’ DCX components to
meet the specific requirements of each application. The DCX system controls the motion of as
many as eight servo motors simultaneously. In addition the DCX modular system supports
expandable digital I/O and analog I/O.

The term DCX refers to a system consisting of from 1 to 9 circuit boards assembled together to form a
motion control assembly. The platform of a DCX system is the DCX-PCI100 "motherboard". It is a ‘full’
size (approximately 4" x 12.25") PCI peripheral card. It communicates with the PC host via the PCI
bus. On board dual ported memory is used to pass motion commands and report data between the
DCX controller and the PC. The on board CPU (192MHz MIPS) allows the DCX to operate
autonomously from the PC, freeing the host to process critical events while the DCX handles all
motion control. But please note - the DCX-PCI100 motherboard is the processing / communication /
synchronizing engine of the DCX system, but on its own it provides no actual motion control.

3

QED

#1#3#5#7

#8 #6 #4 #2

Figure 4: The DCX-PCI100 Motion Control Motherboard

To complete the DCX Modular Motion Control System, on to the DCX-PCI100 motherboard the user
installs as many as eight, 2 inch square "daughter boards" known as "DCX modules" . DCX motion
control modules provide:

• The motion control command output (DCX-MC100 = +/- 10V for servo amplifier,
DCX-MC110 = 0.5A direct motor drive)

• PID filter (servo modules only)
• Trajectory Generator providing Trapezoidal Velocity Profiles (common accel / decel)
• Monitoring of TTL level axis I/O (+/- Limits, Home, Amp/Driver enable)
• Encoder interface and decode

The DCX-PCI100 motherboard currently supports four DCX modules, two for motion control and two
for general purpose I/O. A key feature of the DCX system is its ability to sense which DCX modules
are present. This results in easy system configuration; simply install whatever modules the application
calls for. The logic on the motherboard will adjust its' operation accordingly.

Introduction

12

DCX Motion Control Modules

MC400

D
C

X-M
C

500

DCX-MC100 Servo Motor Control Module (to be used in conjunction with an external
servo amplifier

Supported motor type: DC Brushless, Brush, Hydraulic Servo Valves, Pneumatic Servo Valves

Command output: +/- 10 volt, 12 bit analog for use with servo amplifier

I/O
Inputs, TTL (0 - +5V, low active), Encoder Coarse Home, Limit +, Limit -, and Amplifier Fault
Output TTL (0 - +5V, low active, 10ma max.) – Amplifier Inhibit
Feedback: Quadrature Incremental Encoder , 750 KHz maximum frequency,
 Differential (A+, A-, B+, B-, Z-) or Single ended (A, B, Z-)
DCX-MC110 Servo Motor Control Module (for direct drive of small brush motors)

Supported motor type: Small DC Brush

Command output: +/- 12 volt, 8 bit, 0.5A max.

I/O
Inputs, TTL (0 - +5V, low active), Encoder Coarse Home, Limit +, Limit -, and Amplifier Fault
Output TTL (0 - +5V, low active, 10ma max.) – Amplifier Inhibit
Feedback: Quadrature Incremental Encoder, 750 KHz maximum frequency,
 Differential (A+, A-, B+, B-, Z-) or Single ended (A, B, Z-)

Precision MicroControl

DCX General Purpose I/O Modules

DCX-MC500 – 4 Channel Analog I/O Expansion module

Inputs – 4 channels, 0 – 5 volts, 12 bit
Outputs – 4 channels, 0 – 5 volts and/or –10 - +10 volts, 12 bit

Ordering Options:
 MC510 – 4 input channels only
 MC520 – 4 output channels only

DCX-MC400 - 16 Channel Digital I/O Expansion module

Each channel is individually programmable as either an input or output
TTL level (0 – 5 volt, 2 ma sink/source)

Introduction

DCX-PCI100 User’s Manual

13

DCX Motion Control Breakout Assemblies

DCX-BF100

DCX Motion Control Accessories

DCX-BF100 – Opto isolation and Interconnect assembly for DCX Servo Motor
Control Modules (DCX-MC100, DCX-MC110)

Opto isolated inputs – Enc. Coarse Home, Limit +, Limit -, Amp Fault
Open collector output – Amplifier Enable
Differential receiver for Index +, Index –
External system connections via DB25 or two 14 contact screw terminal strip

LED indicators for:
 Amplifier enable
 Encoder Coarse Home
 Limit +
 Limit –
 Amplifier Fault

Disk Drive Power Splitter Cable (P/N 71.060.A) – Connects PC
computer +12 volts to the DCX-PCI100 motion controller

Controller and Software Installation

Precision MicroControl

14

Chapter Contents

• DCX Motion Control System Installation

• Installing the DCX Software (MCAPI)

• Installing the DCX-PCI100 Motion Control Motherboard

• Plug & Play (Windows XP/2000/Me/98) Installation

• Verifying communication with the PC

• Windows NT Installation

DCX-PCI100 User’s Manual

15

Software and Controller Installation

The DCX-PCI100 is installed in a PCI slot of a PC computer or the passive back plane of an industrial
computer. Power (+5V, +12V, and –12V), Ground reference, and communication (Address, Data, and
Read/Write control signals) are supplied via the PCI edge connector. The DCX-PCI100 motion
controller supports Windows 2000/NT/ME/98 operating systems, the DCX-PCI100 does not support
Windows 95 or 3.X. .

DCX-PCI100 Motion Control System Installation
The basic steps for a new installation of the DCX-PCI100 motion controller for Windows 'Plug & Play'
based applications are as follows:

!

The Microsoft convention for 'plug & play' devices is that the drivers
must be installed before the hardware. For 'plug & play' operating
systems (XP/2000/98) you must install MCAPI (3.4.1 or higher) before
installing the DCX-PCI100 controller and 'booting' the computer.

• Turn on the computer and allow Windows to load completely
• Install PMC’s motion control software (MCAPI 3.4.1 or higher) from the MotionCD or from

PMC’s web site www.pmccorp.com
• Exit from Windows and then turn off the computer
• With the computer power turned off, install the DCX-PCI100 motion control motherboard into

an available PCI slot in the computer motherboard
• Turn on the computer, during the loading of Windows (except for NT4) the operating system

should recognize that a new PCI card has been installed and the appropriate drivers will be
selected

• The motion controller is now ready for testing

Chapter

2

Controller and Software Installation

Precision MicroControl

16

Installing the DCX Software (MCAPI)

i

DCX controllers ship with PMC’s MotionCD, which includes the Motion
Control API software. For the most recent version of the MCAPI please
check the support page of PMC’s website www.pmccorp.com

Downloading the Most Recent release of the Motion Control API from PMC’s web site
Due to the dated nature of a CD, it is recommended that the user check PMC’s web
(www.pmccorp.com) site for the most recent release of the MCAPI. Go to the support page and
select the link to the Motion Control API page.

Selecting the Motion Control API will begin the file download of this self extracting zip file. As shown in
the following graphic, it is recommended that the file be saved to disk.

The installation of the MCAPI will begin upon launching the downloaded file. Follow the on screen
instructions.

Installation from PMC’s Motion CD
To install the Motion Control API software which includes: device drivers, function library, controller
setup utilities, communication utilities, and program samples, place the PMC Motion CD into the PC
computer CD drive. If the Motion CD does not auto start, browse the CD and select the file
STARTUP.EXE.

Controller and Software Installation

DCX-PCI100 User’s Manual

17

i

Due to Windows Plug and Play issues, the MCAPI should not be
installed ‘on top of’ previous installations. Please refer to Removing the
Motion Control API later in this chapter.

The following windows should be displayed:

Step #1 - Select “Software and Manuals” Step #2 - Select “PCI Bus Controllers”

Step 3) Select “DCX-PCI100 Controller” Step #4) Choose Motion Control API

Step 5) Install Motion Control API Step #6) Follow the on screen instructions

Controller and Software Installation

Precision MicroControl

18

Motion Control API Components
Upon successful installation of PMC’s Motion Control API, the Motion Control Panel will be available
from the Windows Control Panel and the following components will be available from the Windows
Start menu (Start\Programs\Motion Control\Motion Control API). For additional information on
individual MCAPI components please refer to the Software and Utilities section in the
Programming, Software, and Utilities chapter of this manual.

Figure 5: MCAPI components

Removing the Motion Control API
To remove the MCAPI , launch the Add/Remove Programs applet in the Windows Control Panel. After
the Uninstall Shield has removed the MCAPI you will need to restart the computer to remove active
.dll’s.

Figure 6: Windows Add/Remove programs

Controller and Software Installation

DCX-PCI100 User’s Manual

19

Installing the DCX-PCI100 Motion Control Motherboard
The DCX-PCI100 is ‘Plug and Play’ (Windows 2000/98/Me) compatible, there are no jumpers or
switches to be configured. The DCX can be installed in any of the PC’s available PCI slots. The DCX
modules and cabling may interfere with a card installed in the slot next to the DCX, so it is
recommended that the slot next to the DCX be left open. Make sure to attach the bracket of the DCX
to the back panel of the PC.

i

Make sure that the PC computer power is turned off before installing the
DCX-PCI100 motion controller.

For new installations, to verify communication between the PC, MCAPI, and the DCX it is
recommended that the DCX-PCI100 motherboard first be installed without any DCX modules.

DCX Motion
Control System

PC computer

Controller and Software Installation

Precision MicroControl

20

Plug & Play (Windows XP/2000/Me/98) Installation

i

The following section describes the basic steps for installing the DCX-
PCI100 motion controller into plug and play PC computers. For step by
step installation procedures please refer to the MCAPI read me file
 :\MotionCD\Windows\MCAPI\Current\Readme.txt

After installing the Windows driver (MCAPI 3.4.1 or higher), the DCX-PCI100 motion controller, and
turning on the PC power the 'plug & play' operating system will detect a new PCI device.

i

Windows XP - The Found New Hardware Wizard will be launched
(indicating that a new PCI device was detected). Proceed with the
installation process by selecting:

 Install the software automatically

If a windows list box of motion controllers / device drivers is displayed
select the PMC DCX-PCI100 Motion Controller.

Note: Due to the considerable cost and maintenance overhead of
Microsoft device driver qualification the PMC motion controller device
drivers are not digitally signed.

i

Windows 2000 - Upon detecting a new PCI device Windows 2000 will
automatically select the appropriate DCX-PCI100 device driver. If the
Found New Hardware Wizard is launched then the 'plug & play'
installation has failed and you should contact PMC technical support.

i

Windows 98 - Upon detecting a new PCI device Windows 98 will
automatically select the appropriate DCX-PCI100 device driver. Note -
Windows 98 does not handle 'plug & play installations as cleanly as XP
& 2000. During the loading of the operating system a dialog may be
displayed indicating the path to the MFX-PCI 1000 Series controllers
device driver. Selecting OK will allow the 'plug & play' installation to be
completed.

Controller and Software Installation

DCX-PCI100 User’s Manual

21

When the operating system has completed loading, launch the Windows Device Manager. Select
Hardware and then Motion Control. The Device Manager should list the DCX-PCI100 Motion
Controller as an installed device.

Figure 7: Use the Windows Device Manger to verify 'plug & play' installation

Controller and Software Installation

Precision MicroControl

22

Verify Communication with the PC
The final step of a DCX-PCI100 instillation is to verify communication between the PC and the motion
controller. This can be accomplished via either:

 The Motion Control Panel applet
 Win Control Terminal Emulator

Motion Control Panel applet
From the Motion Control panel (Start\Settings\Control Panel\Motion Control) you can view the
installed versions of the Motion Control API and the on-board firmware of the DCX-PCI100 controller.
To report the software and firmware versions select Properties and then Info. The MCAPI will query
the DCX controller for its firmware version. If the Motion Control Panel is unable to acquire this
information the version will be reported as unknown.

Figure 8: Checking firmware and MCAPI version

Win Control Terminal Emulator
From the Windows Start Menu select:

 \Programs\Motion Control\Motion Control API\Win Control

If WinControl program opens and reports the firmware version of the MFX-PCI the controller and
MCAPI software have been properly installed and basic communication has been verified.

Controller and Software Installation

DCX-PCI100 User’s Manual

23

Figure 9: Use WinControl to verify controller communication

If an error message is displayed the PC / MCAPI / DCX-PCI100 are not communicating properly and
an error message will be returned and you should contact PMC Technical Support..

Figure 10: Failed communication error message

Controller and Software Installation

Precision MicroControl

24

Windows NT Installation
There are no jumpers or switches to be configured prior to installing the DCX-PCI100 in a Windows
NT PC. The DCX can be installed in any of the PC’s available PCI slots. The DCX modules and
cabling may interfere with a card installed in the slot next to the DCX, so it is recommended that the
slot next to the DCX be left open . Make sure to attach the bracket of the DCX to the back panel of the
PC.

i

Make sure that the PC computer power is turned off before installing the
DCX-PCI100 motion controller.

For new installations, to verify communication between the PC, MCAPI, and the DCX it is
recommended that the DCX-PCI100 motherboard first be installed without any DCX modules. After
installing the DCX-PCI100, turn on the PC and log on to the Windows NT system as the system
administrator.

!

To install PMC’s motion control software, the MCAPI, the user must be
logged on as the system administrator.

For assistance with installing the MCAPI please refer to the section titled Installing the DCX
Software (MCAPI) on page 16.

Windows NT is not a ‘plug & play’ operating system. the user must configure the MCAPI device
driver for the type and quantity of DCX-PCI100 controllers installed in the computer. The next few
pages describe the steps required to configure the MCAPI.

Launch PMC’s New Controller Wizard by selecting the Motion Control icon from the Windows
Control Panel or from the Windows Start menu (Motion Control\Motion Control API\MCAPI Setup).

Figure 11:For NT systems launch Motion Control from the Windows Control Panel

Controller and Software Installation

DCX-PCI100 User’s Manual

25

Do not attempt to setup the Motion Control API without a DCX-PCI100
motion controller installed in the PC. The last step of the New Controller
Wizard verifies communication between the DCX controller and the PC.

Figure 12:PMC's New Controller Wizard
Controller ID
Each PMC motion controller installed in your PC requires an individual Controller ID number. The
MCAPI supports controller ID’s between 0 and 15, supporting applications with as many as 16 DCX
controllers in a single computer. Typically the Controller ID is set to zero (ID=0). If more than one DCX
controller is to be installed usually the DCX-PCI100 upon which the primary axes reside is set to ID0.

Figure 13: Setting the Controller ID

Controller Type
The MCAPI supports mixing and matching various PMC controllers (DCX-PCI100, DCX-PC100, and
DC2-PC) within a single PC. A list of PMC controllers that are supported by the MCAPI will be
displayed. Select the DCX-PCI100.

Controller and Software Installation

Precision MicroControl

26

Figure 14: Select Controller Type - DCX-PCI100

Description
Allows the user to enter comments about the controller. An example of a completed General setup of
a DCX-PCI100 follows:

Communications Interface
A list of supported controller interfaces will be displayed. Select the PC-Bus.

Figure 15: Selecting the communication Interface

Testing the Installation
To verify the DCX / MCAPI installation open the WinControl32 utility (Start\Programs\Motion
Control\Motion Control API\Win Control). If WinControl opens and reports the firmware version of the

Controller and Software Installation

DCX-PCI100 User’s Manual

27

DCX the system is operating properly. If the PC / MCAPI / DCX are not communicating properly an
error message will be returned.

Figure 16: Use WinControl to verify controller / MCAPI / computer communication

Figure 17: Controller communication failed error message

If WinControl fails contact PMC Technical Support.

DCX Module Installation

Precision MicroControl

28

Chapter Contents

• Installing DCX Motor Control and I/O Modules

• DCX-MC100 – Servo Motor (+/- 10V output) Module Installation

• DCX-MC110 – Servo Motor (0.5A direct motor drive) for Module Installation

• DCX-MC400 – Digital I/O Expansion Module Installation

• DCX-MC500 – Analog I/O Expansion Module Installation

DCX-PCI100 User’s Manual

29

DCX Module Installation

Installing DCX Motor Control and I/O Modules
DCX Modules can be placed in any open module position on the DCX motherboard. If there are fewer
than eight modules to be installed on the DCX, spread them out as much as possible. This will allow
easier installation and removal of the modules as well as mating cables.

If there are to be motor control modules installed on the DCX, and you want them to be numbered in a
specific order, install them in module positions on the DCX in that order. For example, the module that
is to control motor number 1 could be installed in module position number 1 (refer to the module
numbers on the DCX circuit board). The module controlling motor number 2 could be installed in
position number 2, and so on. Alternatively, the second module could be installed in any other module
position and it will still be assigned number 2 since it is the second motor module on the DCX.

3

QED

#1#3#5#7

#8 #6 #4 #2

Chapter

3

DCX Module Installation

Precision MicroControl

30

To install the modules, lay the DCX-PCI100 motherboard on a flat surface, component side up. Place
each DCX module in the desired position, aligning the connectors and mounting holes with their
respective mates on the DCX motherboard. When you are satisfied that the module is properly
aligned, carefully press the module into the DCX. The header pins of the module should seat
completely into the mating connectors on the DCX motherboard. Two nylon mounting screws are
supplied with each DCX module. These should be installed from the backside of the motherboard, into
the standoffs on the modules. Repeat this process for installing modules on the DCX until all modules
are in place.

Next the DCX should be re-installed in the PC chassis and interfacing cables connected. Refer to the
following sections in this chapter for specific jumper and wiring information for the types of modules
that are being used. When cabling has been completed, power can be applied to the system and
initial checkout can begin.

i

Please note that all DCX modules contain a 26 pin, shrouded, center
polarized header for I/O connections. The pins of this connector are
numbered from 1 to 26. The following diagram shows the location of pins
1, 2, 25 and 26. The other 22 pins are numbered and located
respectively.

1
2

25
26

DCX MODULE CONNECTOR PIN NUMBERING
(TOP SIDE VIEW)

D
C

X-M
C

110

DCX Module Installation

DCX-PCI100 User’s Manual

31

DCX-MC100 – Servo Motor Module Installation

The default shipping configuration for the DCX-MC100 supports:

• +/- 10 volt servo command output (12 bit resolution, 10 ma. Max.)
• Single ended encoder (phase A, phase B)
• Encoder Index Z- (TTL level, low active)
• Coarse Home, Limit + , Limit – , and Amplifier Fault inputs (TTL level, low active)
• Amplifier Inhibit output (TTL level, low active, 10 ma max.)
• +5 VDC encoder power output (100 ma max.)
• Servo Command output offset adjustment potentiometer

+12 volt motor drive power supply
The default configuration of the DCX-PCI100 does not use the +12 volt connection on the PCI bus
edge connector. To supply +12 volts to the DCX-PCI100 the user must connect J33 to a PC computer
disk drive power supply connector. Typically a standard disk drive power supply ‘splitter’ cable is used
to connect the +12 volt supply of the PC computer to the DCX controller. Power supply splitter cables
can be purchased from PMC (P/N 71.060.A). For additional information please contact the factory.

!

If the +12 volt PC computer power supply connection is not provided to the DCX-
PCI100 J33 connector no servo motion will occur.

Differential Encoder
The DCX-MC100 can be configured to support a differential encoder by cutting the signal traces
between pins 1 and 2 of JP2 and JP3 (back side of module).

D
C

SPAL R
.A

JP2

JP3

JP4

DCX Module Installation

Precision MicroControl

32

+12 volt encoder power
The DCX-MC100 can be configured to provide a +12 VDC Encoder Power Output by:

1) Cutting the signal trace between pins 2 and 3 of JP4 and
2) Connecting pins 1 and 2 of JP4

!

Note: The DCX-MC100 provides the Encoder Power output as a convenience, It is
not required that it be used to power the encoder.

All external connections (Command signal, Limits, encoder, etc…) are made via the 26 pin, dual row
header labeled J1. The diagram below details the pin number of the J3 connector.

1
2

25
26

DCX-MC100 J3 CONNECTOR PIN NUMBERING
(TOP SIDE VIEW)

D
C

X-M
C

100

After installing the DCX-MC100 module into the DCX-PCI100 motion control motherboard the servo
encoder, amplifier, and limit switches can be connected to the module. Wiring diagrams on the next
two pages depict typical installations. The first diagram details direct connection of the MC100 to the
external components (servo amplifier, encoder, and sensors). The second diagram details typical
connections when a DCX-BF100 Opto Isolation and Interconnect Assembly is used.

DCX Module Installation

DCX-PCI100 User’s Manual

33

DCX-MC100
I/O Connector J3

Servo Motor
Quadrature

Encoder

2
1

11
10
5

14

15

9

23
20
16
19

25
17
26

Servo Amplifier

Limit Positive (input)

Limit Negative (input)

Coarse Home (input)

Command Output (+/- 10V)
Analog Ground

Amplifier Inhibit (output)
Amplifier Fault (input)

Ground

Gnd

Encoder Phase A+

Encoder Phase A- (Differential only)
Encoder Phase B+

Encoder Phase B- (Differential only)

Encoder Index -

Encoder Power (+5 / +12)

Ground

DCX Module Installation

Precision MicroControl

34

Servo Amplifier

TS1 & TS2
Command Output (+/- 10V)
Analog Ground

Amplifier Enable (output)
Amplifier Fault (input)

Ground

Ground

Encoder Index +
Encoder Index -

Encoder Phase A+

Encoder Phase A- (Differential only)
Encoder Phase B+

Encoder Phase B- (Differential only)

Encoder Power (+5 / +12)

Limit Positive (input)

Limit Negative (input)

Coarse Home (input)

Servo
Motor

Quadrature
Encoder

DCX-MC100

2
1

11
10
5

14

15

9

23
20
16
19

25
17
26

2
1
11
10
5

14

15

9

23
20
16
19

25
17
26

DCX-BF100 - 24
Opto Isolation and

Interconnect Assembly

TS1-3
TS1-2
TS1-6
TS1-8

TS1-14

TS1-11

TS1-12

TS1-7

TS1-13

TS2-3
TS2-4
TS2-5
TS2-6
TS2-7
TS2-8

TS2-13
TS2-14

26 conductor
ribbon cable

J3 conn. J1 conn.

Power Supply
+24 vdc

-

+

Opto Isolator supply

DCX Module Installation

DCX-PCI100 User’s Manual

35

DCX-MC110 – Servo Motor Module Installation

The default shipping configuration for the DCX-MC110 supports:

• 0 - 12 volt motor drive output (8 bit resolution, 500 ma. Max.)
• Single ended encoder (phase A, phase B)
• Encoder Index Z- (TTL level, low active)
• Coarse Home, Limit + , Limit – , and Amplifier Fault inputs (TTL level, low active)
• Amplifier Inhibit output (TTL level, low active, 10 ma max.)
• +5 VDC encoder power output (100 ma max.)
• Motor Drive output offset adjustment potentiometer

+12 volt motor drive power supply
The PCI bus motherboard edge connector was not designed to provide high current to accessory
cards like the DCX-PCI100. In order to provide sufficient supply voltage / current for DCX-MC110
motor drive modules (0.5 amps per module, maximum of 4.0 amps) a 4 pin connector (J33) matching
the power supply pinout of 5 ¼ / Hard Disk Drives can be found on the DCX-PCI100 motherboard. A
standard disk drive power supply ‘splitter’ cable is used to connect the +12 volt supply of the PC
computer to the DCX controller. Power supply splitter cables can be purchased from PMC (P/N
71.060.A)

!

If the +12 volt PC computer power supply connection is not provided to the DCX-
PCI100 J33 connector no servo motion will occur.

Differential Encoder
The DCX-MC110 can be configured to support a differential encoder by cutting the signal traces
between pins 1 and 2 of JP2 and JP3 (back side of module).

D
C

SPAL R
.A

JP2

JP3

JP4

DCX Module Installation

Precision MicroControl

36

+12 volt encoder power
The DCX-MC110 can be configured to provide a +12 VDC Encoder Power Output by:

3) Cutting the signal trace between pins 2 and 3 of JP4 and
4) Connecting pins 1 and 2 of JP4

!

Note: The DCX-MC110 provides the Encoder Power output as a convenience, It is
not required that it be used to power the encoder.

All external connections (Command signal, Limits, encoder, etc…) are made via the 26 pin, dual row
header labeled J1. The diagram below details the pin number of the J3 connector.

1
2

25
26

DCX-MC110 J3 CONNECTOR PIN NUMBERING
(TOP SIDE VIEW)

D
C

X-M
C

110

After installing the DCX-MC110 module into the DCX-PCI100 motion control motherboard the
encoder, motor, and limit switches can be connected to the module. Wiring diagrams on the next two
pages depict typical installations. The first diagram details direct connection of the MC110 to the
external components (motor amplifier, encoder, and sensors). The second diagram details typical
connections when a DCX-BF100 Opto Isolation and Interconnect Assembly is used.

DCX Module Installation

DCX-PCI100 User’s Manual

37

DCX-MC110
I/O Connector J3

Servo Motor
Quadrature

Encoder

1
6

14

15

9

23
20
16
19

25
17
26

Limit Positive (input)

Limit Negative (input)

Coarse Home (input)

Motor Drive + (output)
Motor Drive -

Gnd

Encoder Phase A+

Encoder Phase A- (Differential only)

Encoder Phase B+

Encoder Phase B- (Differential only)

Encoder Index -

Encoder Power (+5 / +12)

Ground

+

-

DCX Module Installation

Precision MicroControl

38

TS1 & TS2

DCX-MC110

1
6

14

15

9

23
20
16
19

25
17
26

1
6

14

15

9

23
20
16
19

25
17
26

DCX-BF100 - 24
Opto Isolation and

Interconnect Assembly

TS1-1
TS1-5

TS1-11

TS1-12

TS1-7

TS1-13

TS2-3
TS2-4
TS2-5
TS2-6
TS2-7
TS2-8

TS2-13
TS2-14

26 conductor
ribbon cable

J3 conn. J1 conn.

Limit Positive (input)

Limit Negative (input)

Coarse Home (input)

Power Supply
+24 vdc

-

+

Opto Isolator supply

Ground

Encoder Index +
Encoder Index -

Encoder Phase A+

Encoder Phase A- (Differential only)
Encoder Phase B+

Encoder Phase B- (Differential only)

Encoder Power (+5 / +12)

Servo
Motor

Quadrature
Encoder

+

-

DCX Module Installation

DCX-PCI100 User’s Manual

39

DCX-MC400 – Digital I/O Expansion Module Installation

One or more MC400 digital I/O modules can be installed on the DCX. There are no jumpers on this
module to be configured. The module's TTL digital I/O signals can be connected directly to the
external circuits if output loading (1ma maximum sink/source)and input voltages are within acceptable
limits. Alternatively, a BFO22 interface board can be used to connect the module's I/O to a relay rack
in order to provide optically isolated inputs and outputs.

The BFO22 interface board provides a convenient means of connecting the MC400's TTL digital I/O
channels to a 16 position relay rack available from two manufacturers, Opto22 (P/N PB16H) and
Grayhill (P/N 70RCK16-HL). These relay racks accept up to 16 optically isolated input or output
modules for interfacing with external electrical systems. Using one of these relay racks and a BFO22,
an optically isolated I/O module can be connected to each of the MC400's digital I/O channels.

3

QED

#1#3#5#7

#8 #6 #4 #2

DCX-BF022

1 25
J2

As shown above, the BFO22 plugs directly into the relay rack's 50 pin header connector and then
connects to the MC400 via a 26 conductor ribbon cable. Note that the relays are numbered
sequentially starting from 0, while the DCX digital I/O channels are numbered sequentially starting
with 1.

Although the relay rack has screw terminals for connecting a logic supply, it is not necessary to make
this connection. By installing a shorting block on jumper JP17 of the BFO22, the 5 volt supply of the
DCX will be supplied to the relay rack.

For detailed information on configuring the DCX-BF022, please refer to the schematic and jumper
table in the DCX-BF022 Appendix in this user manual.

DCX Module Installation

Precision MicroControl

40

DCX-MC500 – Analog I/O Expansion Module Installation

One or more MC500 analog I/O modules can be installed in the DCX as described in the first section
of this chapter. There are no jumpers on this module to be configured. The module's I/O signals can
be connected directly to the user's external circuits as long as output loading is not excessive and
input voltages are maintained within the specified limits (see the MC500 appendix).

A voltage level greater than 5.6 volts will damage DCX-MC500 analog
input channels. The schematic below is recommended to protect an
analog input from damage due to an over voltage condition. This circuit
will limit the maximum voltage applied to the A/D converter to 5.6 VDC.

DCX Module Installation

DCX-PCI100 User’s Manual

41

Programming, Software, and Utilities

Precision MicroControl

42

Chapter Contents

• Introduction to the Motion Control Application Programming Interface (MCAPI)

• Controller Interface Types

• Building Application Programs using MCAPI
 C++ programming
 Visual Basic Programming
 Delphi Programming
 LabVIEW programming

• PMC Sample Programs

• Motion Integrator
 System Integration Wizards
 Servo Tuning tool
 Embeddable OLE servers

• PMC Utilities
 MCAPI Setup
 WinControl
 FlashWizard
 Joystick Applet
 Position Readout

• MCAPI On-line Help
 MCAPI Users Guide
 MCAPI on-line function reference
 MCAPI Common Dialog help
 LabVIEW Motion VI Library Help

DCX-PCI100 User’s Manual

43

Programming, Software and Utilities

The DCX motion control system integrates seamlessly into high performance, Windows applications.
The Motion Control Application Programming Interface (MCAPI) provides support for all popular
high level languages. Additionally, the board level command set (MCCL) allows the machine designer
to execute local ‘macro’ routines independent of the PC host and its application programs.

PMC’s Motion Control API (MCAPI) is a group of Windows components that, taken together, provide a
consistent, high level, Applications Programming Interface (API) for PMC's motion controllers. The
difficulties of interfacing to new controllers, as well as resolving controller specific details, are handled
by the API, leaving the applications programmer free to concentrate on the application program.

3

QED

#1#3#5#7

#8 #6 #4 #2

Motion Control API (function library)

Low-Level Device Driver (DLL)

HighLevel
Languages
 C
 C++
 Visual Basic
 Pascal

Advanced
Development
Environments
 Delphi
 Lab Windows
 Visual C/C++

Visual
Programming
 Visual Basic
 LabVIEW
 BridgeVIEW

Drivers
 OLE Controls
 LabVIEW VI

MCCL
ASCII
Command
Interface

Figure 18: MCAPI and DCX-PCI100 architectural diagram

Chapter

4

Programming, Software, and Utilities

Precision MicroControl

44

The API has been constructed with a layered approach. As new versions of Windows operating
systems and new PMC motion controllers become available API support is provided by simply
replacing one or more of these layers. Because the public API (the part the applications programmer
sees) is above these layers, few or no changes to applications programs will be required to support
new version of the MCAPI.

The API itself is implemented in three parts. The low level device driver provides communications with
the motion controller, in a way that is compatible with the Microsoft Windows operating system. The
MCAPI low level driver passes binary MCCL commands (Motion Control Command Language – the
instruction set of the DCX motion controller) to the DCX. By placing the operating system specific
portions of the API here it will be possible to replace this component in the future to support new
operating systems without breaking application programs, which rely on the upper layers of the API.

Sitting above that, and communicating with the driver is the API Dynamic Link Library (DLL). The DLL
layer implements the high level motion functions that make up the API. This layer also handles the
differences in operation of the various PMC Motion Controllers, making these differences virtually
transparent to users of the API.

At the highest level are environment specific drivers and support files. These components support
specific features of that particular environment or development system.

Care has been exercised in the construction of the API to ensure it meets with Windows interface
guidelines. Consistency with the Windows guidelines makes the API accessible to any application that
can use standard Windows components - even those that were developed after the Motion Control
API. A Quick Reference Guide and detailed MCAPI Function Library Listing can be found in the
manual.

Controller Interface Types
The DCX controller supports two onboard interfaces, an ASCII (text) based interface and a binary
interface. The binary interface is used for high speed command operation, and the ASCII interface is
used for interactive text based operation (WinControl). The high level sample programs (CWDEMO
and VBDEMO) use the binary interface, PMC WinControl uses the ASCII interface.

Application programs must indicate which interface they intend to use when they open a handle for a
particular controller. A controller may have more than one handle open at a time, but all open handles
for a particular controller must specify the same interface (all must be open with the binary interface or
all must be open with the ASCII interface). The open mode is specified by setting the second
argument of the MCOpen() function to either MC_OPEN_ASCII or MC_OPEN_BINARY.

Note that not all functions are available in the ASCII mode of operation, this mode is intended
primarily for use with the pmcgetc(), pmcgets(), pmcputc(), and pmcputs() character based
functions (these 4 functions are not available in binary mode). This restriction will be eliminated in a
future release of the API.

Programming, Software, and Utilities

DCX-PCI100 User’s Manual

45

Building Application Programs using Motion Control API
The Motion Control Application Programming Interface (MCAPI) is designed to allow a programmer to
quickly develop sophisticated application programs using popular development tools. The MCAPI
provides high level function calls for:

• Configuring the controller (servo tuning parameters, velocity and ramping, motion limits, etc.)
• Defining on-board user scaling (encoder units, velocity units, dwell time units, user and part

zero)
• Commanding motion (Point to Point, Constant velocity)
• Reporting controller data (motor status, position, following error, current settings)
• Monitoring Digital and Analog I/O
• Driver functions (open controller handle, close controller handle, set timeout)

A complete description of all MCAPI functions can be found in later in this manual.

Included with the installation of the MCAPI is the Sources ‘folder’. In this folder are complete program
sample source files for C++, VisualBasic, and Delphi.

Programming, Software, and Utilities

Precision MicroControl

46

C/C++ Programming
Included with each of the C program samples (CWDemo. Joystick demo, and WinControl) is a read
me file (readme.txt) that describes how to build the sample program. The following text was reprinted
from the readme.txt file for the CWDemo program sample.

Contents
========
- How to build the sample
- LIB file issues
- Contacting technical support

How to build the sample
=======================
To build the samples you will need to create a new project or make file within your C/C++ development
tool. Include the following files in your project:
 CWDemo.c
 CWDemo.def
 CWDemo.rc

For 16-bit development you will also need:
 ..\mcapi.lib
 ..\mcdlg.lib
 ..\ctl3d.lib

For 32-bit development you will also need:
 ..\mcapi32.lib
 ..\mcdlg32.lib

 If your compiler does not define the _WIN32 constant for 32-bit projects you will need to define it at
 the top of the source file (before the header files are included).

LIB File Issues
===============
Library (LIB) files are included with MCAPI for all the DLLs that comprise the user portion of the API
(MCAPI.DLL, MCAPI32.DLL, MCDLG.DLL, and MCDLG32.DLL). These LIB files make it easy to resolve
references to functions in the DLL using static linking (typical of C/C++). Unfortunately,
under WIN32 the format of the LIB files varies from compiler vendor to compiler vendor. If you cannot use
the included LIB files with your compiler you will need to add an IMPORTS section to your projects DEF
file. We have included skeleton DEF files for all of the DLLs for which we also include a LIB file
(MCAPI.DEF, MCAPI32.DEF, MCDLG.DEF, and MCDLG32.DEF).

The 16-bit LIB files were built with Microsoft Visual C/C++ Version 1.52,
and the 32-bit LIB files Microsoft Visual Studio Version 5.

Programming, Software, and Utilities

D

Visual Basic Programming
Included with each of the Visual Basic program samples (VBDemo. VBDemo32) is a read me file
(readme.txt) that describes how to build the sample program. The following text was reprinted from
the readme.txt file for the VBDemo32 program sample.

Contents
========

- About the sample
- How to build the sample
- Contacting technical support

About the sample
================
This sample demonstrates a simple user interface to one axis of a motion controller. The user may
program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms
demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions
(such as a full-featured, ready-to-run
axis configuration dialog) are also demonstrated.

How to build the sample
=======================
To build the samples you will need to create a new project or use the Visual Basic project file (created
with Visual Basic v6.0) included with the sample. Include the following files if you create your own project:

 About32.frm
 Main32.frm
 Servo32.frm
 Step32.frm
 VBDemo.bas

 ..\mcapi32.bas
 ..\mcdlg32.bas

Set frmMain as the startup object for the project.
CX-PCI100 User’s Manual 47

Programming, Software, and Utilities

4

Delphi Programming
Included with each of the Delphi program sample (PasDemo) is a read me file (readme.txt) that
describes how to build the sample program. The following text was reprinted from the readme.txt file
for the PasDemo program sample.

Contents
========

- About the sample
- How to build the sample
- Contacting technical support

About the sample
================
This sample demonstrates a simple user interface to one axis of a motion controller. The user may
program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms
demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions
(such as a full-featured, ready-to-run
axis configuration dialog) are also demonstrated.

How to build the sample
=======================
To build the samples you will need to create a new project or use the Delphi project files included with the
sample (Pdemo.dpr for 16-bit, Pdemo32.dpr for 32-bit). Include the following files if you create your
own project:

 About.pas
 Global.pas
 PasDemo.pas
 Servo.pas
 Stepper.pas

For 16-bit projects you will also need:

 ..\mcapi.pas
 ..\mcdlg.pas

For 32-bit projects you will also need:

 ..\mcapi32.pas
 ..\mcdlg32.pas

Precision MicroControl 8

Programming, Software, and Utilities

DCX-PCI100 User’s Manual

49

LabVIEW Programming
PMC’s LabVIEW Virtual Instrument Library includes an On-Line help with a Getting Started guide.

Programming, Software, and Utilities

Precision MicroControl

50

PMC Sample Programs
Sample programs with full source code are supplied with the MCAPI. These C++, Visual Basic, and
Delphi sample programs allow the user to:

• Move an axis
• Monitor the actual, target, and optimal positions of an axis
• Monitor axis I/O (Limits +/-, Home, Index, an Amplifier Enable)
• Define or change move parameters (Maximum velocity, acceleration/deceleration)
• Define or change the servo PID parameters

Figure 19: PMC's CWdemo32 includes the executable and source code

Programming, Software, and Utilities

DCX-PCI100 User’s Manual

51

Motion Integrator
PMC’s Motion Integrator program is just like having your own ‘Systems Integrator’ to assist you with
every step of the integration process. Motion Integrator is a suite of powerful Windows tools that are
used to:

• Configure the DCX motion control system • Tune the servo axes
• Verify the operation of the control system • Diagnose controller failures
• Execute and plot the results of single

and/or multi-axes moves
• View comprehensive on-line help

including detailed wiring diagrams
• Connect and test I/O

 Axis I/O (Home, Limits, Enable)
 General purpose Digital I/O

 General purpose Analog I/O

For first time PMC motion control users, Motion Integrator can be run as a series of Windows Wizards

The Motion System Setup program opens with a
picture of the DCX controller and a listing of the
recommended integration steps

The Axis I/O wizard allows the user to verify the
operation of the Limits, Home, and Amp/Drive Enable

Programming, Software, and Utilities

Precision MicroControl

52

Tuning servo’s with Motion Integrator
Motion Integrator provides a powerful and easy to use tool for ‘dialing in’ the performance of servo
systems. From simple current/torque mode amplifiers to sophisticated Digital Drives, Motion Integrator
makes tuning a servo is quick and easy.

By disabling the Trajectory generator, the user can execute repeated Gain mode (no ramping -
maximum velocity or acceleration/deceleration) step responses to determine the optimal PID filter
parameters:

 Proportional gain
 Derivative gain
 Derivative sampling period
 Integral gain
 Integration Limit

With the Trajectory generator turned on, the user can execute ‘real world’ moves displaying the
calculated position, actual position, and following error plots.

Once the systems has been tested and tuned, PMC’s Motor
Mover allows users to: move any or all motors, define cycling
routines, monitor position and status

The on-line help provides detailed
information, wiring diagrams, and
application examples.

Programming, Software, and Utilities

DCX-PCI100 User’s Manual

53

Digital and Analog I/O Test Panels
Motion Integrator Digital I/O, and Analog I/O allow the user to verify the operation of general purpose
I/O.

The Servo Tuning Utility includes on-line help assisting
with both using the program and explaining the
fundamentals of servo tuning. A complete Servo Tuning
tutorial is available on the MotionCD

Programming, Software, and Utilities

Precision MicroControl

54

PMC Utilities
A powerful suite of utilities are included with the Motion Control API. These tools allow the user:

• Query motion control system version information
• Issue native language (MCCL) commands directly to the DCX controller
• Upgrade the firmware of the DCX controller
• Display the position of any or all axes

PMC’s Motion Control Panel
The Motion Control Panel is used to query the motion control system for firmware and software
(MCAPI) version information, and remove a controller. It can be launched either from the Windows
Start menu or by selecting the Motion Control icon from the Windows Control Panel.

WinControl – MCCL (Motion Control Command Language) command set interface utility
This utility provides the user with a direct communication interface with the DCX-PCI100 in its native
language (MCCL). This tool is extremely useful not only during initial controller integration but also as
a debug tool during application software development. Two methods of executing MCCL commands
are supported: A PC keyboard key stroke is passed directly to the DCX controller, and/or download a
MCCL command text file via the File – Open menu options

Programming, Software, and Utilities

DCX-PCI100 User’

Flash Wizard
To increase CPU efficiency and reduce cost the DCX-PCI100 uses primarily SDRAM. All operational
program code (otherwise known as firmware) for the DCX-PCI100 is stored on the hard drive during
installation of the MCAPI. When the PC is first powered the MCAPI writes this program code into the
on-board SDRAM in a process called Dynamically Loaded Firmware (DLF).

PMC’s Flash Wizard is a windows utility that allows the user to easily upgrade the program code from
file downloaded from PMC’s web site www.pmccorp.com.

Joystick Applet
Allows the user to m
Full source code fo

s Manual 55

anually position two axes using a joystick connected to the game port of a PC.
r this applet is provided.

Programming, Software, and Utilities

56

MCAPI On-line Help
Complete and up to date (from PMC website www.pmccorp.com) On-line help for PMC’s MCAPI
(Motion Control Application Programming Interface). Help documents include; installation and basic
usage, complete function call reference and examples, high level dialog descriptions, and LabVIEW
VI Library reference.

The MCAPI Users Guide On-line Help
describes the basics of PMC’s MCAPI. This
should be the ‘first stop’ for any questions
about the MCAPI.

The MCAPI On-line Help provides a

Precision MicroControl

complete listing and description of all MCAPI
functions. Function calls are grouped both
alphabetically and by functional groups
(Motion, Setup, Reporting, Gearing, etc...).
Source code examples are provided for C++,
Visual Basic, and Delphi.

Programming, Software, and Utilities

DCX-PCI100 User’s Manual

The MCAPI Common Dialog On-line Help
describes the high level MCAPI Dialog
functions. These operations include: Save
and Restore axis configurations (PID and
Trajectory), Windows Class Position and
Status displays, Scaling, and I/O
configuration.
57

The Motion VI Library On-line Help provides
installation assistance and detailed
descriptions of available VI’s.

Communication Interfaces

Precision MicroControl

58

Chapter Contents

• PC Communication Interface

DCX-PCI100 User’s Manual

59

Communication Interfaces

High Speed Binary interface
For PC based application programs the DCX controller provides a high speed binary interface for
communicating with the PC via the PCI bus. This interface is implemented using dual ported memory
and is mapped into the PC by the BIOS during ‘Plug and Play’ bus enumeration. PMC’s MCAPI
provides Windows device drivers and a high level function library for C++, Visual Basic, Delphi, and
LabVIEW applications programming. For additional information about available software and
integration tools please refer to the Programming, Software, and Utilities chapter.

ASCII MCCL Interface

The DCX-PCI100 also provides a PCI ASCII communication interface. When using the WinControl
utility the ASCII interface allows the user to communicate directly with the DCX in its native language,
MCCL (Motion Control Command Language). The WinControl utility is installed as a component of the
MCAPI (Motion Control Application Programming Interface), which is available from PMC’s Motion
CD or web site www.pmccorp.com

Chapter

5

Communication Interfaces

Precision MicroControl

60

In addition to allowing the user to issue MCCL commands from the keyboard one character at a time,
the WinControl utility supports downloading a MCCL text file to the controller. Simply store the
command lines in a file using a text editor. Use WinControl’s File menu option to open the file. Each
command line will be executed as it is displayed. Documenting commands can be added to the MCCL
program by preceding the comment by a semi colon.

i

Commands sent to the DCX through any of the ASCII communication
interfaces must be followed by a carriage return (ASCII 13). A
linefeed (ASCII 10) is not required at the end of command lines, and
should not be sent.

Communication Interfaces

DCX-PCI100 User’s Manual

61

DCX Operation Basics

Precision MicroControl

62

Chapter Contents

• Introduction

• Commanding DCX Operations

DCX-PCI100 User’s

DCX Operation Basics

Introduction
At its lowest level the operation of the DCX is similar to a microprocessor, it has a predefined
instruction set of operations that it can perform. This instruction set, known as MCCL (Motion Control
Command Language), consists of over 130 operations that include motion, setup, conditional
(If/Then), mathematical, and I/O operations.

However the typical PC based application will never use these low level commands. Instead the
programmer will call high level functions (C++, Visual Basic, Delphi, or LabVIEW), which are passed
to the DCX via the MCAPI device driver. A example MCAPI function description is:

Move to relative position

This command generates a motion of relative Distance of n in the specified direction. A motor number
must be specified and that motor must be in the on state for any motion to occur. If the motor is in the
off state, only its internal target position will be changed.

compatibility: MC100,
see also: Move to absolute position

C++ Function: void MCMoveRelative(HCTRLR hCtlr, WORD wAxis, double Distance);
Delphi Function: procedure MCMoveRelative(hCtlr: HCTRLR; wAxis: Word; Distance: Double);
VB Function: Sub MCMoveRelative (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double)
MCCL command: aMRn a = Axis number n = integer or real

LabVIEW VI:

Chapter

6
Manual 63

DCX Operation Basics

Precision MicroControl

64

Throughout this manual, when a DCX operation is referenced, the MCAPI command function will be
identified by bold, italicized text. The following description differentiates between an absolute and
relative move.

i

Point to Point motion is commanded using either of two DCX functions.
To move an axis to an absolute position use the function
MCMoveAbsolute. To move an axis a relative distance from the current
position use the function MCMoveRelative.

Low Level DCX Operations
The WinControl utility allows the user to communicate with the DCX in the native language (MCCL) of
the controller. This utility allows the user to issue MCCL commands directly to the DCX. Each MCCL
command is described in detail in the DCX MCCL Command chapters later in this user manual.

MCCL commands are two character alphanumeric mnemonics built with two key characters from the
description of the operation (eg. "MR" for Move Relative). When the command is received by the
DCX (followed by a carriage return) it will be executed. The following graphic shows the result of
executing the VE command. This command causes the DCX to report firmware version and the
amount of installed memory.

All axis related MCCL commands will be preceded by an axis specifier, identifying to which axis the
operation is intended. The graphic below shows the result of issuing the Tell Position (aTP) command
to axis number one.

DCX Operation Basics

DCX-PCI100 User’s Manual

65

Note that each character typed at the keyboard should be echoed to your display. If you enter an
illegal character or an illegal series of valid characters, the DCX will echo a question mark character,
followed by an error code. The MCCL Error Code listing can be found in the near the end of this
manual. On receiving this response, you should re-enter the entire command string. If you make a
mistake in typing, the backspace can be used to correct it, the DCX will not begin to execute a
command until a carriage return is received.

Once you are satisfied that the communication link is correctly conveying your commands and
responses, you are ready to check the motor interface. When the DCX is powered up or reset, each
motor control module is automatically set to the "motor off" state. In this state, there should be no
drive current to the motors. For servos it is possible for a small offset voltage to be present. This is
usually too small to cause any motion, but some systems have so little friction that a few millivolts can
cause them to drift in an objectionable manner. If this is the case, the "null" voltage can be minimized
by adjusting the offset adjustment potentiometer on the respective module.

Before a motor can be successfully commanded to move certain parameters must be set by issuing
commands to the DCX. These include; PID filter gains (servo only), trajectory parameters (maximum
velocity, acceleration/deceleration), allowable following error, configuring motion limits (hard and soft).

At this point the user should refer to the Motion Control chapter sections titled Theory of Operation
– Motion Control, and Servo Operation. There the user will find more specific information for each
type of motor, including which parameters must be set before a motor should be turned on and how to
check the status of the axis.

Assuming that all of the required motor parameters have been defined, the axis is enabled with the
Motor oN (aMN) command. Parameter ‘a’ of the Motor oN command allows the user to turn on a
specific axes or all axes. To enable all, enter the Motor oN command with parameter ‘a’ = 0. To
enable a single axis issue the Motor oN command where ‘a’ = the axis number to be enabled.

After turning a particular axis on, it should hold steady at one position without moving. The Tell Target
(aTT) and Tell Position (aTP) commands should report the same number. There are several
commands that are used to begin motion, including Move Absolute (MA) and Move Relative (MR). To
move axis 2 by 1000 encoder counts, enter 2MR1000 and a carriage return. If the axis is in the "Motor
oN" state, it should move in the direction defined as positive for that axis. To move back to the
previous position enter 2MR-1000 and a carriage return.

DCX Operation Basics

Precision MicroControl

66

With the DCX controller, it is possible to group together several commands. This is not only useful for
defining a complex motion, which can be repeated by a single keystroke, but is also useful for
synchronizing multiple motions. To group commands together, simply place a comma between each
command, pressing the return key only after the last command.

A repeat cycle can be set up with the following compound command:

2MR1000,WS0.5,MR-1000,WS0.5,RP6 <return>

This command string will cause axis 2 to move from position 1000 to position –1000 7 times. The
RePeat (RP) command at the end causes the previous command to be repeated 6 times. The Wait for
Stop (WS) commands are required so that the motion will be completed before the return motion is
started. The number 0.5 following the WS command specifies the number of seconds to wait after the
axis has ceased motion to allow some time for the mechanical components to come to rest and
reduce the stresses on them that could occur if the motion were reversed instantaneously. Notice that
the axis number need be specified only once on a given command line.

A more complex cycle could be set up involving multiple axes. In this case, the axis that a command
acts on is assumed to be the last one specified in the command string. Whenever a new command
string is entered, the axis is assumed to be 0 (all) until one is specified.

Entering the following command:

2MR1000,3MR-500,0WS0.3,2MR1000,3MR500,0WS0.3,RP4 <return>

will cause axis 2 to move in the positive direction and axis 3 to move in the negative direction. When
both axes have stopped moving, the WS command will cause a 0.3 second delay after which the
remainder of the command line will be executed.

After going through this complex motion 5 times, it can be repeated another 5 times by simply
entering a return character. All command strings are retained by the controller until some character
other than a return is entered. This comes in handy for observing the position display during a move.
If you enter:

1MR1000 <return>
1TP <return>
(return)
(return)
(return)
(return)

The DCX will respond with a succession of numbers indicating the position of the axis at that time.
Many terminals have an "auto-repeat" feature, which allows you to track the position of the axis by
simply holding down the return key.

Another way to monitor the progress of a movement is to use the Repeat command without a value. If
you enter:

1MR10000 <return>
1TP,RP <return>

The position will be displayed continuously. These position reports will continue until stopped by the
operator pressing the Escape key.

While the DCX is executing commands, it will ignore all alphanumeric keys that are pressed. The user
can abort the commands by pressing the escape key. If the user wishes only to pause the execution
of commands, the user should press the space bar. In order to restart command execution press the

DCX Operation Basics

DCX-PCI100 User’s Manual

67

space bar again. If after pausing command execution, the user decides to abort execution, this can be
done by pressing the escape key.

Motion Control

Precision MicroControl

68

Chapter Contents

• Theory of DCX Motion Control

• DCX Servo Basics

• Tuning the Servo

• Moving Motors with Motor Mover

• Defining the Characteristics of a Move

• Velocity Profiles

• Point to Point Motion

• Constant Velocity Motion

• Jogging

• Defining Motion Limits

• Homing Axes

• Motion Complete Indicators

• On the Fly Changes

• Save and Restore Axes Configuration

DCX-PCI100 User’s Manual

69

Motion Control

This chapter describes the basic building blocks of DCX motion control.

Theory of DCX Motion Control
The DCX motherboard (DCX-PCI100) uses a 192 MHz 32 bit MIPS processor that is programmed to
perform motion control tasks. Specially designed servo control modules are installed on the
motherboard to configure it for controlling from 1 to 8 servo motors. Each DCX motion control module
(DCX-MC100, DCX-MC110) installed on the motherboard provides all the circuitry required to control
one motor and its associated axis I/O (home, limits, amp/driver enable, fault, etc...).

Servo Motor Control
The DCX servo modules use a position feedback loop to control the servo. The DCX-MC100 controls
the operation of servo motor via a 12 bit, +/-10 volt analog output signal to an external servo
amplifier. The DCX-MC110 provides a 0 - +12 volt, 8 bit, direct motor drive output capable of directly
driving a 12 volt motor with up to 0.5A of current.

Incremental encoder input to these modules provide feedback information for closing the position
loop. In operation, the servo module subtracts the actual position (feedback position) from the desired
position (trajectory generator position), and the resulting position error is processed by the digital filter
on the module. The output of the digital filter sets the module’s servo command output level.

The module processor monitors the motor's position via an incremental encoder. The two quadrature
signals from the encoder are used to keep track of the absolute position of the motor. Each time a
logic transition occurs at one of the quadrature inputs, the DCX position counter is incremented or
decremented accordingly. This provides four times the resolution over the number of lines provided by
the encoder. The encoder interface is buffered by a differential line receiver on the DCX module.
Jumpers on the DCX module allow the user to configure the differential receiver for use with single
ended or differential encoder.

A "Proportional Integral Derivative" (PID) digital filter on the module is used to compensate the servo
feedback loop. The motor is held at the desired position by applying a restoring force to the motor that

Chapter

7

Motion Control

Precision MicroControl

70

is proportional to the position error, plus the integral of the error, plus the derivative of the error. The
following discrete-time equation illustrates the control performed by the servo controller:

 u(n) = Kp*E(n) + Ki sum E(n) + Kd[E(n') - E(n' - 1)]

where u(n) is the module's output signal output at sample time n, E(n) is the position error at sample
time n, n' indicates sampling at the derivative sampling rate, and kp, ki, and kd are the discrete-time
filter parameters loaded by the users. The first term, the proportional term, provides a restoring force
proportional to the position error. The second term, the integration term, provides a restoring force
that grows with time. The third term, the derivative term, provides a force proportional to the rate of
change of position error. It provides damping in the feedback loop. The sampling interval associated
with the derivative term is user-selectable; this capability enables the servo controller to control a
wider range of inertial loads.

DCX Servo Basics

The basic steps required to implement closed loop servo motion are:

• Proper encoder operation
• Setting the allowable following error
• Verify proper motor/encoder phasing
• Tuning the servo (PID)

Quadrature Incremental Encoder
All closed loop servo systems require position or velocity feedback. These feedback devices output
signals that relay position and/or velocity with which motion controller ‘closes the loop’. The most
common feedback device used with intelligent motion control systems is quadrature incremental
encoder.

A quadrature incremental encoder is an opto electric feedback device. A light source and photo
sensor pickup are used to detect markings on a glass ‘scale’. The more markings on the glass scale,
the higher the resolution of the encoder. Circuitry connected to the photo sensor generates two wave
forms (Phase A and Phase B), which have a phase difference of 90 degrees. This phase difference is
used by the encoder input circuitry of the DCX to:

 Determine the direction of rotation (positive or negative) of the encoder/motor
 Enhance the resolution of the encoder by a factor of 4.

For example, a 500 line quadrature incremental encoder will have 2000 encoder counts per full
rotation. The 90 degree phase difference is also used to determine the direction of motion of the
encoder. If phase A comes before phase B, the DCX will determine that motion is in the positive or
clockwise direction. If phase B comes before phase A, the DCX will determine that motion is in the
negative or counter-clockwise direction.

Some quadrature encoders include an additional ‘mark’ on the glass scale that is used to generate an
index pulse. This signal, which ‘goes active’ once per rotation, is used by the motion controller to
accurately home (re-define the position of an axis) the axis. Please refer to the Homing Axes section
of this chapter.

Motion Control

DCX-PCI100 User’s Manual

71

There are few options that are typically associated with quadrature encoders.

Output type: Differential or single ended
Differential outputs (A+, A-, B+, B-) are recommended for superior noise immunity but the DCX
supports either output type

Index or no Index (used for homing the axis)
MC100/110 modules support only Z-. For Differential Index (Z+, Z-) the DCX-BF100 interconnect
assembly is required.

+5 volt supply required or +12 volt supply required.
A +5 volt encoder is recommended but the DCX also supports a +12V encoder

Glass scale

LED Photo
sensor

Phase
generation

circuitry

Phase A

Phase B

Index

Encoder Checkout
The Motion Integrator program provides easy to use tools for testing the operation of an encoder.. The
user has the option of using the Connect Encoder Wizard or the Motion System Setup Test Panel.

i

Note – Unlike the Connect Encoder Wizard, the Motion System Setup
Test panel does not allow the user to verify the operation of the encoder
Index.

Motion Control

Precision MicroControl

72

Manually rotate the motor/encoder in either direction, the position reported should increment or
decrement accordingly. Refer to the Troubleshooting guide if the DCX does not report a change of
position.

Setting the Allowable Following Error
Following error is the difference between where an axis ‘is’ and where the controller has ‘calculated
it should be’. All servo systems require ‘some’ position error to generate motion. When a servo axis
is turned on, if a position error exists, the PID algorithm will cause a command voltage to be applied to
the servo to correct the error.

While an axis is executing a move, the following error will typically be between 20 and 100 encoder
counts. Very high performance systems can be ‘tightly tuned’ to maintain a following error within 5 to
10 encoder counts. Systems with low resolution encoders and/or high inertial loads will typically
maintain a following error between 150 and 500 encoder counts during a move.

The DCX supports ‘hard coded’ following error fault checking (which by default is disabled, allowable
following error = 0). To enable following error checking set the allowable following error to a non zero
value between 1 and 32767. after making this change if at anytime the difference between the optimal
position and the current position exceeds the user defined ‘allowable following error’, an error
condition will be indicated. The axis will be disabled (Amplifier Inhibit output turned on, output
command signal set to 0.0V) and the axis status word will indicate that an Motor Error has occurred.
The MCEnableAxis() function is used to clear a following error condition. The following error fault
checking cannot be disabled, the maximum allowable following error is 32767 encoder counts.

i

The three conditions that will typically cause a following error fault are:

 1) Improper servo tuning (Proportional gain too low)
 2) Velocity profile that the system cannot execute (moving too fast)

 3) The axis is reversed phased (move positive causes encoder
 position to begin decrementing)

Motion System Setup Connect Encoder Wizard Motion System Setup Motor Test Panel

Motion Control

DCX-PCI100 User’s Manual

73

Figure 20: From Servo Tuning or Motor Mover use the Servo
Dialog box to redefine the allowable following error

Motion Control

Precision MicroControl

74

Tuning the Servo
A servo motor motion system is a closed loop system with negative feedback. Servo tuning is the
process of adjusting the gains (proportional, derivative, and integral) of this axis controller to get the
best possible performance from the system. A servo motor and its load both have inertia, which the
servo amplifier must accelerate and decelerate while attempting to follow a change in the input (from
the motion controller). The presence of inertia will tend to result in over-correction, with the system
oscillating or "ringing" beyond either side of its target (under-damped response). This ringing must be
damped, but too much damping will cause the response to be sluggish (over-damped response).
Proper balancing will result in an ideal or critically-damped system.

The servo system is tuned by applying a command output or ‘step response’, plotting the resulting
motion, then adjusting parameters of the digital PID filter until an acceptable system response is
achieved. A step response is an output command by the motion controller to a specific position. A
typical step response distance used for tuning a servo is 100 encoder counts. If the system requires:

• Very short duration moves (less than 100 msec’s)
• Very small following error value (less than 20 encoder counts

Then a step response of 50 encoder counts is recommended. If the servo system is moving a high
inertial load (minimal friction) then the step response should be increased to 200 – 300 encoder
counts. There is a ‘loose’ relationship between the step response and the following error of the
system. The shorter the step response when tuning the servo, the lower the following error during
application motion.

!

Note – Using an ultra short step response (5 – 20 counts) may result in
an unstable system that oscillates during and after a commanded move.

Motion Control

DCX-PCI100 User’s Manual

75

i

During Servo Tuning the DCX-PCI100 will perform one Motion Data
Capture operation every millisecond. If more than one DCX motor
module is installed, the period between data captures for the target axis
will be:

1 msec. X # of installed modules

For example if 6 motor modules are installed, and the MCCaptureData
function is called for axis #1, motor data will be captured for axis #1
every 6 msec’s.

 1 msec. X 6 modules = 6 msec’s

Tuning Step #1 - Open the Servo Tuning Utility (Start\Programs\Motion Control\Motion
Integrator\Servo Tuning). From the menu bar select Setup and then Test Setup. Configure the Test
Setup dialog as shown (commanding a 100 encoder count step response with display window period
set to 500 msec’s):

Figure 21: Set Step Distance to 100 encoder counts
 and Time period to 500 miliseconds

Motion Control

Precision MicroControl

76

Tuning Step #2 - Verify that the I & D slide controls are all the way down (set to 0). Select the P
'zoom in' (+) button until the scale display is set to 1.56%. Set the P slide control to a value of
approximately 50.

Tuning Step #3 - Turn on the axis and turn off the Trajectory Generator. While setting proportional
and derivative gain, the step response should occur with the Trajectory Generator disabled. This will
result in the magnitude of the output signal being determined only by a PD filter, the controller will not
apply a maximum velocity or ramping (acceleration/deceleration).

Motion Control

DCX-PCI100 User’s Manual

77

Tuning Step #4 - Find the Proportional gain value that causes the axis to cross the target 3 times
(no more and no less). Before each move press the Clear and Zero buttons to initialize the display
and the position of the axis. To move select either the Step+ or Step - buttons. If the proportional gain
is too low the axis may:

Not move at all
It may move but not reach the target
It may reach the target but not cross three times

Figure 22: Axis crosses the target 3 times - good setting for proportional gain

Doesn't reach target - P too low Crosses target only once - P too low

Motion Control

Precision MicroControl

78

If no plotted position path is shown and the Motor On LED is off an error has occurred. The most
likely cause is a following error, indicating that the servo is reversed phased. Open the Servo Setup
dialog box and select the Reverse Phase option or ‘swap’ the phase A and B connections from the
encoder to the DCX servo module. Turn the motor back on and proceed with the tuning process.

Tuning Step #5 - Derivative gain dampens the response of the servo system. In this step the goal is
to limit the overshoot of a step response to no more than 25%. In the last step response the maximum
position of the axis is approximately 160 counts (an overshoot or 60%). Increase the derivative gain
until the maximum position is no greater than 125 counts. Before setting the derivative gain you must
first set the Derivative Sampling period. The derivative sampling period is expressed in servo loop
periods (0.000341 micro seconds). For a typical servo system set the derivative sampling period to
0.000682 seconds (2 loop periods). For a high inertia servo system set the derivative sampling period
to 0.001354 seconds (4 loop periods). For a high friction servo system set the derivative sampling
period to 0.000341 seconds (1 loop period). Set the D slide control scale to 3.13% by repeatedly
pressing the D + button. Set the D slide control to approximately 50% and execute a step response.

Derivative gain setting of 508 limits overshoot to
around 40% - the servo is under dampened,

increase Derivative gain

Derivative gain setting of 1023 limits overshoot to
around 10% - the servo is over dampened,

decrease Derivative gain

Motion Control

DCX-PCI100 User’s Manual

79

Figure 23: Derivative gain setting of 789 limits overshoot to 25% - good setting for derivative gain

i

A general guideline for the derivative gain is that it should not be more
than 10 times greater than the setting of proportional gain. If the
derivative gain is 10 times greater than proportional gain double the
Derivative Sampling setting.

Tuning Step #6 - Setting the Integral gain. Due to friction, ‘sticktion’, amplifier offset, etc... most
servo systems are unable to settle at the target if using only proportional and derivative gain. Integral
gain provides a restoring force that increases with time. It is used to correct a static position error of a
servo system. If the servo is unable to repeatedly position within +/- one encoder count of the target
Integral Gain will, in most cases, position the servo at the target. To configure the Servo Tuning utility
for setting the integral gain:

• Enable the trajectory generator.
• Define trajectory parameters (max. velocity, accel / decel) in the Servo Setup dialog
• Define a typical application move distance and duration in the Test Setup dialog
• Set the Integration Limit (typically set to 50)

For this example:

• Maximum velocity = 50,000 counts per second

Motion Control

Precision MicroControl

80

• Acceleration / deceleration = 100,000 counts per second per second
• Move distance = 12,500 counts
• Plot window time = 700 msec’s

With the trajectory generator enabled, a step response will cause two plot traces to be displayed in
the upper window and one trace plot in the lower window. The blue trace is a plot of the actual
positions of the servo. The yellow trace is a plot of the calculated (or optimal) positions of the servo.
The optimal positions are the result of calculations by the DCX based on the trajectory parameters
(max. velocity, accel / decel) defined in the Servo Setup dialog. The red trace is a plot of the following
error (the difference between the calculated positions and the actual positions. With no integral gain
setting a typical system response would be:

Figure 24: Without Integral gain the axis is 8 counts from the target

Set the I slide control scale to 0.78% by repeatedly selecting the I zoom in (+) button. Without
executing another move, slowly increase the integral gain (I slide control) until the position readout
indicates that the axis has reached the target position of the move.

Now repeat the move, if the axis settles within one encoder count the axis has been tuned. If the axis
fails to settle (position changing) reduce the integral gain setting and repeat the move.

Motion Control

DCX-PCI100 User’s Manual

81

Figure 25: Tuning is complete, axis stops and settles within 1 encoder count

i

If the Integral gain setting exceeds 200 and is still more than 2 counts
from the target at the end of the move then double the Integration Limit
setting.

Tuning Step #7Saving the Tuning Parameters. When servo tuning is complete, closing the tuning
utility will prompt this message about saving the Auto Initialize settings, selecting Yes will store all
settings for all installed axes in the MCAPI.INI file (in the Widows folder). Selecting No will cause all
settings to be discarded.

Motion Control

Precision MicroControl

82

!

Electing to save the Auto Initialize settings causes the Servo Tuning
utility to call the MCAPI Common Dialog function MCDLG_SaveAxis. All
servo parameters (PID, Trajectory, Limits, etc...) will be saved in the
dialog

To define these servo parameters from a user’s application program, call
the MCAPI Common Dialog function MCDLG_RestoreAxis.

Changing the Scale of the Slide Controls
At the bottom of each slide control is a value showing the current setting as a percentage of the
current maximum setting. To change the range of one or more slide controls, using the Setup Menu,
open the PID Setup dialog box (Setup – PID Setup).

Motion Control

DCX-PCI100 User’s Manual

83

Moving Motors with Motor Mover

After tuning the servo, and setting the trajectory parameters (Max. velocity, accel / decel) the axis is
ready to execute motion. The Motor Mover program (Start\Programs\Motion Control\Motion
Integrator\Motor Mover) allows the user to execute absolute, relative, and cycle move sequences,
monitor position and status of the axis. By selecting the Setup button the user can; change velocity
parameters (maximum velocity, acceleration/deceleration), PID parameters, and enable motion limits.

Motion Control

Precision MicroControl

84

Defining the Characteristics of a Move

Prior to executing any move, the user should define the parameters of the move. The components
that make up a move are:

// Set axis 1 maximum velocity
// Set axis 1 acceleration/deceleration
// Set Position mode
// Set target (10000), begin move

MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCMoveRelative(hCtlr, 1, 100000.0);

The parameters defined in the program example above specify a move to position 100,000. During
the move the velocity will not exceed 10,000 encoder counts per second. A trapezoidal velocity profile
will be calculated by the DCX. The rate of change (acceleration and deceleration) will be 100,000
encoder counts per second/per second, there by reaching the maximum velocity (10,000 counts per
second) in 100 msec’s. The resulting velocity and acceleration profiles follow:

Velocity
(encoder counts per second)

Time (msec's)

100 200 300 400 500 600 700 800 900 1000

2500

5000

10000

7500

Motion Control

DCX-PCI100 User’s Manual

85

100000

100000

Acceleration / Deceleration
(encoder counts per sec / sec)

Time (msec's)

Velocity Profile
The DCX-PCI100 uses a Trapezoidal Velocity Profile to calculate the trajectory of a move.

DCX Accel / Decel Profiles

Time

Accel
100,000 counts /

sec. / sec.

Decel
100,000 counts /

sec. / sec.

DCX-PCI100 Velocity Profile

Time

Max. Velocity
10,000 counts / sec.

Motion Control

Precision MicroControl

86

Point to Point Motion

To perform point to point motion of a servo the following steps are required:

// Enable the axis
// Enable Position mode
// define maximum velocity
// define acceleration/deceleration
// execute the move

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 25000.0);
MCMoveRelative(hCtlr, 1, 122.5);

 Constant Velocity Motion

To move a servo at a continuous velocity until commanded to stop:

// Enable the axis
// Enable Velocity mode
// define maximum velocity
// define acceleration/deceleration
// define the direction (positive or negative) of the move
// begin motion of axis 1
// wait for digital I/O #4 to be true
// reduce velocity
// wait for digital I/O #2 to be true
// stop the motion of axis 1

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetDirection(hCtlr, 1, POSITIVE);
MCGo(hCtlr, 1);
MCWait For DigitalIO(hCtlr, 4, TRUE);
MCSetVelocity(hCtlr, 1, 5000.0);
MCGo(hCtlr, 1);
MCWait For DigitalIO(hCtlr, 2, TRUE);
MCStop(hCtlr, 1);

Motion Control

DCX-PCI100 User’s Manual

87

Time in seconds

Velocity
(encoder counts per seconds)

1 2 3 4 5 6

2500

5000

7500

10000

Digital input #4 'turned on"
Digital input #2 'turned on"

Jogging
In some applications it may be necessary to have a means of manually positioning the motors. Since
the DCX is able to control the motion of servos with precision at both low and high speeds, all that is
required to support manual positioning is: .

• A PC with a game port
• A PC joystick
• PC based software that positions the axes in Velocity mode

Jogging without writing software
One of the tools provided with the MCAPI is the Joystick Demo. This tool allows the user to configure
and then jog one or two axes.

Figure 26: Joystick Demo program

Motion Control

Precision MicroControl

88

Using the Joystick Demo in your application program
After the MCAPI has been installed the source files for the Joystick Demo are available in the Motion
Control folder \Program Files\Motion Control\Motion Control API\Sources\Joy.

Defining Motion Limits

The DCX-PCI100 supports both ‘hard coded’ handling of End of travel or 'Hard' limit switch/sensors
and programmable soft limits.

Servo or stepper
motor

StageLead screw

Positive Limit
sensor

Negative Limit
sensor

Hard Limits
The Limit + /- inputs of all MC1XX motion control modules default to TTL low true operation. When a
limit input signal is pulled low (> 0.7V), the DCX will indicate that the input is active. Use the Motion
Integrator Motion System Setup Test Panel to test the limit sensors, wiring, and MC100, MC110/110
operation.

!

When limit error checking is enabled by the MCSetLimits() function, the
limit tripped flags (MC_STAT_PLIM_TRIP and MC_STAT_MLIM_TRIP)
indicate an error condition. For a normally closed limit switch, the
MC LIMIT INVERT parameter must be used to re define the active level

Motion Control

DCX-PCI100 User’s Manual

89

of the limit circuit.

The limit LED’s of the Motion Integrator Test Panel display the current
state (MC_STAT_PLIM and MC_STAT_MLIM), not the ‘tripped’ flag
(MC_STAT_PLIM_TRIP and MC_STAT_MLIM_TRIP) of the limit inputs.
The Motion Integrator Test Panel will indicate that a normally closed limit
switch is active until the switch is opened.

The DCX supports two levels of limit switch handling:

 Auto axis disable
 Simple monitoring

The MCAPI function MCSetLimits() allows the user to enable the Auto Axis Disable capability of the
DCX. This feature implements a hard coded operation that will stop motion of an axis when a limit
switch is active. This background operation requires no additional DCX processor time, and once
enabled, requires no intervention from the user’s application program. However it is recommended
that the user periodically check for a limit tripped error condition using the MCGetStatus(),
MCDecodeStatus() functions. The MCSetLimit() function provides the following limit flags:

Flag Description
MC_LIMIT_PLUS Enables the Positive/High hard limit
MC_LIMIT_MINUS Enables the Negative/Low hard limit
MC_LIMIT_BOTH Enables the Positive and Negative hard limits
MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active
MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH Decelerate and stop the axis when the hard limit input goes active
MC_LIMIT_INVERT Invert the active level of the hard limit input to high true. Typically used

for normally closed limit sensors

When a limit event occurs, motion of that axis will stop and the error flags (MC_STAT_ERROR and
MC_STAT_PLIM_TRIP or MC_STAT_MLIM_TRIP) will remain set until the motor is turned back on
by MCEnable(). The axis must then be moved out of the limit region with a move command
(MCMoveAbsolute(), MCMoveRelative()).

// Set the both hard limits of axis 1 to stop smoothly when tripped, ignore
// soft limits:
//

MCSetLimits(hCtlr, 1, MC_LIMIT_BOTH | MC_LIMIT_SMOOTH, 0, 0.0, 0.0);

// Set the positive hard limit of axis 2 to stop by turning the motor off.
// Because axis 2 uses normally closed limit switches we must also invert the
// polarity of the limit switch. Soft limits are ignored.

MCSetLimits(hCtlr, 2, MC_LIMIT_PLUS | MC_LIMIT_OFF | MC_LIMIT_INVERT, 0, 0.0,
0.0);

If the user does not want to use the Auto Axis Disable feature, the current state of the limit inputs can
be determined by polling the DCX using the MCGetStatus(), MCDecodeStatus() functions. The flag

Motion Control

Precision MicroControl

90

for testing the state of the Limit + input is MC_STAT_INP_PLIM. The flag for testing the state of the
Limit - input is MC_STAT_INP_MLIM.

Soft Limits
Soft motion limits allow the user to define an area of travel that will cause a DCX error condition.
When enabled, if an axis is commanded to move to a position that is outside the range of motion
defined by the MCSetLimit() function, an error condition is indicated and the axis will stop. The
MCSetLimit() function provides the following limit flags:

Flag Description
MC_LIMIT_PLUS Enables the High/Positive soft limit
MC_LIMIT_MINUS Enables the Low/Negative soft limit
MC_LIMIT_BOTH Enables the High and Low soft limits
MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active
MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH Decelerate and stop the axis when the hard limit input goes active

When a soft limit error event occurs, the error flags (MC_STAT_ERROR and
MC_STAT_PSOFT_TRIP or MC_STAT_MSOFT_TRIP) will remain set until the motor is turned back
on by MCEnable(). The axis must then be moved back into the allowable motion region with a move
command (MCMoveAbsolute(), MCMoveRelative()).

// Assume axis 3 is a linear motion with 500 units of travel. Set the both
// hard limits of this axis to stop abruptly. Set up soft limits that will
// stop the motor smoothly 10 units from the end of travel (i.e. at 10
// and 490).

MCSetLimits(hCtlr, 3, MC_LIMIT_BOTH | MC_LIMIT_ABRUPT, MC_LIMIT_BOTH |
MC_LIMIT_SMOOTH, 10.0, 490.0);

Motion Control

DCX-PCI100 User’s Manual

91

Homing Axes

When power is applied or the DCX is reset, the current position of all servo axes are initialized to zero.
If they are subsequently moved, the controller will report their positions relative to the position where
they were last initialized. At any time the user can call the MCSetPosition() function to re-define the
position of an axis.

In most applications, there is some position/angle of the axis (or mechanical apparatus) that is
considered 'home'. Typical automated systems utilize electro-mechanical devices (switches and
sensors) to signal the controller when an axis has reached this position. The controller will then define
the current position of the axis to a value specified by the user. This procedure is called a homing
sequence. The DCX is not shipped from the factory programmed to perform a specific homing
operation. Instead, it has been designed to allow the user to define a custom homing sequence that is
specific to the system requirements. The DCX provides the user with two different options for homing
axes:

 1) High level function calls using the MCAPI - Easy to program homing sequences using
 MCAPI function calls.

 2) MCCL Homing macro’s stored in on-board, non-volatile FLASH memory - When executed
 as background tasks, MCCL homing macro’s allow the user to home multiple axes
 simultaneously.

Verifying the operation of the Home Sensor
Most motion applications will utilize a home sensor as a part of the homing sequence. Use Motion
Integrator’s Connect Axis I/O Wizard or Motion System Setup Test Panel to verify the proper
operation of the encoder index.

Verifying the operation of the Index Mark of an Encoder
Most servo applications will utilize the Index mark of the encoder to define the ‘home’ position of an
axis. Use Motion Integrator’s Connect Encoder Wizard to verify the proper operation of the encoder
index.

Motion Control

Precision MicroControl

92

Homing a Rotary Stage (servo) with the Encoder Index
Many servo motor encoders generate an index pulse once per rotation. For a multi turn rotary stage,
where one rotation of the encoder equals one rotation of the stage, an index mark alone is sufficient
for homing the axis. When an axis need only be homed within 360 degrees no additional qualifying
sensors (coarse home) are required. The following MCAPI and MCCL command sequences will home
a multi turn rotary stage:

// MCAPI rotary axis homing sequence
//
// Configure axis, start homing
//
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCDirection(hCtlr, 1, MC_DIR_POSITIVE);
MCSetVelocity(hCtlr, 1, 5000.0);
MCGo(hCtlr, 3);

// Stop when index mark captured
//
MCFindIndex(hCtlr, 1, 0.0);
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.01);

// Move back to location of index mark
//
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCWaitForStop(hCtlr, 1, 0.01);

;MCCL homing sequence executed as a background task
;
GT0,1VM,1DI0,1SV50000,1GO,1FI0,1ST,1WS.01,1PM,1MN,1MA0,1WS.01

Motion Control

DCX-PCI100 User’s Manual

93

Homing a Servo Axis with Coarse Home and Encoder Index Inputs
A typical axis will incur multiple rotations of the motor/encoder over the full range of travel. This type of
system will typically utilize a coarse home sensor to qualify which of the index pulses is to be used to
home the axis. The Limit Switches (end of travel) provide a dual purpose:

 1) Protect against damage of the mechanical components.
 2) Provide a reference point during the initial move of the homing sequence

 The following diagram depicts a typical linear stage.

Servo motor
and encoder

StageLead screw

Coarse Home
sensor

Positive Limit
sensor

Negative Limit
sensor

When power is applied or the DCX is reset, the position of the stage is unknown. The following
MCAPI and MCCL homing samples will move the stage in the positive direction. If the coarse home
sensor ‘goes active’ before the positive limit sensor, the Find Index command will redefine the position
of the axis when the index mark is captured. If the positive limit sensor ‘goes active’, the stage will
change direction, until both the coarse home sensor and the encoder index are active, at which point
the position will be redefined.

// MCAPI homing sequence (using positive limit, coarse home, and
// index mark)
//
// Enable limit switches, start velocity mode move
//
MCSetLimits(hCtlr, 1, MC_LIMIT_SMOOTH | MC_LIMIT_HIGH | MC_LIMIT_LOW, 0, 0, 0
);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetVelocity(hCtlr, 1, 10000.0);
MCDirection(hCtlr, 1, MC_DIR_POSITIVE);
MCGoEx(hCtlr, 1, 0.0));

//
// Wait for coarse home or positive limit inputs
dwStatus = MCGetStatus(hCtlr, 1);
while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_HOME) ||
 ! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_PLIM_TRIP)) {
 dwStatus = MCGetStatus(hCtlr, 1);
}

Motion Control

Precision MicroControl

94

// If positive limit switch active
//
dwStatus = MCGetStatus(hCtlr, 1);
if (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_PLIM_TRIP)) {
 MCEnableAxis(hCtlr, 1, TRUE);
 MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);
 MCSetVelocity(hCtlr, 1, 10000.0);
 MCGoEx(hCtlr, 1, 0.0));
 MCWaitForEdge(hCtlr, 1, TRUE);
 MCStop(hCtlr, 1);
 MCWaitForStop(hCtlr, 1, 0.1);
}

// Once within Coarse Home sensor range, reduce velocity
// Move until Coarse Home sensor is no longer active
//
MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);
MCSetVelocity(hCtlr, 1, 2000.0);
MCGoEx(hCtlr, 1, 0.0));
MCWaitForEdge(hCtlr, 1, FALSE);
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1)

// When Coarse Home no longer is active, reduce velocity
// Move back towards until index mark is captured
//
MCDirection(hCtlr, 1, MC_DIR_POSITIVE);
MCSetVelocity(hCtlr, 1, 1000.0);
MCGoEx(hCtlr, 1, 0.0));
MCWaitForEdge(hCtlr, 1, TRUE);
MCFindIndex(hCtlr, 1, 0.0);
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1)

// Issue position mode move to location of index mark (position 0)
//
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, 0.0);
MCWaitForStop(hCtlr, 1, 0.1);

; MCCL homing sequence (using positive limit, coarse home, and index mark)

MD1,1LM2,1LN3,MJ10 ;enable limits, call homing macro
MD10,1VM,1SV10000,1DI0,1GO,LU”STATUS”,1RL@0,IS25,MJ11,NO,IS17,MJ12,NO,JR-8
 ;start move, test for sensors (home
 ;and +limit)
MD11,1ST,1WS.01,1DI1,1GO,1WE1,1ST,1WS.1,1DI0,1GO,1WE0,1FI0,1ST,1WS.01,1PM,1MN,
1MA0
 ;if home sensor true, initialize on
 ;index pulse
MD12,1WS0.01,1MN,1DI1,1GO,1WE0,MJ11 ;move negative until home true

i

An axis can be homed even if no index mark or coarse home sensor is
available. This method of homing utilizes one of the limit (end of travel)
sensors to also serve as a home reference Please note that this method

Motion Control

DCX-PCI100 User’s Manual

95

is not recommended for applications that require high repeatability
and accuracy. To achieve the highest possible accuracy when using
this method, significantly reduce the velocity of the axis while polling for
the active state of the limit input.

The following MCAPI and MCCL sequences will home an axis at the position where the positive limit
sensor ‘goes active’:

// MCAPI homing sequence (using positive limit index mark)
//
// Enable limit switches, start velocity mode move
//
MCSetLimits(hCtlr, 1, MC_LIMIT_SMOOTH | MC_LIMIT_HIGH | MC_LIMIT_LOW, 0, 0, 0
);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetVelocity(hCtlr, 1, 10000.0);
MCDirection(hCtlr, 1, MC_DIR_POSITIVE);
MCGoEx(hCtlr, 1, 0.0));

//
// Wait for positive limit inputs
dwStatus = MCGetStatus(hCtlr, 1);
while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_PLIM_TRIP)) {
 dwStatus = MCGetStatus(hCtlr, 1);
}

// Once the positive limit switch is active, move negative until switch is inactive
//
MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);
MCSetVelocity(hCtlr, 1, 1000.0);
MCGoEx(hCtlr, 1, 0.0));
dwStatus = MCGetStatus(hCtlr, 1);
if (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_PLIM)) {
 dwStatus = MCGetStatus(hCtlr, 1)
}

// Stop the axis and define the leading edge of the limit switch as position 0
//
MCAbort(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1);
MCSetPosition(hCtlr, 1, 0.0);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);
MCMoveAbsolute(hCtlr, 1, -100.0);

; MCCL homing sequence (using positive limit, coarse home, and index mark)

MD1,1LM2,1LN3,MJ10 ;call homing macro
MD10,1VM,1DI0,1GO,LU”STATUS”,1RL@0,IS17,MJ11,NO,JR-5
 ;move and poll the Limit + sensor
MD11,1WS0.01,1MN,1DI1,1SV1000,1GO,LU”STATUS”,1RL@0,IC28,MJ12,NO,JR-5
 ;move negative until limit + inactive
MD12,1AB,1WS.1,1DH0,1PM,1MN,1MA-100 ;stop when limit + not active, define
 ;position as 0. Move to position –100.

Motion Control

Precision MicroControl

96

Motion Complete Indicators

When the DCX motion controller receives a move command, the DCX-PCI100 motherboard sends a
new target position to the appropriate servo control module (DCX-MC100, MC110 or DCX-MC110).
The servo module then calculates a trapezoidal velocity profile based on the:

• New target position
• Current settings for maximum velocity and acceleration/deceleration.

The trapezoidal velocity profile calculations result in position points that are evenly separated in time
(by 341 usec’s, the period of the PID filter). These calculated position points are known as Optimal
Positions. During a servo axis move there will always be some difference between the calculated
position (Optimal Position) and the current position, this difference is known as the Following Error.

Velocity
(encoder counts per second)

Time (msec's)4 8 12 16 20

25000

50000

100000

75000

Optimal position - Actual position = Following error

= Calculated trajectory= Actual trajectory = Following Error

Calculated trajectory complete
(MC_STAT_TRAJ flag set / status bit 3 set)

As the end of a move approaches, once the optimal position of an axis is equal to the move target, the
‘digital trajectory’ of the move has been completed and the MC_STAT_TRAJ status flag (MCCL
status trajectory complete bit 3) will be set. As shown in the preceding diagram, if a following error is
present during a move the axis will continue to move after the trajectory is complete, until the following
error is minimized.

This status flag is the conditional component of the MCIsStopped() and MCWaitForStop()
functions. As shown above, a following error can cause MC_STAT_TRAJ to be set before the axis
has reached its target. Issuing MCIsStopped() with a timeout value specified or MCWaitForStop()
with a Dwell time specified allows the user to delay execution move has been completed (following
error = 0). In the example below, the MCWaitForStop() command includes a Dwell of 5 msec’s,
allowing the axis to stop and settle.

MCMoveRelative(hCtlr, 2, 500.0); // move 500 counts
MCWaitForStop(hCtlr, 2, 0.005); // wait till MC_STAT_TRAJ set plus
 // 5 msec’s

Motion Control

DCX-PCI100 User’s Manual

97

Another method of indicating the end of a move is to use MCIsAtTarget() or MCWaitForTarget() .
To satisfy the conditions of MCIsAtTarget() and MCWaitForTarget() , the axis must be within the
Dead band range for the time specified by DeadbandDelay, both of which are defined within the
MCMotion data structure.

The Dead band and DeadbandDelay are used to define an acceptable ‘at target range’ for the axis.
The Dead band defines an ‘at target’ range (in encoder counts) of an axis. The DeadbandDelay
defines the amount of time that the axis must remain within the ‘at target’ range before the status flag
MC_STAT_AT_TARGET bit will be set.

MCMoveRelative(hCtlr, 1, 1250.0); // move 1250 counts
MCWaitForTarget(hCtlr, 1, 0.005); // wait till MC_STAT_TRAJ set plus
 // msec’s

On the Fly changes

During a point to point or constant velocity move of one or more axes, the DCX supports ‘on the fly’
changes of:

• Target
• Maximum Velocity
• Servo PID parameters

Changes made to any or all of these motion settings while an axis is moving will take affect within 8
msec’s.

i

If an “on the fly” target position change requires a change of direction the
axis will first decelerate to a stop. The axis will then move in the opposite
direction to the new target. This will occur if:

 1) The new target position is in the opposite direction of the current
 move
 2) A ‘near target’ is defined. A near target is a condition where the
 current deceleration rate will not allow the axis to stop at the
 new target position. In this case the axis will decelerate to a stop at
 the user define rate, which will result in an overshoot. The axis will
 then move in the opposite direction to the new target.

If an on the fly change requires the axis to change direction, the DCX
command interpreter will stall, not accepting any additional commands,
until the change of direction has occurred (deceleration complete).

i

The DCX-PCI100 does not support changing the acceleration on the fly

Motion Control

Precision MicroControl

98

!

Note – Changing the PID parameters (Proportional gain, Derivative gain,
Integral gain) ‘on the fly’ may cause the axis to jump, oscillate, or ‘error
out’.

i

‘On the fly’ velocity changes will not take effect until after the axis has be
re-enabled (MCEnableAxis function or aGO command).

Save and Restore Axis Configuration

The MCAPI Motion Dialog library includes MCDLG_SaveAxis() and MCDLG_RestoreAxis().
These high level dialogs allow the programmer to easily maintain and update the settings for servo
axes.

MCDLG_SaveAxis() encodes the motion controller type and module type into a signature that is
saved with the axis settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the
axis settings. If you make changes to your hardware configuration (i.e. change module types or
controller type) MCDLG_RestoreAxis() will refuse to restore those settings.

You may specify the constant MC_ALL_AXES for the wAxis parameter in order to save the
parameters for all axes installed on a motion controller with a single call to this function.

If a NULL pointer or a pointer to a zero length string is passed as the PrivateIniFile argument the
default file (MCAPI.INI) will be used. Most applications should use the default file so that configuration
data may be easily shared among applications. Acceptance of a pointer to a zero length string was
included to support programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

Motion Control

DCX-PCI100 User’s Manual

99

Application Solutions

Precision MicroControl

100

Chapter Contents

• Converting from a ISA bus DCX-PC100 Motion Controller

• Emergency Stop

• Encoder Rollover

• Flash Memory Firmware Upgrade

• Learning/Teaching Points

• Record and Display Motion Data

• Single Stepping MCCL Programs

• Manually Resetting the DCX

• Defining User Units

• DCX Watchdog

DCX-PCI100 User’s Manual

101

Application Solutions

Converting from an ISA bus DCX-PC100 motion controller
DCX-PCI100 Enhancements
The DCX-PCI100 motion control motherboard was designed specifically to provide PCI bus support
for DCX-MC100 and DCX-MC110 users. With the added processing power of the MIPS CPU the
following enhancements are now available to MC100/MC110 users:

• Faster command execution - typical execution time decreases from 750 usec's to 50 usec's
• User unit scaling for distance, rate, time, and position offsets
• Multi-tasking for MCCL subroutines
• Firmware stored in on board FLASH for easy firmware upgrades by the user
• Additional axis status data (Hard & Soft Limit Mode, user scaling settings, etc…)
• Invert Limit option supports both normally open and normally closed end of travel sensors
• User defined motion limits (soft limits)
• Graphical Servo Tuning program
• Variables for reading axis data (position, status, velocity, etc…)
• Floating point and integer parameters
• Additional error reporting

Required changes when converting to DCX-PCI100
The DCX-PCI100 enhancements precluded 100% backward compatibility with ISA applications. For
ISA-based (DCX-PC100) applications, programmed using either the MCAPI function library or MCCL
commands, when migrating to PCI-based DCX-PCI100, the following changes will be required:

• The DCX-PCI100 must be installed in a computer running Windows 2000/NT/ME/98, it
does not support Windows 3.X or 95.

• The PCI bus was not designed to carry high current DC voltages to PCI bus cards. To provide
the necessary current for DCX-MC110 Direct Motor Drive modules (as much as 4.0 amps) the

Chapter

8

Application Solutions

Precision MicroControl

102

DCX-PCI100 Motion Control Motherboard includes an auxiliary motor power connector (J33).
The pinout of connector J33 matches the power supply connections for 5 ¼ “ floppy disk drives
and HDD’s (Hard Disk Drive). A Floppy Drive Power Cable Splitter is used to directly connect
the PC’s +12 VDC supply to the DCX-PCI100. Floppy Drive Power Cable Splitters are
available at most computer and electronic supply stores, or can be purchased directly from
PMC (P/N 71.060.A).

• The DCX-PCI100 does not support DOS application programming, but it does support 32-bit
Console Mode applications. For additional information please refer to TechNOTE 1013
“Porting Legacy MS-DOS Motion Applications to Windows NT”.

• Upgrade the MCAPI – the DCX-PCI100 requires MCAPI revision 3.1.00 or higher. For
additional information on installing the MCAPI (and removing older revisions of the MCAPI)
please refer to the DCX-PCI100 User Manual, chapter 2, Controller and Software
Installation.

• Trajectory parameters (Set Velocity, Set Acceleration) are expressed in encoder counts per
second (velocity = counts/sec, accel/decel = counts/sec/sec) instead of encoder counts per
sample period (velocity = counts * .000341 *65,536; accel/decel = counts *.000341*.000341 *
65,536)

• Time units (WAit, Wait for Stop) are expressed in seconds instead of milliseconds (1WS5
converts to 1WS0.005)

• The Motor Table no longer uses hard coded addressing. For example, the command 1RL0
would load the status word of axis #1 into the accumulator of an ISA based DCX-PCI100. For
PCI based applications, the user first issues the Look Up variable command with the
parameter equal to the variable name (enclosed in quotation marks). Then issue a read
command (long, word, double, etc…) to the appropriate axis:

LU"STATUS",1RL@0 ;load axis #1 status into accumulator

Features no longer supported

• Manual positioning (jogging) by activating the Jog Right and Jog Left inputs
• Motherboard based general purpose I/O. The DCX-PC100 has 16 general purpose digital I/O

and 4 eight bit analog inputs. The DCX-PCI100 motherboard does not provide any general
purpose I/O. The DCX-MC400 Digital I/O module and the DCX-MC500 Analog I/O module are
supported by the DCX-PCI100, allowing the user to add I/O capability.

• The DCX-PCI100 does not support RS-232 or IEEE-488 communication interfaces

Application Solutions

DCX-PCI100 User’s Manual

103

Emergency Stop
Many applications that use motion control systems must accommodate regulatory requirements for
immediate shut down due to emergency situations. Typically these requirements do not allow an
emergency shut down to be controlled by a programmable computing device. The drawing below
depicts an application where an emergency stop must be a completely ‘hard wired’ event.

Computer Control
Panel

Motor

Servo
Amplifier

Motor

Servo
Amplifier

Motor

Servo
Amplifier AC Power In

Relay - NC

E-stop Switch

+5 VDC

Amplifier
Power Supply

AC In

This ‘hard wired’ E-stop circuit uses a relay to disconnect power from the servo amplifiers. The motors
and amplifiers would certainly be disabled, but the motion controller and the application program will
have no indication that an error condition exists.

Wiring the E-Stop switch to the DCX
There are two ways to wire the DCX so that it can monitor the E-stop switch:

 1) Connect the E-stop switch to one of the general purpose digital I/O lines
 2) Connect all of the Amplifier Fault inputs to the E-stop switch

E-stop switch connected to DCX General Purpose Digital Input
Wire the E-stop switch to a general purpose digital I/O (channel #1). Each DCX digital channel has a
4.7K resistor pulled up to +5 volts. A background task is used to monitor the state of the input. If the
channel is configured for low ‘low true’ operation, the input (from the E-stop switch) will report its state
as ‘off’ until the E-stop switch is activated. The WaitForDigitalIO function will stay active in
background until the input ‘goes true’.

Application Solutions

Precision MicroControl

104

AC Power In

Relay - NC

E-stop Switch

+5 VDC

Amplifier
Power Supply

DCX Digital I/O Channel #1
DCX-PCI100 connector J3 pin 19

3

QED

#1#3#5#7

#8 #6 #4 #2

if (MCBlockBegin (hCtlr,MC_BLOCK_TASK, 0) ==MCERR_NOERROR) {
 MCSetRegister (hCtlr, 100, 0, MC_TYPE_LONG);
 MCConfigureDigitalIO (hCtlr, 1, MC_DIO_LOW);
 MCWaitForDigitalIO (hCtlr, 1, TRUE);
 MCSetRegister hCtlr, 100, 1, MC_TYPE_LONG);
 MCEnableAxes(hCtlr, MC_ALL_AXES, FALSE);
 MCBlockEnd (hCtlr, NULL);
}

// periodically poll the user register #100 for a value of 1. If true the user
// can jump to an E-stop handling routine.

MCGetUserRegister (hCtlr, 100, &Estop, MC_TYPE_LONG);

E-stop switch connected to Amplifier Fault servo module input
The Amplifier Fault input of MC200 and MC210 servo modules can be used to disable motion with no
user software action required. The E-stop switch is wired to the Amplifier Fault input (connector J3 pin
10) of each servo module. Auto shut down of motion upon activation of the Amplifier Fault input is
enabled by the MCMotion structure member EnableAmpFault. When the E-stop switch is activated:

 1) The axis is disabled (PID loop terminated, Amplifier Enable output turned off)
 2) The status flag MC_STAT_AMP_FAULT will be set for each axis
 3) The status flag MC_STAT_ERROR will be set for each axis

When the E-stop condition has been cleared, motion can be resumed after issuing the
MCEnableAxis function with the parameter wAxis set to MC_ALL_AXES.

Application Solutions

DCX-PCI100 User’s Manual

105

AC Power In

Relay - NC

E-stop Switch

+5 VDC

Amplifier
Power Supply

MC100/110 pin 10

3

QED

#1#3#5#7

#8 #6 #4 #2

Encoder Rollover
The DCX motion controller provides 30 bit position resolution, resulting in a position range of
 –1,073,741,823 to 1,073,741,823. For an application where the axis is moving at maximum velocity
(750 thousand encoder counts per second), the encoder would rollover in approximately 23 minutes.
When the encoder rolls over, the reported position of the axis will change from a positive to a negative
value. For example, if the axis is at position 2,147,483,647 the next positive encoder count will cause
the DCX to report the position as –2,147,483,647.

If a user scaling other than 1:1 has been defined the DCX controller will report the position in user
units. The reported position at which the value will rollover is based on the user scaling. If user scaling
is set to 10,000 encoder counts to one position unit, the reported position will rollover at position
214,748.3647. The next positive encoder count will cause the DCX to report the position as
 –214,748.3647.

Encoder rollover during Position Mode moves
The DCX will not accept a Position Mode move that exceeds the rollover point, this would essentially
be handled as an error condition, except the PID filter will remain enabled.

Encoder rollover during Velocity Mode moves
No disruption or unexpected motion will occur if a rollover occurs during a Velocity mode
(MCSetOperatingMode, MC_MODE_VELOCITY) move. However, once the rollover point has been
crossed, the position reported by the MCTellPosition function will longer be valid.

Application Solutions

!

Prior to executing a velocity mode move in which the encoder position
may rollover the axis must be homed (MCFindIndex or MCSetPosition)
to position 0. Defining a offset to the home position will cause the axis to
pause at the rollover point.

Flash Memory Firmware Upgrade

Each time the PC is re-booted (reset or power cycle) the operating code (typically called firmware) for
the DCX-PCI100 is loaded into on-board SDRAM (Static Dynamic Random Access Memory). The
source files for the operating code is written to the PC’s hard disk drive during the installation of the
MCAPI.

PMC’s Flash Wizard (the DCX-PCI100 requires Flash Wizard rev. 2.20 or higher) is a windows utility
that allows the user to easily update the operational code. Code updates are available from the
MotionCD or from PMC’s web site www.pmccorp.com.

106

!

With W
during
Wizard

indows 98 and MCAPI 3
 code download. To comp
 and restart the PC.
.1.000 a verification error m
lete the firmware upgrade

Precision MicroControl

ay will occur
close Flash

Application Solutions

DCX-PCI100 User’s Manual

107

Learning/Teaching Points

As many as 256 points can be stored for each axis in the DCX's point memory by using the
MCLearnPoint() function. A stored point can be either the actual position of an axis
(MC_LRN_POSITION) or the target position of an axis (MC_LRN_TARGET).

The value MC_LRN_POINT would typically be used in conjunction with jogging. The operator would
jog the axes along the desired path, issuing the MCLearnPoint() command at regular intervals. The
MCMovePoint() command would then be used to ‘play back’ the path traversed by the operator.

For applications where the target point data was previously recorded and stored in the PC, the value
MC_LRN_TARGET would be used to load the target points into the DCX.

Once all points have been stored, the axes are commanded to move to the stored positions with
MCMoveToPosition(). The parameter wIndex indicates to which stored point the axis should move.

// Move axis 1 and store position in consecutive point storage locations.

WORD wIndex;
MCEnableAxis(hCtlr, 1, TRUE); // motor on
MCGoHome(hCtlr, 1); // start from absolute zero
MCWaitForStop(hCtlr, 1, 0.100);

for (wIndex = 0; wIndex < 5; wIndex++) {
 MCMoveRelative(hCtlr, 1, 1234.0); // move
 MCWaitForStop(hCtlr, 1, 0.100); // are we there yet?
 MCLearnPoint(hCtlr, 1, wIndex, MC_LRN_POSITION);
}

// Store several positions for axis 4 without actually moving the axis. Note // that
axis is disabled with MCEnableAxis() prior to storing positions

WORD wIndex;
MCEnableAxis(hCtlr, 4, FALSE); // motor off
for (wIndex = 0; wIndex < 5; wIndex++) {
 MCMoveRelative(hCtlr, 4, 2468.0); // nothing actually moves
 MCLearnTarget(hCtlr, 4, wIndex, MC_LRN_TARGET);
}

// This example moves to the stored positions, dwelling for 0.2 seconds at
// each point.

WORD wIndex;
MCEnableAxis(hCtlr, 4); // enable axis
for (wIndex = 0; wIndex < 5; wIndex++) {
 MCMoveToPoint(hCtlr, 4, wIndex); // move to next point
 MCWaitForStopped(hCtlr, 4, 0.2);
}

Application Solutions

Precision MicroControl

108

Record Motion Data
The DCX supports capturing and retrieving motion data from servo axes (MC100, MC110). Captured
position data is typically used to analyze servo motor performance and PID loop tuning parameters.
The MCAPI function MCCaptureData() is used to acquire motion data for a servo axis. PMC's Servo
Tuning utility uses this function to capture and display servo performance. This function supports
capturing:

• Actual Position versus time
• Optimal Position versus time
• Following error versus time

i

When initiated by the MCCaptureData function the DCX-PCI100 will
perform one Motion Data Capture operation every millisecond. If more
than one DCX motor module is installed, the period between data
captures for the target axis will be:

1 msec. X # of installed modules

For example if 6 motor modules are installed, and the MCCaptureData
function is called for axis #1, motor data will be captured for axis #1
every 6 msec’s.

 1 msec. X 6 modules = 6 msec’s

The time base for capturing data is the 1 millisecond. The function MCGetCapturedData() is used to
retrieve the captured data. The following example captures 1000 data points, then reads the captured
data into an array for further processing.

double Data[1000];

MCBlockBegin(hCtlr, MC_BLOCK_COMPOUND, 0);
MCCaptureData(hCtlr, 1, 1000, 0.001, 0.0);
MCMoveRelative(hCtlr, 1, 1000.0);
MCWaitForStop(hCtlr, 1, 0.0);
MCBlockEnd(hCtrlr, NULL);

// Retrieve captured actual position data into local array
//
if (MCGetCaptureData(hCtlr, 1, MC_DATA_ACTUAL, 0, 1000, &Data) {
 . . . // process data

Application Solutions

DCX-PCI100 User’s Manual

109

Resetting the DCX

The DCX supports software controlled reset. To reset the DCX-PCI100 motherboard and all installed
axes issue the MCAPI function MCReset(). For additional information please refer to the MCAPI
function descriptions later in this manual.

Most PMC application programs (Motor Mover, Servo Tuning, Wincontrol) allow the user to reset the
controller by selecting Reset Controller from the WinControl File menu.

Resetting the DCX-PCI100 from a user application program (with MCReset()) or from one of a PMC’s
software programs (by selecting Reset Controller from: Motor Mover, WinControl, Servo Tuning,
etc...) will cause the controller to revert to default settings (PID, velocity, accel/decel, limits, etc...). For
additional information on restoring user defined settings please refer to the Motion Control Dialog
function MCDLG_RestoreAxis.

!

In the event of a ‘hang up’ of the application program and/or controller,
the application program may fail to resume operation after issuing the
MCReset() function. The user will have to terminate and then re-open
the application program.

i

 Until the DCX has fully re-initialized the Reset Relay (connector J5 pins
2 and 4) will be energized.

Application Solutions

Precision MicroControl

110

Single Stepping MCCL Programs

While the DCX is executing any Motion Control Command Language (MCCL) macro program, the
user can enable single step mode by entering <ctrl> . Each time this keyboard sequence is
entered, the next MCCL command in the program sequence will be executed. The following macro
program will be used for this example of single stepping:

MD10,WA1,1MR1000,1WS.1,1TP,1MR-1000,1WS.1,1TP,RP

This sample program will: wait for 1 second, move 1000 encoder counts, report the position 100
msec’s after the calculated trajectory is complete, move -1000 encoder counts, report the position 100
msec’s after the calculated trajectory is complete, repeat the command sequence.

This command sequence can be entered directly into the memory of the DCX by typing the command
sequence in the terminal interface program WinCtl32.exe or by downloading a text file via
WinControl’s file menu.

To begin single step execution of the above example macro enter MC10 (call macro #10) then <ctrl>
 the following will be displayed:

 {C1,MC10} 1MR1000 <

The display format of single step mode is: {Command #,Macro #} Next command to be executed

To end single stepping and return to immediate MCCL command execution press <Enter>. To abort
the MCCL program enter <Escape>. Single step mode is not supported for a MCCL sequence that is
executing as a background task.

Application Solutions

DCX-PCI100 User’s Manual

111

Defining User Units
When power is applied or the DCX is reset, it defaults to encoder counts as its units for motion
command parameters. If the user issues a move command to a servo with a target of 1000, the DCX
will move the servo 1000 encoder counts. In many applications there is a more convenient unit of
measure than the encoder counts of the servo. If there is a fixed ratio between the encoder counts
and the desired 'user units', the DCX can be programmed with this ratio and it will perform
conversions implicitly during command execution.

Defining user units is accomplished with the function MCSetScale() which uses the MCSCALE data
structure. This function provides a way of setting all scaling parameters with a single function call
using an initialized MCSCALE structure. To change scaling, call MCGetScale(), update the
MCSCALE structure, and write the changes back using MCSetScale().

MCScale Data Structure

typedef struct {

double Constant; // Define output constant
 double Offset; // Define the work area zero
 double Rate; // Define move (vel., accel, decel) time
units
 double Scale; // Define encoder scaling
 double Zero; // Define part zero
 double Time; // Define time scale

} MCMOTION;

Setting Move (Encoder) Units
The value of the Scale member is the number of encoder counts per user unit. For example, if the
servo encoder on axis 1 has 1000 quadrature counts per rotation, and the mechanics move 1 inch per
rotation of the servo, then to setup the controller for user units of inches:

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Scale = 1000.0; // 1000 encoder counts/inch
MCSetScale(hCtlr, 3, &Scaling);

Prior to issuing the Scale member, the parameters to all motion commands for a particular axis are
rounded to the nearest integer. After setting a new encoder scale and calling MCEnableAxis() to
initialize the axis, motion targets are multiplied by the ratio prior to rounding to determine the correct
encoder position. Calling the MCGetPosition() will load the scaled encoder position.

i

Note – setting a user scale other than 1:1 will also scale trajectory
settings (Velocity, acceleration/deceleration) but not PID settings.

Trajectory Time Base

Application Solutions

Precision MicroControl

112

The value of the Rate member sets the time unit for velocity, acceleration/deceleration values, to a
time unit selected by the user. If velocities are to be in units of inches per minute, the user time unit is
a minute. The value of the Rate member is the number of seconds per 'user time unit'. If the velocity
and accel/decel are to be specified in units of inches per minute and inches per minute per minute for
axis 1, then the Rate value should be set to 60 seconds/1 minute = 60 (1UR60). The function
MCEnableAxis() must be issued before the user rate will take effect.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Rate = 60.0; // set rate to inches per minute
MCSetScale(hCtlr, 3, &Scaling);

Typical Rate values
Time Unit User Rate Conversion
second 1 (default)
minute 60
hour 3600

Defining the Time Base for Wait commands
For the MCWait(), WaitForStop() and WaitForTarget() functions, the default units are seconds. By
setting the member Time, these three commands can be issued with parameters in units of the user's
preference. The parameter to member is the number of 1 second periods in the user's unit of time. If
the user prefers time parameters in units of minutes, Time = 60 should be issued.

MCSCALE Scaling;

MCGetScale(hCtlr, &Scaling);
Scaling.Time = 60.0; // set Wait time unit to minutes
MCSetScale(hCtlr, &Scaling);

Defining a System/Machine zero
The member Offset allows the user to define a ‘work area’ zero position of the axis. The Offset value
should be the distance from the servo motor home position, to the machine zero position. This offset
distance must use the same units as currently defined by set User Scaling command. Offset does not
change the index or home position of the servo motor, it only establishes an arbitrary zero position for
the axis.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Offset = 12.25; // define offset to 12.25 inches
MCSetScale(hCtlr, 3, &Scaling);

Defining a Part Zero
The member Zero would typically be used in conjunction with Offset to define a ‘part zero’ position. A
PCB (Printed Circuit Board) pick and place operation is a good example of how this function would be
used. After a new PCB is loaded and clamped into place the X and Y axes would be homed. The
Offset member is used to define the ‘work area’ zero of the PCB. The Zero member is used to define
the ‘part program’ or ‘local’ zero position. This way a single ‘part placement program’ can be
developed for the PCB type, and a ‘step and repeat’ operation can be used to assemble multiple part
assemblies.

Application Solutions

DCX-PCI100 User’s Manual

113

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Offset = 12.25; // define offset to 12.25 inches
Scaling.Zero = 1.25; // define ‘part zero’ to 1.25 inches
MCSetScale(hCtlr, 3, &Scaling);

XY Pick and Place Assembly

PCB clamp assembly

X & Y servo
motor home

Work area
zero

(UserOffset)
Part program zero

(User Zero)

Application Solutions

Precision MicroControl

114

DCX Watchdog

The DCX incorporates a watchdog circuit to protect against improper CPU operation.

After a reset or power cycle, once the firmware (operational code) has been loaded by the operating
system (approximately 3 seconds), the watchdog circuit is enabled.

If the DCX processor fails to properly execute firmware code for a period of 10 msec's, the watchdog
circuit will 'time out' and the on-board reset will be latched by the ‘watchdog reset relay’. This in turn
will hold the DCX modules in a constant state of reset. All motor command/drive outputs will be
disabled. When the watchdog circuit has tripped, the green Run LED will be disabled. To clear the
watchdog error either:

 Cycle power to the computer (recommended)
 Reset the computer

!

Note: If the watchdog trips while a MCAPI based application program is
running, manually resetting the DCX will probably not allow the
application program to continue operation.

Application Solutions

DCX-PCI100 User’s Manual

115

General Purpose I/O

Precision MicroControl

116

Chapter Contents

• DCX Motherboard Digital I/O

• Configuring the DCX Digital I/O

• Using the DCX Digital I/O

• DCX Motherboard Analog Inputs

• DCX Module Analog I/O

• Using the Analog I/O

• Calibrating the MC500/MC520 +/- 10V Analog Outputs

DCX-PCI100 User’s Manual

117

General Purpose I/O

DCX Motherboard Digital I/O

The DCX-PCI100 Motion Controller motherboard has 16 general purpose digital I/O channels.
Channels 1 – 8 are TTL inputs and channels 9 – 16 are TTL outputs. These signals can be accessed
on connector J3 of the motherboard. The DCX-PCI100 section of the Connectors, Jumpers, and
Schematics chapter includes a pin-out for this connector. Each digital channel is configured via
software (high true or low true).

Interfacing to the ‘Outside World’
The TTL digital I/O channels can be connected directly to external circuits if output loading (1ma
maximum sink/source) and input voltages (0.0V to +5.0V) are within acceptable limits.

The DCX Digital I/O channels are not suitable for driving optical
isolators, relays solenoids, etc...

Alternatively, a DCX-BFO22 interface board can be used to connect the module's I/O to a relay rack in
order to provide optically isolated inputs and outputs.

The DCX-BFO22 interface board provides a convenient means of connecting the DCX-PCI100 TTL
digital I/O channels to a 16 position relay rack available from two manufacturers, Opto22 (P/N PB16H)
and Grayhill (P/N 70RCK16-HL). These relay racks accept up to 16 optically isolated input or output
modules for interfacing with external electrical systems. Using one of these relay racks and a DCX-
BFO22, an optically isolated I/O module can be connected to each of the DCX's digital I/O channels.

Chapter

9

General Purpose I/O

Precision MicroControl

118

3

QED

#1#3#5#7

#8 #6 #4 #2

DCX-BF022

1 25
J2

As shown above, the DCX-BFO22 plugs directly into the relay rack's 50 pin header connector and
then connects to the DCX-PCI100 via a 26 conductor ribbon cable. Note that the relays are numbered
sequentially starting from 0, while the DCX digital I/O channels are numbered sequentially starting
with 1.

Although the relay rack has screw terminals for connecting a logic supply, it is not necessary to make
this connection. By installing a shorting block on jumper JP17 of the BFO22, the 5 volt supply of the
DCX will be supplied to the relay rack.

For detailed information on configuring the DCX-BF022, please refer to the schematic and jumper
table in the Connectors, Jumpers, and Schematic chapter later in this manual.

Configuring the DCX Digital I/O

The configuration of both the DCX-PCI100 and the DCX-MC400 digital I/O channels is accomplished
using either PMC’s Motion Integrator software or the MCAPI function MCConfigureDigitalIO(). The
screen shot that follows shows the Motion Integrator Digital I/O test panel. This tool is used to both
configure each I/O channel and then verify its operation. A comprehensive on-line help document is
provided.

General Purpose I/O

DCX-PCI100 User’s Manual

119

Each DCX-PCI100 digital I/O channel is individually programmable as:

 High true/Positive logic (MC_DIO_HIGH) or Low true/Negative logic (MC_DIO_LOW)

Each DCX-MC400 digital I/O channel is individually programmable as:

 Input (MC_DIO_INPUT) or Output (MC_DIO_OUTPUT)
 High true/Positive logic (MC_DIO_HIGH) or Low true/Negative logic (MC_DIO_LOW)

The 16 channels of the DCX-PCI100 motherboard are defined as channels 1 – 16. If one or more
DCX-MC400 Digital I/O modules are installed, the additional I/O channels are assigned to
succeeding channel/numbers in blocks of 16 (e.g. 17-32, 33-48, etc.). All I/O channels accept the
same configuration, monitoring and control.

i

Note – If a BFO22 interface and relay rack are connected to the DCX
Digital I/O, a MC_DIO_LOW command set to ALL_AXES should be
issued to the DCX. This will cause "normally open" relays to turn on
when the Channel oN command is issued, and off when the Channel oFf
command is issued.

General Purpose I/O

Precision MicroControl

120

This example configures all the digital I/O channels (PCI100 channels 9 – 16 and all MC400
channels) on a controller for outputs, then turns each channel on (in order) for a half second.

MCPARAM Param;

MCGetMotionConfig(hCtlr, &Param);

for (i = 9; i <= Param.DigitalIO; i++) {
 MCConfigureDigitalIO(hCtlr, i, MC_DIO_OUPUT | MC_DIO_HIGH);

for (i = 1; i <= Param.DigitalIO; i++) {
 MCEnableDigitalIO(hCtlr, i, TRUE);
 MCWait(hCtlr, 0.5);
 MCEnableDigitalIO(hCtlr, i, FALSE);
}

Using the DCX Digital I/O
After configuring the Digital I/O channels, three MCAPI functions are available for activating and
monitoring the digital I/O:

 MCEnableDigitalIO() set digital output channel state
 MCGetDigitalIO() get digital input channel state
 MCWaitForDigitalIO() wait for digital input channel to reach specific state

Enable Digital IO

Turns the specified digital I/O on or off, depending upon the value of bState.

 TRUE Turns the channel on.
 FALSE Turns the channel off.

The I/O channel selected must have previously been configured for output using the
MCConfigureDigitalIO() command. Note that depending upon how a channel has been configured
"on" (and conversely "off") may represent either a high or a low voltage level.

compatibility: MC400
see also: Configure Digital IO

C++ Function: void MCEnableDigitalIO(HCTRLR hCtlr, WORD wChannel, short int bState);
Delphi Function: procedure MCEnableDigitalIO(hCtlr: HCTRLR; wChannel: Word; bState: SmallInt);
VB Function: Sub MCEnableDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
MCCL command: CF, CN

LabVIEW VI:

General Purpose I/O

DCX-PCI100 User’s Manual

121

Get Digital IO

Returns the current state of the specified digital I/O channel. This function will read the current state of
both input and output digital I/O channels. Note that this function simply reports if the channel is "on"
or "off"; depending upon how a channel has been configured "on" (and conversely "off") may
represent either a high or a low voltage level.

compatibility: MC400
see also:

C++ Function: short int MCGetDigitalIO(HCTRLR hCtlr, WORD wChannel);
Delphi Function: function MCGetDigitalIO(hCtlr: HCTRLR; wChannel: Word): SmallInt;
VB Function: Function MCGetDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
MCCL command : TC

LabVIEW VI:

Wait for Digital IO

Waits for the specified digital I/O channel to go on or off, depending upon the value of bState.

compatibility: MC400
see also: Wait for digital channel on

C++ Function: void MCWaitForDigitalIO(HCTRLR hCtlr, WORD wChannel, short int bState);
Delphi Function: procedure MCWaitForDigitalIO(hCtlr: HCTRLR; wChannel: Word; bState: SmallInt);
VB Function: Sub MCWaitForDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
MCCL command: WF, WN

LabVIEW VI:

This example configures all the digital I/O channels on a controller for output, then turns each channel
on (in order) for a half second.

General Purpose I/O

Precision MicroControl

122

DCX Module Analog I/O

The DCX-MC500 Analog I/O Module provides analog I/O capability for a DCX Motion Controller. One
or more of these modules can be installed in any available module position on a DCX motherboard.
Analog input channels can be used to monitor signal levels from external sensors. Output channels
can be used to control external devices.

Three models of the DCX-MC500 are available:
Part Number Description
DCX-MC500 4 Inputs and 4 Outputs
DCX-MC510 4 Inputs
DCX-MC520 4 Outputs

On each DCX-MC500/510 Analog I/O Module all analog input channels are numbered sequentially in
groups of four. Likewise, all analog output channels are numbered sequentially in groups of four.
When installed on the DCX-PCI100, the MC500/510 in the lowest module location will have its 4
analog input channels defined as 1 – 4. The four analog inputs of a MC500/510 installed in the next
lowest module location will be defined as channels 5 – 8.

Because the DCX controller board is implemented in digital electronics, all analog input signals must
be converted into a representative numerical value. This function is done by an Analog to Digital
Converter (ADC) on the DCX-MC500/510. Similarly, analog output signals originate on the DCX board
as numerical values. These numbers must be written to a Digital to Analog Converter (DAC) on the
DCX-MC500/520, which converts them to a corresponding analog output signal level.

The DCX-MC500 is designed to accurately measure voltage levels on the input channels. These
inputs are very high impedance with leakage currents less than 10 nano amps. The output channels
are designed to provide signals with accurate voltage levels. The current requirement from these
outputs should not exceed 10 milliamps.

Each of the analog input and analog output channels has 12 bits of resolution. This means that the
digital value read from the ADC, or the digital value written to DAC, must be in the range 0 to 4095.
For both inputs and outputs, a digital value of 0 translates to the lowest analog voltage. A digital value
of 4095 translates to the highest analog voltage.

Input signals on pins 1, 3, 5 and 7 of the module J3 connector are wired directly to the ADC. No
amplification or clamping to the input voltage range is provided on the module.

A voltage level greater than 5.6 volts will damage the analog input
channels of a DCX-MC5X0 module. The schematic below is
recommended to protect an analog input from damage due to an over
voltage condition. This circuit will limit the maximum voltage applied to
the A/D converter to 5.6 VDC.

General Purpose I/O

DCX-PCI100 User’s Manual

123

In some applications, the signals from a sensor may not be absolute voltage levels, but proportional to
some reference voltage. In these cases, it may be desirable to supply the reference signal to the ADC
on the module through pin 18 of the J3 connector (and setting jumper JP1 accordingly). This will result
in a "ratiometric" conversion of the input signal relative to the reference voltage.

The outputs from the DAC on the DCX-MC500 module are voltage levels in the range 0 to +5 volts.
These outputs have no gain or offset adjustment. These signals are available on pins 10, 12, 14 and
16 of the module J3 connector.

The outputs from the DAC are also connected to operational amplifiers on the module, which offset
and amplify them to provide a +/-10 volt range. Each of these outputs has a 20 turn trim pot for offset
adjustment, and a single turn pot for gain adjustment. The offset pot provides a minimum 0.5 volt
adjustment, and the gain pot provides a nominal 2% range adjustment. These output signals are
available on pins 2, 4, 6 and 8 of the module J3 connector.

After reset the outputs of the DCX-MC500 will be initialized to their mid-scale point. For the 0 to +5
volt outputs, this will be 2.5 volts. For the -10 to +10 volt outputs, this will be 0.0 volts.

Using the Analog I/O
The configuration and operation of the DCX-MC5X0 analog I/O channels is accomplished using either
PMC’s Motion Integrator program or the MCAPI functions MCSetAnalog() , MCGetAnalog(). The
screen capture that follows shows the Motion Integrator Analog I/O test panel. This tool is used to
both configure each I/O channel and then verify its operation. A comprehensive on-line help document
is provided.

General Purpose I/O

Precision MicroControl

124

Two MCAPI functions are available for setting and monitoring the MC500 analog I/O:

 MCSetAnalog() set digital output channel state
 MCGetAnalogIO() get digital input channel state

Get Analog

Reads the digitized input state of the specified input wChannel. The four 8-bit analog input channels
accessed on connectors J3 are numbered 1,2,3 and 4. For each of these channels, this function will
read a number between 0 and 255. These numbers are the ratio of the analog input voltage to the
reference input voltage multiplied by 256. The reference voltage for the first four channels must be
supplied to the DCX on the J3 connector pin 23, and can be any voltage between 0 and +5 volts DC.
The analog input channels on any installed MC500 modules will be numbered sequentially starting
with channel 5. See the description of Analog Inputs in the DCX General Purpose I/O chapter.

compatibility: MC500, MC510
see also: Set Analog

C++ Function: WORD MCGetAnalog(HCTRLR hCtlr, WORD wChannel);
Delphi Function: function MCGetAnalog(hCtlr: HCTRLR; wChannel: Word): Word;
VB Function: Function MCGetAnalog (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
MCCL command: TA

LabVIEW VI:

General Purpose I/O

DCX-PCI100 User’s Manual

125

Set Analog

Sets the output level of an analog channel. Analog output ports on MC500 and MC520 Analog
Modules accept values in the range of 0 to 4095 counts (12 bits). This range of values corresponds to
an output voltage of 0 to 5V or -10 to +10V, depending upon how the output is configured (See the
description of Analog Inputs in the DCX General Purpose I/O chapter).

compatibility: MC500, MC520
see also: Get Analog

C++ Function: void MCSetAnalog(HCTRLR hCtlr, WORD wChannel, WORD wValue);
Delphi Function: procedure MCSetAnalog(hCtlr: HCTRLR; wChannel, value: Word);
VB Function: Sub MCSetAnalog (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal Value As Integer)
MCCL command: OA

LabVIEW VI:

Calibrating the MC500/MC520 +/- 10V Analog Outputs:
The analog inputs of the DCX-MC500 require no calibration, and the only option is use of the internal
+5, or an external, reference voltage. The analog outputs with the 0 to +5 volt range also have no
adjustments. The reference for the DAC is fixed to the internal reference voltage.

The four 0.0 to +5.0 analog outputs require no calibration. The four +10 to –10 volt analog outputs are
calibrated at the factory. There are four single turn trim pots that are used to adjust the gain of each of
the four analog outputs. There are also four 20 turn trim pots for adjusting the offsets of each of the
analog outputs. It is strongly recommended that the +10 to –10 volt outputs be calibrated using the
Motion Integrator Calibration Wizard.

General Purpose I/O

Precision MicroControl

126

The analog outputs can also be calibrated using MCCL command sequences. For a description of
MCCL commands and the WinControl command interface utility please refer to the MCCL section
of the appendix at the end of this user manual. Refer to the module layout diagram in the
Connectors, Jumpers, and Schematics chapter of this user manual. Using the following command
sequence, and reading the analog output voltage level with a voltmeter, an analog output can be
calibrated to provide the specified -10 to +10 volt range:

AL0,OAn,WA2,AL2048,OAn,WA2,AL4095,OAn,WA2,RP

where: n = channel number = 1, 2, 3, 4, ...

This command sequence will cycle the specified analog output from the minus limit, to the mid-point,
to the positive limit. There is a 2 second delay at each voltage level, during which the voltmeter can
settle and display the current reading.

The first step in calibrating an analog output is to adjust the gain using the single turn pot to achieve a
20.00 volt "swing". This is the difference between the most positive level reading, and the most
negative level reading. It is not necessary for the two readings to be centered about 0 volts for this
step.

The second step is to adjust the offset using the 20 turn pot. This adjustment will place the mid-point
of analog output at the 0 volt level. When the output changes to the mid- point level turn the pot to
achieve a 0.000 volt reading.

After the second step of the calibration procedure, the output swing should still be 20.00 volts. If not,
repeat steps 1 and 2 again.

General Purpose I/O

DCX-PCI100 User’s Manual

127

Motion Control API Introduction

Precision MicroControl

128

Chapter Contents

• Introduction

• Motion Control API Function Quick Reference Tables

DCX-PCI100 User’s Manual

129

Motion Control API Introduction

The Motion Control Application Programming Interface (MCAPI) implements a powerful set of high
level functions and data structures for programming motion control applications. Although this manual
has been written for the latest version of the MCAPI software, there are still remnants of deprecated
functions. The older functions will still work with this version, however, we recommend that the newer
functions be migrated to when feasible.

The API is backwards compatible, and applications may use the most current version of the MCAPI
for products of varying generations. Care must be taken to note the exceptions of newer features that
older products might not be capable of utilizing, as well as older functions may not be relevant to new
controllers. Please observe the compatibility section in each function.

Function Listing Introduction
An example of a function listing is shown below. What follows the example is a brief description of
what should be found in each of the respective headings.

MCEnableAxis

MCEnableAxis() turns the specified axis on or off.

void MCEnableAxis(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int state // Boolean flag for on/off setting of axis
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Chapter

10

Motion Control API Function Intreoduction

Precision MicroControl

130

axis Axis number to turn on or off.
state Flag to indicate if this axis should be turned on or turned off:

Value Description
TRUE Turn on axis.
FALSE Turn off axis.

Returns
This function does not return a value.

Comments
This function does much more than just enable or disable axis. However, as the name implies, the
selected axis(axes) will be turned on or off depending upon the value of state. Note that an axis must
be enabled before any motion will take place. Issuing this command with axis set to MC_ALL_AXES
will enable or disable all axes installed on hCtlr.

i

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

If axis is off and then turned on, the following events will occur.

• The target and optimal positions are set to the present encoder position.
• The offset from MCFindEdge(), MCFindIndex() or MCIndexArm() is applied.
• The data passed by MCSetScale() are applied.
• MC_STAT_AMP_ENABLE will be set.
• MC_STAT_AMP_FAULT, if present, will be cleared.
• MC_STAT_ERROR, if present, will be cleared.
• MC_STAT_FOLLOWING, if present, will be cleared.
• MC_STAT_MLIM_TRIP, if present, will be cleared.
• MC_STAT_MSOFT_TRIP, if present, will be cleared.
• MC_STAT_PLIM_TRIP, if present, will be cleared.
• MC_STAT_PSOFT_TRIP, if present, will be cleared.

If axis is on and then turned on again, the following events will occur.

• The offset from MCFindEdge(), MCFindIndex() or MCIndexArm() is applied.
• The data passed by MCSetScale() are applied.

!

Calling this function to enable or disable an axis while it is in motion is
not recommended. However, should it be done, axis will cease the
current motion profile, and MC_STAT_AT_TARGET will be set.

Compatibility
There are no compatibility issues with this function.

Motion Control API Introduction

DCX-PCI100 User’s Manual

131

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableAxis(hCtlr: HCTRLR; axis: Word; state: SmallInt); stdcall;
VB: Sub MCEnableAxis (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)
LabVIEW:

MCCL Reference
MF, MN

See Also
MCAbort(), MCStop()

Each function definition begins with a brief introductory description that explains what the function is
used for.

Following the description, a grey box contains the C/C++ function prototype. Here each of the
parameters is listed with its type and a short description for a quick overview.

Parameters then further explains in more detail what each of the parameters means. Here a table, if
applicable, will be included listing the allowable values for the preceding parameter. When values are
listed, they will be given as self documenting constants. A complete listing of the self documenting
constants can be found in Appendix B.

Returns describes what the function will return and explains what those values mean. The self
documenting constants will be referenced when possible.

Comments describes the function in even more detail. Explanation will range from why the function is
used, to how it is used, where it could cause problems and potential alternatives.

Occasionally, the following two boxes can be found in the comments section and contain relevant
information that needs to be emphasized. The first box aids in the understanding of the function. The
second box warns of scenarios that will more than likely cause problems.

i
Information to assist the programmer.

!
Warning to help the programmer avoid potential problems.

Motion Control API Function Intreoduction

Precision MicroControl

132

Compatibility gives information as to which motion control cards or modules will not work with the
function. Generally, only exceptions will be listed, as to provide a more concise listing.

Requirements lists which header files, library, and the MCAPI version that must be used. Obviously,
only the header file which pertains to the development environment must be used. The version of the
MCAPI that is referenced is the earliest version that supports the function, so any version higher that
is used will not cause a problem.

Prototypes lists the function prototypes for Delphi/Pascal, Visual Basic, and LabVIEW. As shown,
each of the parameters are listed with their type. Not all functions will be available in all environments
and will be noted as “Not Supported” when exceptions exist.

MCCL Reference lists the MCCL level commands that comprise the high level function. More
information can be found in the Motion Control Command Language (MCCL) Reference Manual
specific to your controller on how each of these commands works. Not all functions will be comprised
of speaking to the board with MCCL commands, in which cases there will be no equivalent
commands.

See Also lists related functions. Some of these functions may be alternatives to be used, while others
may be the corresponding get function to a set function. Yet there will be other functions that must be
used as in tandem with another function.

Motion Control API Introduction

DCX-PCI100 User’s Manual

133

Motion Control API Function Quick Reference Tables
The following tables show how functions have been classified categorically. Although several
functions could quite logically be listed in multiple categories, each function will appear in only one
chapter, which is noted by the table’s heading. The organization follows closely to prior manuals and
the online help. The grouping of functions in this manner gives a new user of the MCAPI software a
chance to find similar functions in one place. For a handy quick reference printout, please refer to the
MCAPI Quick Reference Card, which can be found on our website (www.pmccorp.com) under
support and then Motion Control API. The quick reference card lists all of the following functions, as
well as the data structures and the constants, in a convenient, alphabetical listing.

Parameter Setup Functions
Function Description
MCConfigureCompare() configure high-speed position compare
MCSetAcceleration() set Acceleration for an axis
MCSetAuxEncPos() set the position of the auxiliary encoder
MCSetCommutation() configure commutation
MCSetContourConfig() set contour configuration settings
MCSetDeceleration() set deceleration for an axis
MCSetDigitalFilter() configure digital filter
MCSetFilterConfigEx() set the PID filter parameters
MCSetGain() set the proportional gain for a servo axis
MCSetJogConfig() set jogging configuration for axis
MCSetLimits() configure hard and soft limits for an axis
MCSetModuleInputMode() configure stepper module input mode
MCSetModuleOutputMode() define the output type
MCSetMotionConfigEx() set motion parameters (velocity, accel, step rate, dead band, etc...)
MCSetOperatingMode() set the mode of motion (position, velocity, contour, torque)
MCSetPosition() set the current position of an axis
MCSetProfile() select a motion profile (trapezoidal, s-curve, parabolic)
MCSetRegister() set general purpose user register
MCSetScale() set the scaling factors for an axis
MCSetServoOutputPhase() select normal or reverse phasing for a servo axis
MCSetTorque() set output voltage limit for servo
MCSetVectorVelocity() set the vector velocity of a contoured move
MCSetVelocity() set the maximum velocity for a one axis move

I/O Functions
Function Description
MCConfigureDigitalIO() configure digital I/O channels (input, output, high true, low true)
MCEnableDigitalIO() set the state of a digital output channel
MCGetAnalog() read analog input channel value
MCGetDigitalIO() get the state of a digital input channel
MCGetDigitalIOConfig() get digital I/O channel configuration
MCSetAnalog() set the value of an analog output
MCWaitForDigitalIO() wait for digital I/O channel to reach a specific state

Macro’s and Multi-Tasking Functions
Function Description
MCCancelTask() cancel a background task
MCMacroCall() call a MCCL macro
MCRepeat() inserts a repeat command into a macro or task sequence

http://www.pmccorp.com/

Motion Control API Function Intreoduction

Precision MicroControl

134

Motion Functions
Function Description
MCAbort() abort the current motion for an axis
MCArcCenter() sets the center point of an arc
MCArcEndAngle() defines the ending angle of an arc
MCArcRadius() defines the radius of an arc
MCCaptureData() initiate real time capture of position and servo loop data
MCContourDistance() set the path distance for user defined contour motion
MCDirection() set travel direction for velocity mode move
MCEdgeArm() arm edge input for position capture
MCEnableAxis() turn axis on or off
MCEnableBacklash() enable backlash compensation
MCEnableCapture() enable position capture
MCEnableCompare() enable position compare
MCEnableDigitalFilter() enable digital filter
MCEnableGearing() enable/disable gearing
MCEnableJog () enable/disable jogging for axis
MCEnableSync() enables cubic spline motion, synchronizes contour motion
MCFindAuxEncIdx() initialize the auxiliary encoder at the location of the index
MCFindEdge() initialize a stepper motor at the location of the home input
MCFindIndex() initialize a servo motor at the location of the encoder index input
MCGoEx() start a velocity mode motion, begin cubic spline motion sequence
MCGoHome() move axis to absolute position 0
MCIndexArm() arms encoder index capture
MCLearnPoint() store position in point memory
MCMoveAbsolute() move axis to absolute position
MCMoveRelative() move axis to relative position
MCMoveToPoint() move to position stored in point memory
MCReset() perform a software reset of the controller
MCStop() stop motion
MCWait() wait for a variable time period
MCWaitForEdge() wait for the home input
MCWaitForIndex() wait for the index input to go true.
MCWaitForPosition() wait for axis to reach absolute position
MCWaitForRelative() wait for axis to reach relative position
MCWaitForStop() wait for the calculated trajectory to be complete
MCWaitForTarget() wait for axis to reach target position

MCAPI Driver Functions
Function Description
MCBlockBegin() begin a compound commands (contour motion, macro’s, multi-tasking)
MCBlockEnd() end a compound commands (contour motion, macro’s, multi-tasking)
MCClose() close a controller (free handle)
MCGetConfigurationEx() obtain PMC controller hardware configuration
MCGetVersion() get the version of the DLL and device driver
MCOpen() open a controller (get handle)
MCReopen() re-opens existing controller handle for a new mode
MCSetTimeoutEx() set a timeout value for controller

Motion Control API Introduction

DCX-PCI100 User’s Manual

135

Reporting Functions
Function Description
MCDecodeStatus() axis status word decoding
MCErrorNotify() enables/disables error messages for application window
MCGetAccelerationEx() get current programmed acceleration for axis
MCGetAuxEncIdxEx() get last observed position of auxiliary encoder index pulse
MCGetAuxEncPosEx() get current position of auxiliary encoder
MCGetAxisConfiguration() get the axis type, location, and capabilities
MCGetBreakpointEx() get the most recent breakpoint position
MCGetCaptureData() retrieve captured axis data (current position, optimal position, error)
MCGetContourConfig() get contour configuration settings
MCGetContouringCount() get current contour count
MCGetCount() get count parameter of various modes
MCGetDecelerationEx() get current programmed deceleration for axis
MCGetDigitalFilter() get digital filter settings
MCGetError() returns the most recent controller error
MCGetFilterConfigEx() get the PID parameters
MCGetFollowingError() get the current programmed following error
MCGetGain() get the current proportional gain setting for an axis
MCGetIndexEx() get the last observed position of the primary encoder index pulse
MCGetInstalledModules() Enumerates the type of DCX modules
MCGetJogConfig() get jogging configuration for axis
MCGetLimits() get current hard and soft limit settings
MCGetModuleInputMode() get the current input mode for a stepper module
MCGetMotionConfigEx() get motion configuration
MCGetOperatingMode() get the current operating mode for a motor module
MCGetOptimalEx() get the current optimal position of an axis
MCGetPositionEx() get the current position of an axis
MCGetProfile() get the current profile type (trapezoidal, s-curve, parabolic)
MCGetRegister() get the contents of a general purpose register
MCGetScale() get the current programmed scaling factors for an axis
MCGetServoOutputPhase() get the output phase (normal or reversed) of a servo
MCGetStatus() get the axis status word
MCGetTargetEx() get the current target of an axis
MCGetTorque() get the current torque setting of an axis
MCGetVectorVelocity() get the current programmed vector velocity of an axis
MCGetVelocityEx() get the current programmed velocity of an axis
MCIsAtTarget() is axis at target position?
MCIsDigitalFilter() is digital filter enabled?
MCIsEdgeFound() has edge input gone true?
MCIsIndexFound() has index pulse been found?
MCIsStopped() is axis stopped?
MCTranslateErrorEx() translate numeric error code to text message

OEM Low Level Functions
Function Description
pmccmd() send a binary command
pmccmdex() send a binary command
pmcgetc() get ASCII character from controller
pmcgetram() read directly from controller memory
pmcgets() get ASCII string from controller
pmcputc() write ASCII character to controller
pmcputram() write directly to controller memory
pmcputs() write ASCII string to controller
pmcrdy() is the controller ready to accept a binary command
pmcrpy() read binary reply from controller
pmcrpyex() read binary reply from controller

Motion Control API Function Intreoduction

Precision MicroControl

136

Motion Dialog Functions
Function Description
MCDLG_AboutBox() display a simple About dialog box
MCDLG_CommandFileExt() get the file extension for MCCL command files
MCDLG_ConfigureAxis() display a servo or stepper axis setup dialog
MCDLG_ControllerDescEx() get a descriptive string for a motion controller type
MCDLG_ControllerInfo() get configuration information about a motion controller
MCDLG_DownloadFile() download an ASCII command file to a motion controller
MCDLG_Initialize() must be called before any other MCDLG functions or classes
MCDLG_ListControllers() get the types of motion controllers installed
MCDLG_ModuleDescEx() get a descriptive string for a module
MCDLG_RestoreAxis() restore the settings of an axis to a previously saved state
MCDLG_RestoreDigitalIO() restores the settings of digital I/O channels to previously saved states
MCDLG_SaveAxis() save the settings of an axis to an initialization file for later use
MCDLG_SaveDigitalIO() save the settings of digital I/O channels to an initialization file
MCDLG_Scaling() display a scaling setup dialog and allow changes to scaling parameters.
MCDLG_SelectController() display a list of installed controllers and allow selection of a controller

Motion Control API Introduction

DCX-PCI100 User’s Manual

137

MCAPI Data Structurex

Precision MicroControl

138

Chapter Contents

DCX-PCI100 User’s Manual

Data Structures

The following data structures allow the programmer to pass data to and from the controller in a simp
manner. Structures are the only way, short of using MCCL, to set and get certain parameters to and f
card. Functions listed in the "see also" section rely on these data structures. The chapters on Parame
and Reporting Functions contain the majority of the functions that require these structures.

MCAXISCONFIG
MCAXISCONFIG structure provides basic information about the type and configuration of a single

typedef struct {
 long int cbSize;
 long int ModuleType;
 long int ModuleLocation;
 long int MotorType;
 long int CaptureModes;
 long int CapturePoints;
 long int CaptureAndCompare;
 double HighRate;
 double MediumRate;
 double LowRate;
 double HighStepMin;
 double HighStepMax;
 double MediumStepMin;
 double MediumStepMax;
 double LowStepMin;
 double LowStepMax;
} MCAXISCONFIG;

Members
cbSize Size of the MCAXISCONFIG data structure, in bytes.
ModuleType Array of OEM axis type specifiers, one per axis:

Chapter

11

139

le and efficient
rom the motion control
ter Setup Functions

 motor axis.

MCAPI Data Structurex

Precision MicroControl

140

Value Description
MC100 Identifies a DC Servo axis with analog signal

output.
MC110 Identifies a DC Servo axis with motor output.
MC150 Identifies a stepper motor axis.
MC160 Identifies a stepper motor with encoder axis.
MC200 Identifies an Advanced Servo axis with analog

signal output.
MC210 Identifies an Advanced Servo axis with PWM motor

output.
MC260 Identifies an Advanced Stepper axis.
MC300 Identifies a DSP-Based Servo axis with analog

signal output.
MC302 Identifies a DSP-Based Dual Servo axes with dual

analog signal outputs.
MC320 Identifies a DSP-Based Brushless AC Servo axis

with dual analog signal outputs.
MC360 Identifies a DSP-Based Stepper axis.
MC362 Identifies a DSP-Based Dual Stepper axes.
MF300 Identifies this axis as an RS-232 communications

module. This module is not normally used with a
controller installed in a PC adapter slot.

MF310 Identifies this axis as an IEEE-488 (GPIB)
communications module. This module is not
normally used with a controller installed in a PC
adapter slot.

MC400 Identifies this axis as providing additional digital I/O
channels (16).

MC500 Identifies this axis as providing additional analog
channels.

DC2SERVO Identifies the dedicated servo output of a DC2
controller.

DC2STEPPER Identifies the optional stepper output of a DC2
controller.

MotorType Provides a simplified type identifier for the motor type (bit flags):

Value Description
MC_TYPE_SERVO Axis is a servo motor.
MC_TYPE_STEPPER Axis is a stepper motor.

CaptureModes Supported data capture modes for this axis (bit flags). One or more of the

following values may be OR'ed together:

Value Description

MCAPI Data Structures

DCX-PCI100 User’s Manual

141

Value Description
MC_CAPTURE_ACTUAL Axis can capture actual position data.
MC_CAPTURE_ERROR Axis can capture error position data.
MC_CAPTURE_OPTIMAL Axis can capture optimal position data.
MCCAPTURE_TORQUE Axis can capture torque data.

CapturePoints Maximum number of data points that may be captured.
CaptureAndCompare High speed position capture and compare:

Value Description
TRUE Feature is supported.
FALSE Feature isn’t supported.

HighRate Servo update period, in seconds, for High Speed mode (valid only for servo

modules).
MediumRate Servo update period, in seconds, for Medium Speed mode (valid only for servo

modules).
LowRate Servo update period, in seconds, for Low Speed mode (valid only for servo

modules).
HighStepMin Minimum step rate for High Speed mode (valid only for stepper modules).
HighStepMax Maximum step rate for High Speed mode (valid only for stepper modules).

MediumStepMin Minimum step rate for Medium Speed mode (valid only for stepper modules).
MediumStepMax Maximum step rate for Medium Speed mode (valid only for stepper modules).
LowStepMin Minimum step rate for Low Speed mode (valid only for stepper modules).
LowStepMax Maximum step rate for Low Speed mode (valid only for stepper modules).

Comments
Unlike the other MCAPI structures, the values in this structure are fixed by the hardware configuration and may not be
changed.

Before you call MCGetAxisConfiguration() you must set the cbSize member to the size of this data structure. C/C++
programmers may use sizeof() , Visual Basic and Delphi programmers will find current sizes for these data structures in
the appropriate MCAPI.XXX header file.

Visual Basic users please note that the value used for TRUE in the MCAXISCONFIG structure is the Windows standard
of 1, not the Basic value of -1. Direct comparisons, such as:

 If (Param.CanDoScaling = True) Then

will fail. To get correct results use the constant WinTrue, declared in the MCAPI.BAS include file:

 If (Param.CanDoScaling = WinTrue) Then

Compatibility
There are no compatibility issues with this data structure.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.0 or higher

MCAPI Data Structurex

Precision MicroControl

142

See Also
MCGetAxisConfiguration()

MCCOMMUTATION
MCCOMMUTATION commutation parameters for an axis.

typedef struct {
 long int cbSize;
 double PhaseA;
 double PhaseB;
 long int Divisor;
 long int PreScale;
 long int Repeat;
} MCCOMMUTATION;

Members
cbSize Size of the MCCOMMUTATION data structure, in bytes.
PhaseA Phase A setting, in degrees.
PhaseB Phase B setting, in degrees.
Divisor Commutation divisor.
PreScale Commutation prescale factor.
Repeat Commutation repeat count.

Comments
Setting Divisor, PreScale, or Repeat to negative one (-1) will cause MCSetCommutation() to skip setting that value.

Compatibility
The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, and DCX-AT200 controllers do not support a module which is
capable of onboard commutation. The MC300, MC302, MC360, and the MC362 modules do not support onboard
commutation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.2 or higher

See Also
MCSetCommutation()

MCCONTOUR
MCCONTOUR structure contains contouring parameters for an axis.

MCAPI Data Structures

DCX-PCI100 User’s Manual

143

typedef struct {
 double VectorAccel;
 double VectorDecel;
 double VectorVelocity;
 double VelocityOverride;
} MCCONTOUR;

Members
VectorAccel Acceleration value for motion along a contour path.
VectorDecel Deceleration value for motion along a contour path.
VectorVelocity Maximum velocity for motion along a contour path.
VelocityOverride Proportional scaling factor for vector velocity, may be changed while axes are in

motion.

Comments
The vector velocity parameter must be set prior to starting a contour path motion and can not be changed once the motion
has begun. To change velocity on the fly, set the velocity override to a value other than 1.0. This value is used to
proportionally scale the velocities.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
MCGetContourConfig(), MCSetContourConfig()

MCFILTEREX
MCFILTEREX structure contains the PID filter parameters for a servo axis, or the closed-loop parameters for a stepper
axis operating in closed-loop mode. Please see the online MCAPI Reference for the MCFILTER structure.

MCAPI Data Structurex

Precision MicroControl

144

typedef struct {
 long int cbSize;
 double Gain;
 double IntegralGain;
 double IntegrationLimit;
 long int IntegralOption;
 double DerivativeGain;
 double DerSamplePeriod;
 double FollowingError;
 double VelocityGain;
 double AccelGain;
 double DecelGain;
 double EncoderScaling;
 long UpdateRate;
} MCFILTEREX;

Members
cbSize Size of the MCFILTEREX data structure, in bytes.
Gain Proportional Gain setting of the PID loop.
IntegralGain Gain setting for the integral term of the PID loop.
IntegrationLimit Limit value for the integral term, limits the power the integral gain can use to

reduce error to zero.
IntegralOption Operating mode for the integral term of the PID loop:

Value Description
MC_INT_NORMAL Selects the normal (always on) operation of the integral term.
MC_INT_FREEZE Freeze the integral term while moving, re-enable after move

is complete.
MC_INT_ZERO Zero and freeze the integral term while moving, re-enable

after move is complete.

DerivativeGain Gain setting for the derivative term of the PID loop.
DerSamplePeriod Time interval, in seconds, between derivative samples.
FollowingError Maximum position error, default units are encoder counts.
VelocityGain Gain setting for the feed-forward gain of the PID loop, volts per encoder count

per second.
AccelGain Feed-forward acceleration gain setting.
DecelGain Feed-forward deceleration gain setting.
EncoderScaling Encoder counts per step scaling factor for closed-loop steppers (ignored for

servos).
UpdateRate This parameter is used to set the feedback loop rate for servo motors and

closed-loop steppers, or the maximum stepper pulse rate for open-loop stepper
motor axes:

Value Description
MC_RATE_UNKNOWN Returned if MCAPI cannot determine the current rate.
MC_RATE_LOW Selects the normal (always on) operation of the integral term.
MC_RATE_MEDIUM Freeze the integral term while moving, re-enable after move

is complete.
MC_RATE_HIGH Zero and freeze the integral term while moving, re-enable

after move is complete.

MCAPI Data Structures

DCX-PCI100 User’s Manual

145

Comments
The servo tuning utility program offers a convenient, interactive format for determining appropriate filter settings for your
servo/amplifier or closed-loop stepper.

When used with the DCX-PC100 and MC2xx series modules it is not always possible to read the UpdateRate parameter
from the motion controller (requires recent firmware). If the MCAPI cannot read back this parameter it will return the value
MC_RATE_UNKNOWN. If UpdateRate is set to MC_RATE_UNKNOWN and a call is made to
MCSetMotionConfigEx() the controller's UpdateRate value will not be changed.

Compatibility
VelocityGain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-loop steppers.
AccelGain is not supported on the DC2, DCX-PC100, or DCX-PCI100 controllers. DecelGain is not supported on the
DC2, DCX-PC100, or DCX-PCI100 controllers. EncoderScaling is not supported on servos. UpdateRate is not supported
on the DC2 or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.2 or higher

See Also
MCGetFilterConfigEx(), MCSetFilterConfigEx()

MCJOG
MCJOG structure defines jog parameters for an axis.

typedef struct {
 double Acceleration;
 double MinVelocity;
 double Deadband;
 double Gain;
 double Offset;
} MCJOG;

Members
Acceleration Acceleration rate for use with jogging.
MinVelocity Stepper motor jog minimum velocity (this parameter has no effect for servo

motors).
Deadband Deadband specifies a threshold value about the center position of the joystick

below which motion of the joystick will not effect motor position. This prevents
undesirable drifting of the motor due to mechanical and electrical variations in
the joystick.

Gain Gain value for jogging. This parameter is effectively multiplied by the current
joystick position to produce a velocity. To increase the maximum velocity, set
Gain to a larger value. To reverse the direction of motor travel with respect to
joystick direction Gain may be set to a negative value.

Offset Specifies the center position of the joystick, in volts.

MCAPI Data Structurex

Precision MicroControl

146

Comments
The jog settings determine the performance of an axis when the jogging inputs are active and jogging has been enabled.

Compatibility
The DCX-PCI controllers, DC2 stepper axes, MC150, and MC160 modules do not support jogging.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
MCEnableJog(), MCGetJogConfig(), MCSetJogConfig()

MCMOTIONEX
MCMOTIONEX structure defines basic motion parameters for an axis.

typedef struct {
 int cbSize;
 double Acceleration;
 double Deceleration;
 double Velocity;
 double MinVelocity;
 short int Direction;
 double Torque;
 double Deadband;
 double DeadbandDelay;
 short int StepSize;
 short int Current;
 WORD HardLimitMode;
 WORD SoftLimitMode;
 double SoftLimitLow;
 double SoftLimitHigh;
 short int EnableAmpFault;
} MCMOTIONEX;

Members
cbSize Size of the MCMOTIONEX data structure, in bytes.
Acceleration Acceleration rate for motion.
Deceleration Deceleration rate for motion.
Velocity Velocity for motion.
MinVelocity Stepper motor minimum velocity (this parameter has no effect for servo

motors).
Direction Sets the direction of travel for velocity mode operation. Note that the

interpretation of positive and negative will depend upon your hardware
configuration:

MCAPI Data Structures

DCX-PCI100 User’s Manual

147

Value Description
MC_DIR_POSITIVE Selects the positive travel direction.
MC_DIR_NEGATIVE Selects the negative travel direction.

Torque Sets the maximum output torque level for servos. When a servo is operated in

torque mode this value represents the continuous output level. The default
output units are volts, but this may be scaled using the Constant member of
the MCSCALE structure.

Deadband Sets the position dead band value.
DeadbandDelay Time limit that an axis must remain within the dead band area to qualify as "in

range". If this value cannot be read back from the controller the Motion Control
API function MCGetMotionConfigEx() will set this value to -1.
MCSetMotionConfigEx() ignores this parameter if the value is equal to -1.

StepSize Sets the step size output for stepper motor operation:

Value Description
MC_STEP_FULL Selects full step operation.
MC_STEP_HALF Selects half step operation.

Current Selects full or reduced current operation for stepper motors. Reduced current is

typically used with stepper motors when they are stopped in a single position
for an extended time to reduce motor heating.

Value Description
MC_CURRENT_FULL Selects full current (normal) operation.
MCCURRENT_HALF Selects half current (idle) operation.

HardLimitMode Enables hard (physical) limit switches and selects stopping mode. One or more

of the following values may be OR'ed together:

Value Description
MC_LIMIT_LOW Enables lower limit.
MC_LIMIT_HIGH Enables upper limit.
MC_LIMIT_ABRUPT Selects abrupt stopping mode when a limit is encountered.
MCLIMIT_SMOOTH Selects smooth stopping mode when a limit is encountered.
MCLIMIT_INVERT Inverts the polarity of the hardware limit switch inputs. This

value may not be used with soft limits.

SoftLimitMode Enables soft (software) limit switches and selects stopping mode. See the

description of HardLimitMode for details.
SoftLimitLow Sets "position" of low soft limit.
SoftLimitHigh Sets "position" of high soft limit.
EnableAmpFault Controls the amplifier fault input for servo motor axes:

MCAPI Data Structurex

Precision MicroControl

148

Value Description
TRUE Enables amplifier fault input.
FALSE Disables amplifier fault input.

Comments
All of the basic motion parameters are stored in the MCMOTIONEX structure. Many of these parameters also have their
own Get/Set functions, to permit setting on the fly.

Compatibility
Acceleration is not supported on the DC2 stepper axes. Deceleration is not supported on the DCX-PCI100 controller, DC2
stepper axes, MC100, MC110, MC150, or MC160 modules. MinVelocity is not supported on the DCX-PCI100, DCX-
PC100, or DC2 controllers. Torque is not supported on the DCX-PCI100 controller, MC100, or MC110 modules.
Deadband is not supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360, and
MC362 modules. DeadbandDelay is not supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160,
MC260, MC360 or MC362 modules. StepSize is not supported on the DC2 or DCX-PCI100 controllers. Current is not
supported on the DC2 or DCX-PCI100 controllers. SoftLimitMode is not supported on the DC2 or DCX-PC100
controllers. SoftLimitLow is not supported on the DC2 or DCX-PC100 controllers. SoftLimitHigh is not supported on the
DC2 or DCX-PC100 controllers. EnableAmpFault is not supported on the DC2 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
MCGetMotionConfigEx(), MCSetMotionConfigEx()

MCPARAMEX
MCPARAMEX structure provides basic information about the type and configuration of a controller, including the
number of axes and modules supported.

MCAPI Data Structures

DCX-PCI100 User’s Manual

149

typedef struct {
 int cbSize;
 int ID;
 int ControllerType;
 int NumberAxes;
 int MaximumAxes;
 int MaximumModules;
 int Precision;
 int DigitalIO
 int AnalogInput;
 int AnalogOutput;
 int PointStorage;
 int CanDoScaling;
 int CanDoContouring;
 int CanChangeProfile;
 int CanChangeRates;
 int SoftLimits;
 int MultiTasking;
 int AmpFault;
} MCPARAMEX;

Members
cbSize Size of the MCPARAMEX data structure, in bytes.
ID ID number given this controller during driver setup, permits easy translation of a

controller handle back to an ID.
ControllerType OEM controller type identifier. It can be one of the following values:

Value Description
DCXPC100 DCX series PC100 controller.
DCXAT100 DCX series AT100 controller.
DCXAT200 DCX series AT200 controller.
DC2PC100 DC2 series controller.
DC2STN DC2 stand-alone series controller.
DCXAT300 DCX series AT300 controller.
DCXPCI300 DCX series PCI300 controller.
DCXPCI100 DCX series PCI100 controller.

NumberAxes Number of axes this controller is currently configured for.
MaximumAxes Maximum number of axes this controller supports.
MaximumModules Maximum number of modules this controller supports.
Precision Best numerical precision of controller:

Value Description
MC_TYPE_LONG 32 bit integer precision.
MC_TYPE_DOUBLE 64 bit floating point precision.

DigitalIO Contains the number of digital IO channels installed.
AnalogInput The number of installed analog input channels.
AnalogOutput The number of analog output channels.
PointStorage Number of learned points that may be stored using MCLearnPoint()

MCAPI Data Structurex

Precision MicroControl

150

CanDoScaling Controller support for scaling (see MCSCALE structure) flag:

Value Description
TRUE Scaling is supported.
FALSE Scaling isn’t supported.

CanDoContouring Controller support for contouring (see MCCONTOUR structure) flag:

Value Description
TRUE Contouring is supported.
FALSE Contouring not supported.

CanChangeProfile Controller can change acceleration/deceleration profile::

Value Description
TRUE Profile change is supported.
FALSE Profile change not supported.

CanChangeRates Controller support for selectable rates (see MCFILTEREX structure) flag:

Value Description
TRUE UpdateRate changing is supported.
FALSE UpdateRate changing isn’t supported.

SoftLimits Controller supports soft limits (see MCMOTIONEX structure) flag:

Value Description
TRUE Soft Limits are supported.
FALSE Soft Limits are not supported.

MultiTasking Controller supports multitasking flag:

Value Description
TRUE Multitasking is supported.
FALSE Multitasking is not supported.

AmpFault Controller supports amplifier fault flag:

Value Description
TRUE Amplifier fault input is supported.
FALSE Amplifier fault input is not supported.

Comments
Unlike the other MCAPI structures, the values in this structure are fixed by the hardware configuration and may not be
changed. The axis type information that existed in the old MCPARAM structure may now be found in the
MCAXISCONFIG structure.

MCAPI Data Structures

DCX-PCI100 User’s Manual

151

Before you call MCGetConfigurationEx() you must set the cbSize member to the size of this data structure. C/C++
programmers may use sizeof(), Visual Basic and Delphi programmers will find current sizes for these data structures in the
appropriate MCAPI.XXX header file.

Visual Basic users please note that the value used for TRUE in the MCPARAMEX structure is the Windows standard of 1,
not the Basic value of -1. Direct comparisons, such as:

 If (Param.CanDoScaling = True) Then

will fail. To get correct results use the constant WinTrue, declared in the MCAPI.BAS include file:

 If (Param.CanDoScaling = WinTrue) Then

Compatibility
There are no compatibility issues with this data structure.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.0 or higher

See Also
MCGetConfigurationEx()

MCSCALE
MCSCALE structure defines basic scaling parameters for an axis.

typedef struct {
 double Constant;
 double Offset;
 double Rate;
 double Scale;
 double Zero;
 double Time;
} MCSCALE;

Members
Constant This factor acts as a scale factor for servo analog outputs. By calibrating your

motor/amplifier combination, it is possible to scale the output with Constant so
that torque settings may be specified directly in ft-lbs.

Offset This offset represents an offset from a servo encoder’ index pulse to a zero
position.

Rate This factor acts as a multiplier for motion commands time values. The base
controller time unit is the second, to convert this to minutes set Rate to 60.0, to
convert to milliseconds rate should be set to 0.001.

Scale This scaling factor is applied to motion parameters to convert from encoder
counts to real world units.

Zero Specifies that a soft zero should be located this distance from actual zero. By
moving the soft zero around it is possible to have a series of position

MCAPI Data Structurex

Precision MicroControl

152

commands repeated at various spots in the range of travel without modifying
the position commands. The actual zero position is not changed by this
command.

Time This is the time factor for controller level wait commands. See the discussion of
the Rate parameter above for more information on setting this value. Note that
a single Time value is maintained per controller (i.e. Time is axis independent).

Comments
The scale factors provide a consistent, easy method of relating motion values to the actual physical system being controlled.

Compatibility
The DC2, and the DCX-PC100 do not support any of the aforementioned members. The DCX-PCI100 does not support
Offset or Constant.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
MCGetScale(), MCSetScale()

MCAPI Data Structures

DCX-PCI100 User’s Manual

153

MCAPI Parameter Setup Functions

Precision MicroControl

154

Chapter Contents

DCX-PCI100 User’s Manual

155

MCAPI Parameter Setup Functions

Parameter setup functions allow the program to consistently configure the motion control card and individual modules to
behave in an appropriate manner for a given application. Although trajectory parameters, PID loop gains, and end of travel
limits should be set prior to commanding motion, these and other parameters may be changed during a move. However,
certain parameters once passed to the card will not alter behavior until MCEnableAxis() is called, which allows the
specific axis to then implement several queued parameters at once in a logical and safe fashion. For first time setup, a
development tool like Motion Integrator should be used to determine the proper tuning parameters that can be passed by
the functions in this chapter.

To see examples of how the functions in this chapter are used, please refer to the online Motion Control API Reference.

MCConfigureCompare
MCConfigureCompare() configures an axis for high-speed position compare mode operation.

long int MCConfigureCompare(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* values, // array of compare points
 long int num, // number of points in values array
 double inc, // increment between equally paced points
 long int mode, // output signal mode
 double period // output period for one shot mode
 // (seconds)
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure.
values Array of compare position values.
num Number of compare values.
inc Increment between successive compare positions when in evenly-spaced mode

(see Comments, below).

Chapter

12

MCAPI Parameter Setup Functions

Precision MicroControl

156

mode Specifies how the controller is to signal that a compare position has been seen:

Value Description
MC_COMPARE_DISABLE Disables the output.
MC_COMPARE_INVERT Inverts active level of the output – may be OR'ed together

with any of the other settings for mode.
MC_COMPARE_ONESHOT Configures the output for one-shot operation. The value for

period will be used for the period of the one-shot.
MC_COMPARE_STATIC Configures the output for static mode (see the controller

documentation for details).
MC_COMPARE_TOGGLE Configures the output to toggle between the active and

inactive states each time a compare value is reached.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
Points for MCConfigureCompare() may be entered in one of two ways. Discrete points, up to the number allowed by the
module (typically 512) may be stored in the array values and passed to the controller. If the compare points are equally
spaced store the beginning point in the first location of values, set num to one, and set inc to the per point increment. Note
that inc is ignored if it is set equal to or less than zero, or if num is set to a value other than one.

The high-speed compare function signals a valid compare by way of a hardware output signal from the motor module. Use
the mode flag to configure the operation of this hardware output.

Compatibility
The DC2, DCX-PC100, DCX-AT200, and DCX-PCI100 controllers do not support high-speed position compare.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCConfigureCompare(hCtlr: HCTRLR; axis: Word; values: Array of Double; num: Longint; inc: Double; mode:

LongInt; period: Double): LongInt; stdcall;
VB: Function MCConfigureCompare(ByVal hCtrlr As Integer, ByVal axis As Integer, values As Double, ByVal num As Long,

ByVal inc As Double, ByVal mode As Long, ByVal period As Double) As Long
LabVIEW: Not Supported

MCCL Reference
LC, NC, OC, OP

See Also
MCEnableCompare(), MCGetCount()

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

157

MCSetAcceleration
MCSetAcceleration() sets programmed acceleration value for the selected axis to rate, where rate is specified in the
current units for axis.

void MCSetAcceleration(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double rate // new acceleration rate
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change acceleration value of.
rate New acceleration rate.

Returns
This function does not return a value.

Comments
The acceleration value for a particular axis may also be set using the MCSetMotionConfigEx() function;
MCSetAcceleration() provides a short-hand method for setting just the acceleration value.

Compatibility
The DC2 stepper axes do not support ramping.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetAcceleration(hCtlr: HCTRLR; axis: Word; rate: Double); stdcall;
VB: Sub MCSetAcceleration Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal rate As Double)
LabVIEW:

MCCL Reference
SA

See Also
MCGetAccelerationEx(), MCSetMotionConfigEx()

MCAPI Parameter Setup Functions

Precision MicroControl

158

MCSetAuxEncPos
MCSetAuxEncPos() sets the current position of the auxiliary encoder.

void MCSetAuxEncPos(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number of auxiliary encoder to set.
position New encoder position.

Returns
This function does not return a value.

Comments
This command sets the current position of the auxiliary encoder to the value given by the position argument. A value of
MC_ALL_AXES may be specified for axis to set the auxiliary encoders for all axes installed on a controller.

i

DCX-AT200 firmware version 3.5a or higher, or DCX-PC100 firmware version 4.9a or
higher is required if you wish to set the position of the auxiliary encoder to a value other
than zero. Earlier firmware versions ignore the value in the Position argument and zero
the Auxiliary Encoder.

Compatibility
The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support auxiliary encoders.
Closed-loop steppers do not support auxiliary encoder functions, since the connected encoder is considered a primary
encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetAuxEncPos(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCSetAuxEncPos Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW:

MCCL Reference
AH

See Also
MCGetAuxEncPosEx()

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

159

MCSetCommutation
MCSetCommutation() sets the commutation settings for the MC320 module.

long int MCSetCommutation(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCCOMMUTATION* pCommutation // pointer to commutation structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to which commutation parameters are to be set.
pCommutation Points to an MCCOMMUTATION structure that contains commutation settings

for axis.

Returns
MCSetCommutation() returns the value MCERR_NOERROR if the function completed without errors. If there was an
error, one of the MCERR_xxxx error codes is returned.

Comments
See the section on commutation in your DCX-300 Series User’s Guide for details on how to set use the commutation
features of the MC320 module.

Compatibility
The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, and DCX-AT200 controllers do not support a module which is
capable of onboard commutation. The MC300, MC302, MC360, and the MC362 modules do not support onboard
commutation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCSetCommutation(hCtlr: HCTRLR; axis: Word; var pCommutation: MCCOMMUTATION): LongInt; stdcall;
VB: Function MCSetCommutation(ByVal hCtrlr As Integer, ByVal axis As Integer, Commutation As MCCommutation) As

Long
LabVIEW: Not Supported

MCCL Reference
LA, LB, LD, LE, LR

See Also
MCCOMMUTATION structure definition

MCAPI Parameter Setup Functions

Precision MicroControl

160

MCSetContourConfig
MCSetContourConfig() sets contouring configuration for the specified axis.

short int MCConfigureDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCCONTOUR* pContour // address of contouring configuration
 // structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set contouring configuration for.
pContour Points to an MCCONTOUR structure that contains contouring configuration

information for axis.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates the function did not find the axis
specified (hCtlr or axis incorrect).

Comments
Contouring configuration data should be setup prior to executing any contour motion. The field CanDoContouring in the
MCPARAMEX structure will be set to TRUE, if the controller can process contour configuration data.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCSetContourConfig(hCtlr: HCTRLR; axis: Word; var pContour: MCCONTOUR): SmallInt; stdcall;
VB: Function MCConfigureDigitalIO(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal mode As Integer) As Integer
LabVIEW: Not Supported

MCCL Reference
VA, VD, VO, VV

See Also
MCGetContourConfig(), MCCONTOUR structure definition

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

161

MCSetDeceleration
MCSetDeceleration() sets programmed deceleration value for the selected axis to rate, where rate is specified in the
current units for axis.

void MCSetDeceleration(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double rate // new deceleration rate
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change acceleration value of.
rate New deceleration rate.

Returns
This function does not return a value.

Comments
The deceleration value for a particular axis may also be set using the MCSetMotionConfigEx() function;
MCSetDeceleration() provides a short-hand method for setting just the deceleration value. A value of MC_ALL_AXES
may be specified for axis to set the deceleration for all axes installed on a controller.

Compatibility
The DCX-PCI100 controller, MC100, MC110, MC150, and MC160 modules do not support a separate deceleration value.
Instead, the acceleration value will also be used as the deceleration value. The DC2 stepper axes do not support ramping.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetDeceleration(hCtlr: HCTRLR; axis: Word; rate: Double); stdcall;
VB: Sub MCSetDeceleration(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal rate As Double)
LabVIEW:

MCCL Reference
DS

See Also
MCGetDecelerationEx() , MCSetMotionConfigEx()

MCAPI Parameter Setup Functions

Precision MicroControl

162

MCSetDigitalFilter
MCSetDigitalFilter() sets the digital filter coefficients for the specified axis.

long int MCSetDigitalFilter(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pCoeff, // array of digital filter coefficients
 long int num // number of coefficients
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number.
pCoeff Array of coefficients, must be num elements long (or longer). If the pointer is

NULL the filter will be zeroed (overwriting any previous settings) but no new
filter values will be stored.

num Number of coefficients to retrieve, cannot be larger than the maximum digital
filter size supported by the controller.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This sets zero or more of the digital filter coefficients for the specified axis. The number of coefficients cannot exceed the
maximum value supported by the axis, as reported by MCGetCount(). Calling MCSetDigitalFilter() overwrites any
filter values previously downloaded to this axis.

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100 controllers, MC360, and MC362 modules do not support digital
filtering.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCSetDigitalFilter(hCtlr: HCTRLR; axis: Word; pCoeff: Array of Double; num: Longint):Longint; stdcall;
VB: Function MCSetDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer, coeff As Double, ByVal num As Integer) As

Long
LabVIEW: Not Supported

MCCL Reference
FL, ZF

See Also
MCEnableDigitalFilter() , MCGetCount(), MCGetDigitalFilter(), MCIsDigitalFilter()

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

163

MCSetFilterConfigEx
MCSetFilterConfigEx() configures the PID loop settings for a servo motor or the closed-loop settings for a stepper motor
operating in closed-loop mode. Please see the online MCAPI Reference for the MCSetFilterConfig() prototype.

long int MCSetFilterConfigEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCFILTEREX* pFilter // pointer to PID filter structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number from which to retrieve PID information.
pFilter Points to a MCFILTEREX structure that contains PID filter configuration

information for axis.

Returns
MCSetFilterConfigEx() returns the value MCERR_NOERROR if the function completed without errors. If there was an
error, one of the MCERR_xxxx error codes is returned.

Comments
The easiest way to change filter settings is to first call MCGetFilterConfigEx() to obtain the current PID filter settings for
axis, modify the values in the MCFILTEREX structure, and write the changed settings back to axis with
MCSetFilterConfigEx().

Closed-loop stepper operation requires firmware version 2.1a or higher on the DCX-PCI300 and firmware version 2.5a or
higher on the DCX-AT300.

Compatibility
VelocityGain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-loop steppers.
AccelGain is not supported on the DC2, DCX-PC100, or DCX-PCI100 controllers. DecelGain is not supported on the
DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCSetFilterConfigEx(hCtlr: HCTRLR; axis: Word; var pFilter: MCFILTEREX): SmallInt; stdcall;
VB: Function MCSetFilterConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, filter As MCFilterEx) As Integer
LabVIEW:

MCAPI Parameter Setup Functions

Precision MicroControl

164

MCCL Reference
AG, DG, FR, IL, SD, SE, SI, VG

See Also
MCGetFilterConfigEx(), MCFILTEREX structure definition

MCSetGain
MCSetGain() sets the proportional gain of a servo's feedback loop.

long int MCSetGain(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double gain // new gain setting
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change gain of.
gain New proportional gain.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
The gain value for a particular axis may also be set using the MCSetMotionConfigEx() function; MCSetGain() provides
a short-hand method for setting just the gain value and for updating gain settings on the fly when operating in gain mode.

Compatibility
The MCAPI does not support closed-loop functionality on any stepper axes at this time.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetGain(hCtlr: HCTRLR; axis: Word; gain: Double): Longint; stdcall;
VB: Function MCSetGain(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal gain As Double) As Long
LabVIEW:

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

165

MCCL Reference
SG

See Also
MCGetGain(), MCSetMotionConfigEx()

MCSetJogConfig
MCSetJogConfig() sets jog configuration for the specified axis.

short int MCSetJogConfig(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCJOG* pJog // address of jog configuration structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure jog information.
pJog Points to a MCJOG structure that contains jog configuration information for

axis.

Returns
The return value is TRUE if the function is successful. Otherwise it returns FALSE, indicating the function did not find the
axis specified (hCtlr or axis incorrect).

Comments
It is important to set the jog configuration before enabling jogging if you will be using non-default parameters for the jog
configuration.

Compatibility
The DCX-PCI controllers, DC2 stepper axes, MC150, and MC160 modules do not support jogging.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCSetJogConfig(hCtlr: HCTRLR; axis: Word; var pJog: MCJOG): SmallInt; stdcall;
VB: Function MCSetJogConfig(ByVal hCtrlr As Integer, ByVal axis As Integer, jog As MCJog) As Integer
LabVIEW: Not Supported

MCCL Reference
JA, JB, JG, JO, JV

MCAPI Parameter Setup Functions

Precision MicroControl

166

See Also
MCEnableJog(), MCGetJogConfig(), MCJOG structure definition

MCSetLimits
MCSetLimits() sets the current hard and soft limit settings for the specified axis.

long int MCSetLimits(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int hardMode, // hard limit mode flags
 short int softMode, // soft limit mode flags
 double limitMinus, // soft negative limit value
 double limitPlus // soft positive limit value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set the limits of .
hardMode Combination of the following limit mode flags for the hard limits:

Value Description
MC_LIMIT_PLUS Enables the positive limit.
MC_LIMIT_MINUS Enables the negative limit.
MC_LIMIT_BOTH Enables both the positive and negative limits.
MC_LIMIT_OFF Sets the limit stopping mode to turn the motor off when a

limit is tripped.
MC_LIMIT_ABRUPT Sets the limit stopping mode to abrupt (target position is set to

current position and PID loop stops axis as quickly as
possible).

MC_LIMIT_SMOOTH Sets the limit stopping mode to smooth (axis executes pre-
programmed deceleration when limit is tripped).

MC_LIMIT_INVERT Inverts the polarity of the hardware limit switch inputs. This
value may not be used with soft limits.

softMode Combination of limit mode flags for the soft limits. See the values for hardMode,

above.
limitMinus Positive limit value for soft limits, if supported by this controller.
limitPlus Negative limit value for soft limits, if supported by this controller.

Returns
MCSetLimits() returns the value MCERR_NOERROR if the function completed without errors. If there was an error, one
of the MCERR_xxxx error codes is returned, and the limit settings will be left in an undetermined state.

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

167

Comments
The limit settings are the same as those that may be set by the MCSetMotionConfigEx() function, however, this function
provides a short-hand method for setting just the limit settings.

To disable limits (hard or soft) set the corresponding limit mode variable (hardMode and softMode) to zero (0). To disable
a particular limit (plus or minus) DO NOT include its corresponding mode flag (MC_LIMIT_PLUS or
MC_LIMIT_MINUS, respectively) in the combination of flags that make up the hardMode and softMode values.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2 and DCX-PC100 controllers do not support soft limits.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetLimits(hCtlr: HCTRLR; axis: Word; hardMode, softMode: SmallInt; limitMinus, limitPlus: Double):

Longint; stdcall;
VB: Function MCSetLimits(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal hardMode As Integer, ByVal SoftMode As

Integer, ByVal limitMinus As Double, ByVal limitPlus As Double) As Long
LabVIEW:

MCCL Reference
HL, LF, LL, LM, LN

See Also
MCGetMotionConfigEx(), MCGetLimits(), MCSetMotionConfigEx()

MCSetModuleInputMode
MCSetModuleInputMode() sets the current input mode for the specified axis.

long int MCSetModuleInputMode(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double mode // input mode value
);

MCAPI Parameter Setup Functions

Precision MicroControl

168

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number of which to set input mode.
mode Input mode for the specified axis:

Value Description
MC_IM_OPENLOOP Sets stepper motor axis to open-loop mode.
MC_IM_CLOSEDLOOP Sets stepper motor axis to closed-loop mode.

Returns
The return value is MCERR_NOERROR if no errors were detected. If there was an error, one of the MCERR_xxxx error
codes is returned and the variable pointed to by mode is left unchanged.

Comments

i

You will need to issue MCEnableAxis() twice, once FALSE and once
TRUE, after calling this function to assure proper changing of modes.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, and DCX-AT200 controllers do not support a module which is
capable of closed-loop stepper operation. The MC362 module is not capable of closed-loop stepper operation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCSetModuleInputMode(hCtlr: HCTRLR; axis, mode: LongInt): LongInt; stdcall;
VB: Function MCSetModuleInputMode(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Long) As Long
LabVIEW: Not Supported

MCCL Reference
IM

See Also
MCGetModuleInputMode()

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

169

MCSetModuleOutputMode
MCSetModuleOutputMode() configures the output of the specified servo or stepper axis.

void MCSetModuleOutputMode(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double mode // output mode selection
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set output mode of.
mode Output mode, one of the following constants:

Value Description
MC_OM_BIPOLAR Sets servo axis to bipolar operation. (-10V to +10V)
MC_OM_UNIPOLAR Sets servo axis to unipolar operation. (0V to +10V, with a

separate direction signal)
MC_OM_PULSE_DIR Sets stepper axis to pulse and direction output.
MC_OM_CW_CCW Sets stepper axis to clockwise and counter-clockwise

operation.

Returns
This function does not return a value.

Comments
Note that the function arguments will depend upon the type of axis being addressed - stepper or servo. Output phase
settings are normally made at power up (before motors are energized) and then left unchanged. Incorrect settings can lead
to unpredictable operation.

Compatibility
The DC2, DCX-PC100, DCX-PCI100 controllers, MC100, MC110, MC150, and MC160 modules do not support changing
the output mode.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetModuleOutputMode(hCtlr: HCTRLR; axis, mode: Word); stdcall;
VB: Sub MCSetModuleOutputMode(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Integer)
LabVIEW: Not Supported

MCCL Reference
OM

See Also
MCGetServoOutputPhase()

MCAPI Parameter Setup Functions

Precision MicroControl

170

MCSetMotionConfigEx
MCSetMotionConfigEx() configures an axis for motion.

short int MCSetMotionConfigEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCMOTIONEX* pMotion // address of motion configuration
 // structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure.
pMotion Points to a MCMOTIONEX structure that contains motion configuration

information for the specified axis.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates the function could not configure
the axis.

Comments
This function provides a way of setting all motion parameters for a given axis with a single function call using an initialized
MCMOTIONEX structure. When you need to setup many of the parameters for an axis it is easier to call
MCGetMotionConfigEx(), update the MCMOTIONEX structure, and write the changes back using
MCSetMotionConfigEx(), rather than use a Get/Set function call for each parameter.

Note that some less often used parameters will only be accessible from this function and from MCGetMotionConfigEx() -
they do not have individual Get/Set functions.

Compatibility
Acceleration is not supported on the DC2 stepper axes. Deceleration is not supported on the DCX-PCI100 controller,
MC100, MC110, MC150, or MC160 modules. MinVelocity is not supported on the DCX-PCI100, DCX-PC100, or DC2
controllers. Torque is not supported on the DCX-PCI100 controller, MC100, or MC110 modules. Deadband is not
supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360, or MC362 modules.
DeadbandDelay is not supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360 or
MC362 modules. StepSize is not supported on the DC2 or DCX-PCI100 controllers. Current is not supported on the DC2
or DCX-PCI100 controllers. SoftLimitMode is not supported on the DC2 or DCX-PC100 controllers. SoftLimitLow is not
supported on the DC2 or DCX-PC100 controllers. SoftLimitHigh is not supported on the DC2 or DCX-PC100 controllers.
EnableAmpFault is not supported on the DC2 controllers. UpdateRate is not supported on the DC2 or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

171

Prototypes
Delphi: function MCSetMotionConfigEx(hCtlr: HCTRLR; axis: Word; var pMotion: MCMOTIONEX): SmallInt; stdcall;
VB: Function MCSetMotionConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, motion As MCMotionEx) As Integer
LabVIEW:

MCCL Reference
DB, DI, DT, FC, FF, FN, FR, HC, HS, LM, LS, MS, MV, SA, SD, SF, SG, SH, SI, SQ, SV

See Also
MCGetMotionConfigEx(), MCMOTIONEX structure definition

MCSetOperatingMode
MCSetOperatingMode() sets the controller operating mode for axis.

void MCSetOperatingMode(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD master, // master contouring axis
 WORD mode // new operating mode
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure.
master Contouring master axis (used for contour mode only).
mode New operating mode, can be any of the following:

Value Description
MC_MODE_CONTOUR Selects contouring mode (must also specify master).
MC_MODE_GAIN Selects gain mode of operation.
MC_MODE_POSITION Selects the position mode of operation (default).
MC_MODE_TORQUE Selects torque mode operation.
MC_MODE_VELOCITY Selects the velocity mode.

Returns
This function does not return a value.

MCAPI Parameter Setup Functions

Precision MicroControl

172

Comments
This function is used to switch between the main operating modes of the controller. All modes except
MC_MODE_CONTOUR are supported by all controllers. Programs can check the field CanDoContouring of the
MCPARAMEX structure for the value TRUE to determine if a controller can operate in MC_MODE_CONTOUR mode.

!

This function should not be called while axis is in motion.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers. Gain mode is not
supported on stepper axes, MC100, or MC110 modules. Torque mode is not supported on stepper axes, DCX-PCI100
controller, MC100, or MC110 modules.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetOperatingMode(hCtlr: HCTRLR; axis, master, mode: Word); stdcall;
VB: Sub MCSetOperatingMode(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal master As Integer, ByVal mode As

Integer)
LabVIEW:

MCCL Reference
CM, GM, PM, QM, VM

See Also
Controller hardware manual

MCSetPosition
MCSetPosition() sets the current position for axis to position.

void MCSetPosition(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position
);

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

173

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change position of.
position New position value.

Returns
This function does not return a value.

Comments
The current position of axis will be immediately updated to the value of position.

This function may be called with axis set to MC_ALL_AXES set the position of all axes at once. All axes will be set to the
same value of position.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetPosition(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCSetPosition(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW:

MCCL Reference
DH

See Also
MCGetPositionEx()

MCSetRegister
MCSetRegister() sets the value of the specified general purpose register.

MCAPI Parameter Setup Functions

Precision MicroControl

174

long int MCSetRegister(
 HCTRLR hCtlr, // controller handle
 long int register, // register number
 void* pValue, // pointer to variable with new register
 // value
 long int type // type of variable pointed to by pValue
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
register Register number to read from (0 to 255).
pValue Pointer to a variable that will has the new value for the register.
type Type of data pointed to by pValue:

Value Description
MC_TYPE_LONG Indicates pValue points to a variable of type long integer.
MC_TYPE_DOUBLE Indicates pValue points to a variable of type double precision

floating point.
MC_TYPE_FLOAT Indicates pValue points to a variable of type single precision

floating point.

Returns
The return value is MCERR_NOERROR, if no errors were detected. However, if there was an error, the return value is one
of the MCERR_xxxx error codes, and the register value is unpredictable.

Comments
MCSetRegister() and MCGetRegister() allow you to write to and read from, respectively, the general purpose registers
on the motion controller. When running background tasks on a multitasking controller the only way to communicate with
the background tasks is to pass parameters in the general purpose registers.

You cannot write to the local registers (registers 0 - 9) of a background task. When you need to communicate with a
background task be sure to use one or more of the global registers (10 - 255).

To determine if your controller supports multi-tasking check the MultiTasking field of the MCPARAMEX structure
returned by MCGetConfigurationEx().

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCSetRegister(hCtlr: HCTRLR; register: Longint; var pValue: Pointer; type: Longint): Longint; stdcall;
VB: Function MCSetRegister(ByVal hCtrlr As Integer, ByVal register As Long, value As Any, ByVal argtype As Long) As

Long

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

175

LabVIEW:

MCCL Reference
AL, AR

See Also
MCGetRegister()

MCSetScale
MCSetScale() sets scaling for the specified axis to the values contained in the MCSCALE structure.

short int MCSetScale(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCSCALE* pScale // updated scaling settings
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change scale of.
pScale Pointer to structure with new scale values.

Returns
This function returns TRUE, if the functions completes successfully. A return value of FALSE indicates there was an error
(hCtlr or axis is invalid).

Comments
Setting scaling factors allows application programs to talk to the controller in real world units, as opposed to arbitrary
"encoder counts". You can determine if a controller can process scaling requests by testing the CanDoScaling flag in the
MCPARAMEX structure for the controller.

This function may be called with axis set to MC_ALL_AXES to set the scaling of all axes at once. All axes will be set to
the same value.

!

When Scale to a value other than one, SoftLimitLow and SoftLimitHigh should be
changed to accommodate the new real world units.

Compatibility
The DC2 and the DCX-PC100 do not support any scaling members. The DCX-PCI100 does not support Offset or
Constant.

MCAPI Parameter Setup Functions

Precision MicroControl

176

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCSetScale(hCtlr: HCTRLR; axis: Word; var pScale: MCSCALE): SmallInt; stdcall;
VB: Function MCSetScale(ByVal hCtrlr As Integer, ByVal axis As Integer, scale As MCScale) As Integer
LabVIEW:

MCCL Reference
UK, UO, UR, US, UT, UZ

See Also
MCGetConfigurationEx(), MCGetScale(), MCPARAMEX structure definition

MCSetServoOutputPhase
MCSetServoOutputPhase() sets the output phasing for the specified servo axis.

void MCSetServoOutputPhase(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD phase // desired phasing
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change servo phase of.
phase Desired phasing, one of the following:

Value Description
MC_PHASE_STD Selects standard or normal phasing. (default)
MC_PHASE_REV Selects reverse phasing.

Returns
This function does not return a value.

Comments
This function may be called with axis set to MC_ALL_AXES set the phase of all axes at once. All axes will be set to the
same value of phase.

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

177

Compatibility
The MC100 and MC110 modules do not support phase reverse.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetServoOutputPhase(hCtlr: HCTRLR; axis, phase: Word); stdcall;
VB: Sub MCSetServoOutputPhase(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Integer)
LabVIEW:

MCCL Reference
PH

See Also
MCGetServoOutputPhase()

MCSetTorque
MCSetTorque() sets maximum output level for servos.

long int MCSetTorque(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double torque // new torque setting
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change torque of.
torque New torque.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
The torque value for a particular axis may also be set using the MCSetMotionConfigEx() function; MCSetTorque()
provides a short-hand method for setting just the torque value and for updating torque settings on the fly when operating in
torque mode.

MCAPI Parameter Setup Functions

Precision MicroControl

178

Compatibility
Torque mode is not supported on stepper axes, DCX-PCI100 controller, MC100, or MC110 modules.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetTorque(hCtlr: HCTRLR; axis: Word; torque: Double): Longint; stdcall;
VB: Not Supported
LabVIEW:

MCCL Reference
SQ

See Also
MCGetTorque(), MCSetMotionConfigEx()

MCSetVectorVelocity
MCSetVectorVelocity() sets the vector velocity for the specified axis, in whatever units the axis is configured for.

long int MCSetVectorVelocity(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double velocity // new vector velocity value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set vector velocity of.
velocity New vector velocity value for the specified axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

179

Comments
The vector velocity value for a particular axis may also be set using MCSetContourConfig(); MCSetVectorVelocity()
provides a short-hand method for setting just the vector velocity value and is most useful when updating vector velocity
settings on the fly.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCSetVectorVelocity(hCtlr: HCTRLR; axis: Word; velocity: Double): Longint; stdcall;
VB: Function MCSetVectorVelocity(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal velocity As Double) As Long
LabVIEW: Not Supported

MCCL Reference
VV

See Also
MCGetVectorVelocity(), MCSetContourConfig()

MCSetVelocity
MCSetVelocity() sets programmed velocity for the selected axis to rate, where rate is specified in the current units for
axis.

void MCSetVelocity(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double rate // new velocity
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change velocity of.
rate New velocity.

Returns
This function does not return a value.

Comments
The velocity value for a particular axis may also be set using the MCSetMotionConfigEx() function; MCSetVelocity()
provides a short-hand method for setting just the velocity value and for updating velocity settings on the fly when operating
in velocity mode.

MCAPI Parameter Setup Functions

Precision MicroControl

180

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetVelocity(hCtlr: HCTRLR; axis: Word; rate: Double); stdcall;
VB: Sub MCSetVelocity Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal rate As Double)
LabVIEW:

MCCL Reference
SV

See Also
MCGetVelocityEx(), MCSetMotionConfigEx()

MCAPI Parameter Setup Functions

DCX-PCI100 User’s Manual

181

MCAPI Motion Functions

Precision MicroControl

182

Chapter Contents

DCX-PCI100 User’s Manual

183

MCAPI Motion Functions

Motion functions range in use from allowing the program to commence or cease motion to permitting control of sequencing
to altering operation of axes during motion.

A word of caution must be given regarding the use of board-level sequencing commands. Even though each of these
functions includes a warning in this chapter, it should be stressed that once a command containing the word “Wait” or
“Find” in the command name is called, the board will not accept another command nor will it respond to the calling
program until the board has completed what it was initially told to do. This can lead to scenarios where the calling program
has absolutely no control during potentially dangerous or otherwise expensive situations.

To see examples of how the functions in this chapter are used, please refer to the online Motion Control API Reference.

MCAbort
MCAbort() aborts any current motion for the specified axis or axes.

void MCAbort(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to abort motion.

Returns
This function does not return a value.

Comments
The selected axis will execute an emergency stop following this command. Issuing this command with axis set to
MC_ALL_AXES will abort motion for all axes installed on the motion controller.

Servo axes will stop abruptly, and the servo control loop will remain energized.

Chapter

13

MCAPI Motion Functions

Precision MicroControl

184

For stepper motors, pulses from the motion controller will be disabled immediately. The state of the axis (enabled or
disabled) following the call to MCAbort() will depend upon the type of controller (see your controller hardware manual).

i

Following a call to MCAbort(), verify that the axis has stopped using
MCIsStopped() or MCWaitForStop(). Then call MCEnableAxis() prior to issuing
another motion command.

i

Following a call to MCAbort() on the DCX-PC100 controller when in velocity mode,
call MCSetOperatingMode() prior to issuing another motion command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCAbort(hCtlr: HCTRLR; axis: Word); stdcall;
VB: Sub MCAbort(ByVal hCtrlr As Integer, ByVal axis As Integer)
LabVIEW:

MCCL Reference
AB

See Also
MCEnableAxis(), MCSetOperatingMode(), MCStop(), MCIsStopped(), MCWaitForStop()

MCArcCenter
MCArcCenter() specifies the center of an arc for contour path motion.

long int MCArcCenter(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int type, // absolute or relative
 double position // center position
);

MCAPI Motion Functions

DCX-PCI100 User’s Manual

185

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to specify arc center for.
type Flag to indicate if the center position is specified in absolute units or relative to

the current position.

Value Description
MC_ABSOLUTE Center position is specified in absolute units.
MC_RELATIVE Center position is specified relative to the current position of

axis.

position Absolute or relative arc center position for axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function sets the center of an arc for contour path motion. Since arc motion is performed by two axes, this function
should be called twice in a contour path block, once for each axis. To determine if a particular controller can process the
MCArcCenter() contouring function, check the CanDoContouring flag of the MCPARAMEX structure.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCArcCenter(hCtlr: HCTRLR; axis: Word; type: SmallInt; position: Double): Longint; stdcall;
VB: Function MCArcCenter (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal arctype As Integer, ByVal position As

Double) As Long
LabVIEW: Not Supported

MCCL Reference
CA, CR

See Also
MCArcEndAngle(), MCArcRadius(), MCBlockBegin(), MCSetOperatingMode()

MCArcEndAngle
MCArcEndAngle() specifies the ending angle of an arc for contour path motion.

MCAPI Motion Functions

Precision MicroControl

186

long int MCArcEndAngle(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int type, // absolute or relative
 double angle // ending angle
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to specify arc ending angle for.
type Flag to indicate if the end angle is specified in absolute units or relative to the

current position.

Value Description
MC_ABSOLUTE Center position is specified in absolute units.
MC_RELATIVE Center position is specified relative to the current position of

axis.

angle Absolute or relative arc ending angle for axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function sets the ending angle of an arc for contour path motion function should be called twice in a contour path
block, once for each axis. To determine if a particular controller can process the MCArcCenter() contouring function,
check the CanDoContouring flag of the MCPARAMEX structure.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCArcEndAngle(hCtlr: HCTRLR; axis: Word; type: SmallInt; angle: Double): Longint; stdcall;
VB: Function MCArcEndAngle (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal arctype As Integer, ByVal angle As

Double) As Long
LabVIEW: Not Supported

MCCL Reference
EA, ER

See Also
MCArcCenter(), MCArcRadius(), MCBlockBegin(), MCSetOperatingMode()

MCAPI Motion Functions

DCX-PCI100 User’s Manual

187

MCArcRadius
MCArcRadius() specifies the radius of an arc for contour path motion.

long int MCArcRadius(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double radius // arc radius
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to specify arc radius for.
radius Arc radius for axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function sets the radius of an arc for contour path motion. To determine if a particular controller can process the
MCArcCenter() contouring function, check the CanDoContouring flag of the MCPARAMEX structure.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCArcRadius(hCtlr: HCTRLR; axis: Word; radius: Double): Longint; stdcall;
VB: Function MCArcRadius(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal radius As Double) As Long
LabVIEW: Not Supported

MCCL Reference
RR

See Also
MCArcCenter(), MCArcEndAngle(), MCBlockBegin(), MCSetOperatingMode()

MCCaptureData
MCCaptureData() configures a controller to perform data capture for the specified axis. Captured data includes actual
position vs. time, optimal position vs. time, and following error vs. time.

MCAPI Motion Functions

Precision MicroControl

188

long int MCCaptureData(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int points, // number of data points to collect
 double period, // time period between data points
 // (seconds)
 double delay // delay prior to data capture (seconds)
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to capture data.
points Number of data points to collect.
period Time period between subsequent data point captures.
delay Delay (dwell) before initial data collection.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
Captured position data is typically used to analyze servo motor performance and PID loop tuning parameters. PMC's Servo
Tuning utility uses this function to analyze servo performance.

MCBlockBegin() may be used with MCCaptureData() to bundle the capture data command with mode and move
commands (see the example below).

Beginning with version 3.0 of the MCAPI users may use the MCGetAxisConfiguration() function to determine the data
capture capabilities of an axis.

Compatibility
The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the DCX-PC100 controller do
not support data capture. The DCX-PCI100 controller does not support torque mode nor do any stepper axes, which
prevents the capture of torque values.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCCaptureData(hCtlr: HCTRLR; axis: Word; points: Longint; period, delay: Double): Longint; stdcall;
VB: Function MCCaptureData(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal points As Long, ByVal period As

Double, ByVal delay As Double) As Long
LabVIEW: Not Supported

MCCL Reference
PR

See Also
MCGetConfigurationEx(), MCGetCaptureData(), MCBlockBegin()

MCAPI Motion Functions

DCX-PCI100 User’s Manual

189

MCContourDistance
MCContourDistance() sets the distance for user defined contour path motions.

long int MCContourDistance(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double distance // path distance
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number of controlling axis for contour motion.
distance Path distance for user path.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function is used to specify the distance, as measured along the path, from the contour path starting point to the end of
the next motion. It is required for user defined contour path motions.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCContourDistance(hCtlr: HCTRLR; axis: Word; distance: Double): Longint; stdcall;
VB: Function MCContourDistance(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double) As Long
LabVIEW: Not Supported

MCCL Reference
CD

See Also
MCBlockBegin()

MCAPI Motion Functions

Precision MicroControl

190

MCDirection
MCDirection() sets the direction of motion when operating in velocity mode.

void MCDirection(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double dir // new direction
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set the direction of.
dir New direction to move in, may be either of the following values:

Value Description
MC_DIR_POSITIVE Selects the positive direction for motion.
MC_DIR_NEGATIVE Selects the negative direction for motion.

Returns
This function does not return a value.

Comments
This command may be used to change the direction of travel when an axis is operating in Velocity Mode. The actual
direction of travel for MC_DIR_POSITIVE and MC_DIR_NEGATIVE will depend upon your hardware configuration.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCDirection(hCtlr: HCTRLR; axis, dir: Word); stdcall;
VB: Sub MCDirection(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal dir As Integer)
LabVIEW:

MCCL Reference
DI

See Also
MCSetOperatingMode()

MCAPI Motion Functions

DCX-PCI100 User’s Manual

191

MCEdgeArm
MCEdgeArm() arms the edge capture function of an open-loop stepper axis.

long int MCEdgeArm(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position for edge
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the home input signal.
position The position where the home input signal is sensed for the axis will be properly

set to position only after a call to MCWaitForEdge() and MCEnableAxis().

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function is used to initialize a stepper motor at a given position. The function remains pending until the home input of
the module goes active. At that time you must call MCWaitForEdge() followed by MCEnableAxis() so that the position
where the home signal is sensed will be set to the value of the position parameter. This function does not cause any motion
to be started or stopped.

i

For the position where the home input signal is sensed to be set to the value of the
position parameter, you must call MCWaitForEdge() followed by MCEnableAxis().
MCIsEdgeFound() should be used to assure that the home input has latched prior to
calling MCWaitForEdge().

Compatibility
This function is not supported by the DCX-AT200, DCX-PC, or DC2 controllers. The MC300 and MC360 module when in
closed-loop mode do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCEdgeArm(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCEdgeArm(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
LabVIEW: Not Supported

MCCL Reference
EL

MCAPI Motion Functions

Precision MicroControl

192

See Also
MCFindEdge(), MCIsEdgeFound(), MCWaitForEdge()

MCEnableAxis
MCEnableAxis() turns the specified axis on or off.

void MCEnableAxis(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int state // Boolean flag for on/off setting of axis
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to turn on or off.
state Flag to indicate if this axis should be turned on or turned off:

Value Description
TRUE Turn on axis.
FALSE Turn off axis.

Returns
This function does not return a value.

Comments
This function does much more than just enable or disable axis. However, as the name implies, the selected axis(axes) will
be turned on or off depending upon the value of state. Note that an axis must be enabled before any motion will take place.
Issuing this command with axis set to MC_ALL_AXES will enable or disable all axes installed on hCtlr.

i

state will accept any non-zero value as TRUE, and will work correctly with most
programming languages, including those that define TRUE as a non-zero value other
than one (one is the Windows default value for TRUE).

If axis is off and then turned on, the following events will occur.

• The target and optimal positions are set to the present encoder position.
• The offset from MCFindEdge(), MCFindIndex() or MCIndexArm() is applied.
• The data passed by MCSetScale() are applied.
• MC_STAT_AMP_ENABLE will be set.
• MC_STAT_AMP_FAULT, if present, will be cleared.
• MC_STAT_ERROR, if present, will be cleared.
• MC_STAT_FOLLOWING, if present, will be cleared.
• MC_STAT_MLIM_TRIP, if present, will be cleared.
• MC_STAT_MSOFT_TRIP, if present, will be cleared.
• MC_STAT_PLIM_TRIP, if present, will be cleared.

MCAPI Motion Functions

DCX-PCI100 User’s Manual

193

• MC_STAT_PSOFT_TRIP, if present, will be cleared.

If axis is on and then turned on again, the following events will occur.

• The offset from MCFindEdge(), MCFindIndex() or MCIndexArm() is applied.
• The data passed by MCSetScale() are applied.

!

Calling this function to enable or disable an axis while it is in motion is not
recommended. However, should it be done, axis will cease the current motion profile,
and MC_STAT_AT_TARGET will be set.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableAxis(hCtlr: HCTRLR; axis: Word; state: SmallInt); stdcall;
VB: Sub MCEnableAxis (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)
LabVIEW:

MCCL Reference
MF, MN

See Also
MCAbort(), MCStop()

MCEnableBacklash
MCEnableBacklash() sets the backlash compensation distance and turns backlash compensation on or off, depending
upon the value of state.

long int MCEnableBacklash(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double backlash, // backlash compensation distance
 short int state // enable state
);

MCAPI Motion Functions

Precision MicroControl

194

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to control the backlash setting of.
backlash Amount of backlash compensation to apply. This parameter is ignored, if state

is FALSE.
state Specifies whether the channel is to be turned on or turned off.

Value Description
TRUE Turns backlash compensation on.
FALSE Turns backlash compensation off.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
In applications where the mechanical system is not directly connected to the motor, it may be required that the motor move
an extra amount to take up gear backlash. The backlash parameter to this function sets the amount of this compensation,
and should be equal to one half of the amount the axis must move to take up the backlash when it changes direction.

i

state will accept any non-zero value as TRUE, and will work correctly with most
programming languages, including those that define TRUE as a non-zero value other
than one (one is the Windows default value for TRUE).

Compatibility
Stepper axes, the DC2, DCX-PC, and DCX-PCI100 controllers do not support backlash compensation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCEnableBacklash(hCtlr: HCTRLR; axis: Word; backlash: Double; state: SmallInt): Longint; stdcall;
VB: Function MCEnableBacklash(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal backlash As Double, ByVal state

As Integer) As Long
LabVIEW:

MCCL Reference
BD, BF, BN

MCAPI Motion Functions

DCX-PCI100 User’s Manual

195

MCEnableCapture
MCEnableCapture() begins position capture for the specified axis if count is greater than zero, or stops position capture if
count is zero.

long int MCEnableCapture (
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int count // number of points to capture
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to begin or end position capture.
count Set to zero to disable capture mode, or to a number greater than zero to

capture that many positions.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This functions enables the high-speed capture of count points (maximum 512) if count is greater than zero, or disables
position capture if count is -1. The count of currently captured data points may be obtained using MCGetCount(), and
captured position values may be retrieved using MCGetCaptureData().

Compatibility
The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the DCX-PC100 controller do
not support data capture. The DCX-PCI100 controller does not support torque mode nor do any stepper axes, which
prevents the capture of torque values.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCEnableCapture(hCtlr: HCTRLR; axis: Word; count: Longint): Longint; stdcall;
VB: Function MCEnableCapture(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal count As Long) As Long
LabVIEW: Not Supported

MCCL Reference
CB

See Also
MCGetCaptureData(), MCGetCount()

MCAPI Motion Functions

Precision MicroControl

196

MCEnableCompare
MCEnableCompare() enables or disables high-speed compare mode for the specified axis.

long int MCEnableCompare(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int flag // flag to enable/disable compare state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to enable high-speed compare.
flag Flag to indicate if this axis should be turned on or turned off:

Value Description
MC_COMPARE_DISABLE Disable high-speed compare for Axis.
MC_COMPARE_ENABLE Enable high-speed compare for Axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
The high-speed compare function for axis is enabled or disabled by this function. High-speed compare mode must first be
initialized by MCConfigureCompare() before compare mode may be enabled. To determine how many compares have
occurred use MCGetCount().

Compatibility
The DC2, DCX-PC100, DCX-AT200, and DCX-PCI100 controllers do not support high-speed position compare.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCEnableCompare(hCtlr: HCTRLR; axis: Word; flag: Longint): Longint; stdcall;
VB: Function MCEnableCompare(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal flag As Long) As Long
LabVIEW: Not Supported

MCCL Reference
BC

See Also
MCConfigureCompare(), MCGetCount()

MCAPI Motion Functions

DCX-PCI100 User’s Manual

197

MCEnableDigitalFilter
MCEnableDigitalFilter() enables or disables the digital filter capability of advanced motor modules, such as the MC300.

long int MCEnableDigitalFilter(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int state // Boolean flag enables/disables digital
 // filter
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to enable digital filter.
state Flag to indicate if digital filter should be enabled on or disabled:

Value Description
TRUE Enable digital filter for axis.
FALSE Disable digital filter for axis.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
The digital filter function for axis is enabled or disabled by this function. Digital filter coefficients are loaded using
MCSetDigitalFilter() and may be read back from the controller using MCGetDigitalFilter(). The function
MCIsDigitalFilter() will return a flag indicating the current enabled state of the digital filter, and MCGetCount() may be
used to determine the maximum filter size and the size of the currently loaded filter.

i

state will accept any non-zero value as TRUE, and will work correctly with most
programming languages, including those that define TRUE as a non-zero value other
than one (one is the Windows default value for TRUE).

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100 controllers, MC360 and MC362 modules do not support digital
filtering.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCEnableDigitalFilter(hCtlr: HCTRLR; axis: Word; state: Longint): Longint; stdcall;
VB: Function MCEnableDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Long) As Long
LabVIEW: Not Supported

MCCL Reference
NF, YF

MCAPI Motion Functions

Precision MicroControl

198

See Also
MCGetCount(), MCGetDigitalFilter(), MCIsDigitalFilter(), MCSetDigitalFilter()

MCEnableGearing
MCEnableGearing() enables or disables electronic gearing for the specified axis / master pair.

void MCEnableGearing(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD master, // master axis number
 double ratio, // gearing ratio
 short int state // enable state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to enable or disable gearing.
master Master axis that axis is to follow.
ratio Ratio at which axis is to reproduce master’s motions.
state Specifies whether the gearing is to be enabled on or disabled.

Value Description
TRUE Enables gearing.
FALSE Disables gearing.

Returns
This function does not return a value.

Comments
This function permits you to configure one axis to automatically reproduce the motions of a master axis. In addition, by
using a ratio of other than 1.0, the reproduced motion can be scaled as desired.

DC2 users should express the ratio as a floating point value (i.e. 0.5 for 2:1, 2.0 for 1:2, etc.). MCEnableGearing()
automatically converts this ratio to the 32 bit fixed point fraction the DC2 requires. The DCX-PC100 controller supports
only a fixed ration of 1:1, the Ratio parameter is ignored for this controller.

i

state will accept any non-zero value as TRUE, and will work correctly with most
programming languages, including those that define TRUE as a non-zero value other
than one (one is the Windows default value for TRUE).

Compatibility
The DCX-PCI100 controller, DC2 stepper axes, the MC150, MC160, MC200, and MC260 modules when placed on the
DCX-PC100 controller do not support gearing.

MCAPI Motion Functions

DCX-PCI100 User’s Manual

199

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableGearing(hCtlr: HCTRLR; axis, master: Word; ratio: Double; state: SmallInt); stdcall;
VB: Sub MCEnableGearing(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal master As Integer, ByVal ratio As

Double, ByVal state As Integer)
LabVIEW:

MCCL Reference
SM, SS

MCEnableJog
MCEnableJog() function enables or disables jogging for the axis specified by axis.

void MCEnableJog(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int state // enable state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to enable or disable synchronized motion.
state Specifies whether the synchronized motion is to be enabled on or disabled.

Value Description
TRUE Enables synchronized motion.
FALSE Disables synchronized motion.

Returns
This function does not return a value.

Comments
The selected axis should be configured for jogging using the MCSetJogConfig() function before being enabled by this
function.

MCAPI Motion Functions

Precision MicroControl

200

i

state will accept any non-zero value as TRUE, and will work correctly with most
programming languages, including those that define TRUE as a non-zero value other
than one (one is the Windows default value for TRUE).

Compatibility
The DCX-PCI controllers, DC2 stepper axes, MC150, and MC160 modules do not support jogging.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableJog(hCtlr: HCTRLR; axis: Word; state: SmallInt); stdcall;
VB: Sub MCEnableJog(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)
LabVIEW: Not Supported

MCCL Reference
JF, JN

See Also
MCGetJogConfig(), MCSetJogConfig()

MCEnableSync
MCEnableSync() enables or disables synchronized motion for contour path motion for the specified axis.

void MCEnableSync(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int state // enable state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to enable or disable synchronized motion.
state Specifies whether the synchronized motion is to be enabled on or disabled.

Value Description
TRUE Enables synchronized motion.
FALSE Disables synchronized motion.

Returns
This function does not return a value.

MCAPI Motion Functions

DCX-PCI100 User’s Manual

201

Comments
This function is issued to the controlling axis of a contour path motion, prior to issuing any contour path motions, to inhibit
any motion until a call to MCGoEx() is made.

i

state will accept any non-zero value as TRUE, and will work correctly with most
programming languages, including those that define TRUE as a non-zero value other
than one (one is the Windows default value for TRUE).

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableSync(hCtlr: HCTRLR; axis: Word; state: SmallInt); stdcall;
VB: Sub MCEnableSync(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)
LabVIEW:

MCCL Reference
NS, SN

See Also
MCGoEx()

MCFindAuxEncIdx
MCFindAuxEncIdx() arms the auxiliary encoder index capture function of an axis.

long int MCFindAuxEncIdx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // reserved for future use
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the index signal.
position This parameter is ignored by current motion controller firmware.

MCAPI Motion Functions

Precision MicroControl

202

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function arms the auxiliary encoder index capture function of an axis. The function remains pending until the auxiliary
encoder index input of the module goes active, at which point, MC_STAT_INP_AUX will be latched. This function does
not cause any motion to be started or stopped.

A homing routine may incorporate this function by using MCDecodeStatus() to determine when MC_STAT_INP_AUX
latches. After making sure the axis has stopped, you may determine how far the current position is from where the auxiliary
encoder index occurred. The difference between MCGetAuxEncPosEx() and MCGetAuxEncIdxEx() should be used as
the current position through a call to MCSetAuxEncPos().

i

At this time, the firmware does not support the position parameter. We advise you set
position to zero, so that future firmware updates will not break your code.

Compatibility
The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support auxiliary encoders.
Closed-loop steppers do not support auxiliary encoder functions, since the connected encoder is considered a primary
encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCFindAuxEncIdx(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCFindAuxEncIdx(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
LabVIEW: Not Supported

MCCL Reference
AF

See Also
MCBlockBegin(), MCFindIndex(), MCGetAuxEncIdxEx()

MCFindEdge
MCFindEdge() is used to initialize a motor at a given position, relative to the home or coarse home input.

MCAPI Motion Functions

DCX-PCI100 User’s Manual

203

long int MCFindEdge (
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position for edge
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the edge signal.
position The position where the edge signal is sensed for the axis will be set to position

after a call to MCEnableAxis().

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function is used to initialize a motor at a given position. The function remains pending until the home input of the
module goes active. This function does not cause any motion to be started or stopped. See the example code in the online
help for details of how to use MCFindEdge().

!

Once this command is issued, the calling program will not be able to communicate with
the board until the home input is seen as high for axis. We recommend using
MCEdgeArm() and MCIsEdgeFound() instead.

i

Only after an MCEnableAxis() call will the position where the home input was seen as
high for axis be set to the value of the position parameter.

i

The DC2 controllers, MC100, MC110, and MC260 modules use coarse home instead of
home, but this still translates to MC_STAT_INP_HOME. In these cases,
MCDecodeStatus() should be used instead of this function.

Compatibility
The DC2 stepper axes, MC200 and MC210 when installed on the DCX-AT200, MC300, MC302, and MC320 modules do
not support this command.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCFindEdge(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCFindEdge Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
LabVIEW: Not Supported

MCCL Reference
FE

MCAPI Motion Functions

Precision MicroControl

204

See Also
MCBlockBegin(), MCEdgeArm(), MCFindIndex(), MCIsEdgeFound(), MCWaitForEdge()

MCFindIndex
MCFindIndex() is used to initialize a servo or closed-loop stepper motor at a given position, relative to the index input.

long int MCFindIndex(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position for index
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the index signal.
position The position where the encoder index pulse occurred for the axis will be set to

position after a call to MCEnableAxis().

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function is used to initialize a servo motor at a given position. The function remains pending until the index input of
the module goes active. This function does not cause any motion to be started or stopped. See the example code in the
online help for details of how to use MCFindIndex().

!

Once this command is issued, the calling program will not be able to communicate with
the board until the axis captures the encoder index. We recommend instead using and
confirming that MCIndexArm() has captured the index through MCIsIndexFound()
before calling MCWaitForIndex() to avoid this problem.

i

Only after an MCEnableAxis() call will the position where the encoder index pulse
occurred for axis be set to the value of the position parameter.

Compatibility
Open-loop stepper axes do not support this command, since the connected encoder is considered an auxiliary encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

MCAPI Motion Functions

DCX-PCI100 User’s Manual

205

Prototypes
Delphi: function MCFindIndex(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCFindIndex(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
LabVIEW: Not Supported

MCCL Reference
FI

See Also
MCBlockBegin(), MCFindAuxEncIdx(), MCFindEdge(), MCIndexArm(), MCWaitForEdge(),
MCWaitForIndex()

MCGoEx
MCGoEx() initiates a motion when operating in velocity mode.

long int MCGoEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double param // optional argument for the GO command
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to command.
param Argument to the GO command.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
The axis must be configured for velocity mode operation before issuing a MCGoEx() call. All axes may be instructed to
move by setting the Axis parameter to MC_ALL_AXES.

To enable cubic splining while in contour mode on the DCX-AT200 or DCX-AT300 use MCGoEx() with the value of
param set to 1.0.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.1 or higher

MCAPI Motion Functions

Precision MicroControl

206

Prototypes
Delphi: function MCGoEx(hCtlr: HCTRLR; axis: Word; param: Double): Longint; stdcall;
VB: Function MCGoEx(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal param As Double) As Long
LabVIEW:

MCCL Reference
GO

See Also
MCSetOperatingMode(), MCStop()

MCGoHome
MCGoHome() initiates a home motion for the specified axis or all axes.

void MCGoHome(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to command.

Returns
This function does not return a value.

Comments
The home or zero position is used that was last set by calling MCSetPosition(). This command effectively executes a
MCMoveAbsolute() with a target position of 0.0.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

MCAPI Motion Functions

DCX-PCI100 User’s Manual

207

Prototypes
Delphi: procedure MCGoHome(hCtlr: HCTRLR; axis: Word); stdcall;
VB: Sub MCGoHome Lib(ByVal hCtrlr As Integer, ByVal axis As Integer)
LabVIEW:

MCCL Reference
GH

See Also
MCMoveAbsolute(), MCSetPosition()

MCIndexArm
MCIndexArm() arms the index capture function of a servo or closed-loop stepper axis.

long int MCIndexArm(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new position for index
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the index signal.
position The position where the encoder index pulse occurred for the axis will be set to

position after a call to MCEnableAxis().

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function is used to initialize a servo motor to a specified position where the encoder index pulse occurs. The function
remains pending until the encoder index input of the module goes active, after which a call to MCEnableAxis() sets the
position where the encoder index pulse occurred to the value of the position parameter. This function does not cause any
motion to be started or stopped.

For stepper axes this function performs in a similar fashion. The difference is that the stepper axis uses the home input
signal in place of the encoder index input signal.

MCAPI Motion Functions

Precision MicroControl

208

i

Only after an MCEnableAxis() call will the position where the encoder index pulse
occurred for axis be set to the value of the position parameter.

Compatibility
Open-loop stepper axes do not support this command, since the connected encoder is considered an auxiliary encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCIndexArm(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCIndexArm(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long
LabVIEW: Not Supported

MCCL Reference
IA

See Also
MCBlockBegin(), MCFindAuxEncIdx(), MCFindIndex(), MCWaitForIndex()

MCLearnPoint
MCLearnPoint() stores the current actual position or target position for the specified axis in point memory at location
specified by index.

long int MCLearnPoint(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD index, // point memory index
 WORD mode // type of position to store
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to store data for.
index Storage location for point data.
mode Determines if the actual position or the target position will be stored:

Value Description
MC_LRN_POSITION Learns the current actual position for the specified axis.
MC_LRN_TARGET Learns the current target position for the specified axis.

MCAPI Motion Functions

DCX-PCI100 User’s Manual

209

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
The actual position of an axis may be stored as it is moved; or, by disabling the axis, position commands may be issued to
the axis, and the target positions stored, without actually moving the axis (see online help examples).

The number of points that may be stored will vary with the number of motor axes installed and the type of controller (see
the compatibility section, below, for controller dependent limits). The first storage is location zero (not location 1).

The current position of all axes may be stored by setting the Axis parameter to MC_ALL_AXES.

Compatibility
The number of points that can be stored is dependent on the controller type and in some cases on the number of installed
axes:

Controller 1 2 3 4 5 6 7 8
DCX-PCI300 256 256 256 256 256 256 256 256
DCX-PCI100 256 256 256 256 256 256 256 256
DCX-AT300 1536 768 512 384 307 256 n/a n/a
DCX-AT200 1536 768 512 384 307 256 n/a n/a
DCX-PC100 4096 2048 1365 1024 819 682 585 512
DC2-PC100 n/a 2048 n/a n/a n/a n/a n/a n/a
DCX-PCI300 256 256 256 256 256 256 256 256
DCX-PCI100 256 256 256 256 256 256 256 256
DCX-AT300 1536 768 512 384 307 256 n/a n/a
DCX-AT200 1536 768 512 384 307 256 n/a n/a
DCX-PC100 4096 2048 1365 1024 819 682 585 512

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCLearnPoint(hCtlr: HCTRLR; axis: Word; index: Longint; mode: Word): Longint; stdcall;
VB: Function MCLearnPoint Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal index As Long, ByVal mode As

Integer) As Long
LabVIEW: Not Supported

MCCL Reference
LP, LT

See Also
MCMoveToPoint()

MCAPI Motion Functions

Precision MicroControl

210

MCMoveAbsolute
MCMoveAbsolute() initiates an absolute position move for the specified axis.

void MCMoveAbsolute(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // new absolute position
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to move.
position Absolute position to move to.

Returns
This function does not return a value.

Comments
The axis must be enabled prior to executing a move (an exception to this is when the MCMoveAbsolute() is used with
MCLearnPoint() in target mode).

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCMoveAbsolute(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCMoveAbsolute(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW:

MCCL Reference
MA

See Also
MCMoveRelative(), MCSetPosition()

MCAPI Motion Functions

DCX-PCI100 User’s Manual

211

MCMoveRelative
MCMoveRelative() initiates a relative position move for the specified axis or all axes.

void MCMoveRelative(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double distance // distance to move from current position
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to move.
distance Amount of distance to move.

Returns
This function does not return a value.

Comments
The axis must be enabled prior to executing a move (an exception to this is when the MCMoveRelative() is used with
MCLearnPoint() in target mode).

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCMoveRelative(hCtlr: HCTRLR; axis: Word; distance: Double); stdcall;
VB: Sub MCMoveRelative(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double)
LabVIEW:

MCCL Reference
MR

See Also
MCMoveAbsolute(), MCSetPosition()

MCAPI Motion Functions

Precision MicroControl

212

MCMoveToPoint
MCMoveToPoint() initiates an absolute move to a stored location for the specified axis or all axes.

long int MCMoveToPoint(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD index // index of point to move to
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to move.
index Index of stored location to move to.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
The motor must be enabled prior to executing a MCMoveToPoint() and the point specified by index must have been
stored by a previous call to MCLearnPoint(). All axes may be instructed to move by setting the axis parameter to
MC_ALL_AXES.

Compatibility
The DC2 stepper axes do not support this command.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCMoveToPoint(hCtlr: HCTRLR; axis: Word; index: Longint): Longint; stdcall;
VB: Function MCMoveToPoint Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal index As Long) As Long
LabVIEW: Not Supported

MCCL Reference
MP

See Also
MCLearnPoint()

MCReset
MCReset() performs a complete reset of the axis or controller, leaving the specified axis (or axes) in the disabled state.

MCAPI Motion Functions

DCX-PCI100 User’s Manual

213

void MCReset(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to reset.

Returns
This function does not return a value.

Comments
Setting the axis parameter to MC_ALL_AXES will cause the specified controller to be reset.

If you have enabled the hardware reset feature of the DCX-AT, or DCX-PC100 controllers MCReset() will perform a hard
reset when axis is equal to MC_ALL_AXES, or a soft reset when Axis specifies a particular axis. If this feature is off (the
default state), MCReset() issues the “RT” command to the board to perform any reset (this is a "soft" reset). On the DCX-
AT200 and DCX-AT300 you must set jumper JP2 to connect pins 1 and 2 if Hard Reset is enabled, or connect pins 5 and 6
(factory default) if Hard Reset is disabled. On the DCX-PC100 you must set jumper JP4 to connect pins 1 and 2 if Hard
Reset is enabled, or connect pins 5 and 6 (factory default) if Hard Reset is disabled. See the Motion Control Panel online
help for how to enable the MCAPI Hardware Reset feature.

Compatibility
The DC2 series, DCX-PC100, DCX-AT100, and DCX-AT200 (prior to firmware version 1.2a) controllers do not support
the resetting of individual axes. In these cases when this command is executed, the axis parameter is ignored and a
controller reset is performed.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCReset(hCtlr: HCTRLR; axis: Word); stdcall;
VB: Sub MCReset Lib(ByVal hCtrlr As Integer, ByVal axis As Integer)
LabVIEW:

MCCL Reference
RT

See Also
MCAbort(), MCStop()

MCAPI Motion Functions

Precision MicroControl

214

MCStop
MCStop() stops the specified axis or axes using the pre-programmed deceleration values.

void MCStop(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to stop.

Returns
This function does not return a value.

Comments
This function initiates a controlled axis stop, as compared with MCAbort() which stops the axis abruptly.

i

Following a call to MCStop() verify that the axis has stopped using or
MCIsStopped() or MCWaitForStop(). Then call MCEnableAxis() prior to issuing
another motion command.

i

Following a call to MCStop() on the DCX-PC100 controller when in velocity mode,
call MCSetOperatingMode() prior to issuing another motion command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCStop(hCtlr: HCTRLR; axis: Word); stdcall;
VB: Sub MCStop(ByVal hCtrlr As Integer, ByVal axis As Integer)
LabVIEW:

MCCL Reference
ST

See Also
MCAbort(), MCEnableAxis(), MCIsStopped(), MCSetOperatingMode(), MCWaitForStop()

MCAPI Motion Functions

DCX-PCI100 User’s Manual

215

MCWait
MCWait() waits the specified number of seconds before returning to the caller.

void MCWait(
 HCTRLR hCtlr, // controller handle
 double period // length of delay
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
period Length of delay, in seconds.

Returns
This function does not return a value.

Comments
The delay is specified in seconds, unless MCSetScale() has been called to change the time scale.

!

Once this command is issued, the calling program will not be able to communicate with
the board until period elapses. We recommend creating your own time based looping
structure.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWait(hCtlr: HCTRLR; period: Double); stdcall;
VB: Sub MCWait(ByVal hCtrlr As Integer, ByVal period As Double)
LabVIEW:

MCCL Reference
WA

See Also
MCWaitForPosition(), MCWaitForRelative(), MCWaitForStop(), MCWaitForTarget()

MCAPI Motion Functions

Precision MicroControl

216

MCWaitForEdge
MCWaitForEdge() waits for the coarse home input to go to the specified logic level for a servo, closed-loop stepper, or an
MC260 open-loop stepper. When used with an open-loop stepper (excluding an MC260) this function completes a call to
MCEdgeArm(). Note that when used with an open-loop stepper (excluding an MC260), the parameter state has no effect.

long int MCWaitForEdge(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int state // selects logic level to wait for
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait for.
state Selects the coarse home logic level to wait for:

Value Description
TRUE Wait for coarse home to go active.
FALSE Wait for coarse home to go inactive.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function behaves differently depending on what type of module axis is and whether it is in open-loop or closed-loop
mode. In both cases instruction processing is paused until the home or coarse home input, respectively, goes to the specified
logic state. In open-loop mode, this function is one of three functions that must be called to set the home input signal
transition to a predetermined position. In closed-loop mode, this function is used to find a home sensor to qualify an index
pulse on servo or closed-loop stepper. However, using this function with a closed-loop system is discouraged.

In open-loop mode, exclusively stepper modules (excluding the MC260, see the closed-loop section for function behavior),
this function should be called after MCIsEdgeFound() confirms that the home input has latched from a previous call to
MCEdgeArm(). After this function returns control to the calling program, a call to MCEnableAxis() will apply position
defined in MCEdgeArm() to the position where the home input first latched.

!

Once this command is issued, the calling program will not be able to communicate with
the board until the home input signal is detected. We recommend calling
MCIsEdgeFound(), to confirm the home input is active prior to calling this function.

i

Note that when used with an open-loop stepper (excluding an MC260), the parameter
state has no effect. Also, this function is only looking for an active signal state, not a
transition.

MCAPI Motion Functions

DCX-PCI100 User’s Manual

217

When a module used in closed-loop mode or with an MC260, this function is called by itself to return when the home input
state level defined by state is observed. To assure a leading or trailing edge, this function would have to be called twice
with state different in both cases.

!

Once this command is issued, the calling program will not be able to communicate with
the board until state matches the coarse home logic level. We recommend creating your
own looping structure based on MCDecodeStatus() and MC_STAT_INP_HOME
instead of using this function.

i

state will accept any non-zero value as TRUE, and will work correctly with most
programming languages, including those that define TRUE as a non-zero value other
than one (one is the Windows default value for TRUE).

See the example code in the online help for details of how to use MCWaitForEdge().

Compatibility
The DC2 stepper axes, MC150, and MC160 modules do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCWaitForEdge(hCtlr: HCTRLR; axis: Word; state: SmallInt): Longint; stdcall;
VB: Function MCWaitForEdge(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
WE

See Also
MCEdgeArm(), MCFindEdge(), MCFindIndex(), MCIsEdgeFound()

MCWaitForIndex
MCWaitForIndex() waits until the index pulse has been observed on servo or closed-loop stepper axis.

long int MCWaitForIndex(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait for.

MCAPI Motion Functions

Precision MicroControl

218

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function is used to initialize a motor to a given position relative to the index pulse. When called after
MCIndexArm(), it provides the exact same functionality as MCFindIndex(). The benefit is that you may query the
controller through MCIsIndexFound() to see that the index has latched. Once the index has been seen, a call to
MCWaitForIndex() will not cause the board to stop communicating where MCFindIndex() has the potential to cause the
controller to stop communicating.

!

Once this command is issued, the calling program will not be able to communicate with
the board until axis captures the encoder index. We recommend confirming that
MCIndexArm() has captured the index by using MCIsIndexFound() before calling
MCWaitForIndex() to avoid this problem.

i

Only after an MCEnableAxis() call will the position where the encoder index pulse
occurred for axis be set to the value of the position parameter.

Compatibility
Open-loop stepper axes do not support this command, since the connected encoder is considered an auxiliary encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCWaitForIndex(hCtlr: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MCWaitForIndex(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
WI

See Also
MCFindAuxEncIdx(), MCFindEdge(), MCFindIndex(), MCIndexArm(), MCIsIndexFound()

MCWaitForPosition
MCWaitForPosition() waits for the axis to reach the specified position before allowing the next command to execute.

MCAPI Motion Functions

DCX-PCI100 User’s Manual

219

void MCWaitForPosition(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double position // position to wait for
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait on to reach specified position.
position Absolute position to wait for.

Returns
This function does not return a value.

Comments
You must start the specified axis moving, and make certain the motion will at least reach the wait position, in order for this
function to return to the calling program.

!

Once this command is issued, the calling program will not be able to communicate with
the board until axis’ encoder reaches position.

Compatibility
The DC2 stepper axes, MC150, and MC160 modules do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForPosition(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCWaitForPosition(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW: Not Supported

MCCL Reference
WP

See Also
MCWait(), MCWaitForRelative(), MCWaitForStop(), MCWaitForTarget()

MCWaitForRelative
MCWaitForRelative() waits for the axis to reach a position that is specified relative to the target position.

MCAPI Motion Functions

Precision MicroControl

220

void MCWaitForRelative(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double distance // relative position to wait for
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait on for to reach specified position.
distance Position, relative to the current target position, to wait for.

Returns
This function does not return a value.

Comments
You must start the specified axis moving, and make certain the motion will at least reach the wait position, in order for this
function to return to the calling program. The position argument is specified as a distance from the target position.

!

Once this command is issued, the calling program will not be able to communicate with
the board until axis’ encoder traverses distance.

Compatibility
The DC2 stepper axes, MC150, and MC160 modules do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForRelative(hCtlr: HCTRLR; axis: Word; distance: Double); stdcall;
VB: Sub MCWaitForRelative(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double)
LabVIEW: Not Supported

MCCL Reference
WR

See Also
MCWait(), MCWaitForPosition(), MCWaitForStop(), MCWaitForTarget()

MCWaitForStop
MCWaitForStop() waits for the specified axis or all axes to come to a stop. An optional dwell after the stop may be
specified within this command to allow the mechanical system to come to rest.

MCAPI Motion Functions

DCX-PCI100 User’s Manual

221

void MCWaitForStop(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double dwell // dwell time after stop
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number function is waiting for to stop.
dwell Delay time after stop has occurred.

Returns
This function does not return a value.

Comments
MCWaitForStop() is necessary for synchronizing motions, and for making certain that a prior motion has completed
before beginning a new motion.

!

Once this command is issued, the calling program will not be able to communicate with
the board until axis’ encoder comes to rest. We recommend using MCIsStopped() or
MCIsAtTarget() instead.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForStop(hCtlr: HCTRLR; axis: Word; dwell: Double); stdcall;
VB: Sub MCWaitForStop(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal dwell As Double)
LabVIEW:

MCCL Reference
WS

See Also
MCIsAtTarget(), MCIsStopped(), MCWait(), MCWaitForPosition(), MCWaitForRelative(),
MCWaitForTarget()

MCAPI Motion Functions

Precision MicroControl

222

MCWaitForTarget
MCWaitForTarget() waits for the specified axis to reach its target position. An optional dwell after the stop may be
specified within this command to allow the mechanical system to come to rest.

void MCWaitForTarget(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double dwell // dwell time after stop
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number function is waiting for to reach the target position.
dwell Delay time after stop has occurred.

Returns
This function does not return a value.

Comments
For a servo axis to be considered "at target" it must remain within the Deadband region for the DeadbandDelay period.
Deadband and DeadbandDelay are specified in the MCMOTIONEX configuration structure.

!

Once this command is issued, the calling program will not be able to communicate with
the board until axis’ encoder settles within the Deadband region for the
DeadbandDelay period. We recommend using MCDecodeStatus() along with
MC_STAT_AT_TARGET instead.

Compatibility
The DC2 and DCX-PC100 controllers do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForTarget(hCtlr: HCTRLR; axis: Word; dwell: Double); stdcall;
VB: Sub MCWaitForTarget(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal dwell As Double)
LabVIEW: Not Supported

MCCL Reference
WT

See Also
MCGetMotionConfigEx(), MCSetMotionConfigEx(), MCWaitForPosition(), MCWaitForRelative(),
MCWaitForStop()

Reporting Functions

DCX-PCI100 User’s Manual

223

MCAPI Reporting Functions

Precision MicroControl

224

Chapter Contents

DCX-PCI100 User’s Manual

225

MCAPI Reporting Functions

Reporting functions allow the calling program to query the board to determine how parameters have been configured, as
well as getting information regarding the position and status of any given axis.
Also included in this category are functions that allow the program to trap and decode errors.

To see examples of how the functions in this chapter are used, please refer to the online Motion Control API Reference.

MCDecodeStatus
MCDecodeStatus() permits you to test flags in the controller status word in a way that is independent of the type of
controller being inspected.

long int MCDecodeStatus(
 HCTRLR hCtlr, // controller handle
 DWORD status, // status word
 long int bit // status bit selection flag
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
status Status value returned from a previous call to MCGetStatus().
bit Status bit to decode. Over fifty different status bit flags (not all flags are

supported by all controllers) are defined in the Constants section of this help
file. Valid Bit constants begin with "MC_STAT_".

Returns
This function returns TRUE if the selected bit is set. Otherwise, FALSE is returned if the bit is not set or the bit does not
apply to this controller type.

Comments
Using this function to test the status word returned by MCGetStatus() isolates the program from controller dependent bit
ordering of the status word. The sample programs include numerous examples of the MCDecodeStatus() function.

Chapter

14

MCAPI Reporting Functions

Precision MicroControl

226

i

To assist with proper constant selection two tables have been provided with the online
help. The Status Word Lookup Table lists the constants in the same order as the status
word bits they represent for each controller model, and has been included in Appendix
C. A second table, The Status Word Cross Reference, lists the controller models
supported by each constant, and will only be found in the online help.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCDecodeStatus(hCtlr: HCTRLR; status, bit: Longint): Longint; stdcall;
VB: Function MCDecodeStatus(ByVal hCtrlr As Integer, ByVal status As Long, ByVal bit As Long) As Long
LabVIEW:

MCCL Reference
None

See Also
MCGetStatus(), online help sample programs

MCErrorNotify
MCErrorNotify() registers with the MCAPI a specific window procedure that is to receive message based notification of
API errors for this controller handle.

void MCErrorNotify(
 HWND hWnd, // error handling window procedure
 HCTRLR hCtlr, // controller handle
 DWORD errorMask // mask to select error category
);

Parameters
hWnd Handle of window procedure to receive error messages.
hCtlr Controller handle, returned by a successful call to MCOpen().
errorMask Selects error categories to be notified about. Any combination of the

MCERRMASK_xxxx constants may be OR’ed together to select errors to be

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

227

reported. The constant MCERRMASK_STANDARD includes the most common
error messages.

Returns
This function does not return a value.

Comments
Only one window procedure at a time may receive error messages for a controller handle. If another window procedure
attempts to hook the error messages for a handle that already has an error handler, it will replace the current error handler.
In practice, this is not a problem as applications have control of the handle. They can decide who to have hook the error
notification mechanism.

The error notification message is a pre-agreed upon, inter-application message that goes by the name "MCErrorNotify".
Application programs need to call the Windows function RegisterWindowMessage() with the message name
“MCErrorNotify” to obtain the numeric value if the message. The error message will have a numeric error code as its
wParam, and a pointer to a null-terminated ASCII string representation of the name of the function that caused the error as
its lParam. The CWDemo sample application includes an example of hooking the error notification loop and processing
error messages.

In the event of a bad controller handle passed to an API function as part of an API call, an error message will be broadcast
to every windows procedure. This is done because with a bad handle there is no way for the API to identify which window
procedure should receive the error. Rather than quietly tell no one, the API plays it safe and tells everyone.

The standard Windows message queue is small and may be over-run if error messages occur in rapid succession. During
application development, when errors are most likely, you may want to call the Windows function SetMessageQueue() in
your WinMain function to set the application queue to something larger than the default size of 8 messages.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.2 or higher

Prototypes
Delphi: procedure MCErrorNotify(hWnd: HWnd; hCtlr: HCTRLR; errorMask: Longint); stdcall;
VB: Sub MCErrorNotify(ByVal hWnd As Long, ByVal hCtrlr As Integer, ByVal errorMask As Long)
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCGetError(), MCTranslateErrorEx(), CWDemo sample code

MCAPI Reporting Functions

Precision MicroControl

228

MCGetAccelerationEx
MCGetAccelerationEx() returns the current programmed acceleration value for the given axis, in whatever units the axis
is configured for.

long int MCGetAccelerationEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pAccel // acceleration return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query for acceleration
pAccel Pointer to a double precision floating point variable that will hold the

acceleration for the specified axis.

Returns
The acceleration value is placed in the variable specified by the pointer pAccel and MCERR_NOERROR is returned if
there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by
pAccel is left unchanged.

Comments
The acceleration value returned by this function is the same as the Acceleration field of the MCMOTIONEX structure
returned by MCGetMotionConfigEx(); MCGetAccelerationEx() provides a short-hand method for obtaining just the
acceleration value.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2 stepper axes do not support ramping.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetAccelerationEx(hCtlr: HCTRLR; axis: Word; var pAccel: Double): Longint; stdcall;
VB: Function MCGetAccelerationEx(ByVal hCtrlr As Integer, ByVal axis As Integer, accel As Double) As Long
LabVIEW:

MCCL Reference
None

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

229

See Also
MCSetAcceleration(), MCGetMotionConfigEx()

MCGetAuxEncIdxEx
MCGetAuxEncIdxEx() returns the position where the auxiliary encoder's index pulse was observed.

long int MCGetAuxEncIdxEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pIndex // index position return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pIndex Pointer to a double precision floating point variable that will hold the auxiliary

encoder index position for the specified axis.

Returns
The auxiliary encoder index position is placed in the variable specified by the pointer pIndex and MCERR_NOERROR is
returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable
pointed to by pIndex is left unchanged.

Comments
The auxiliary encoder's position may be set (to zero) using the MCSetAuxEncPos() function. The index position reported
will be relative to this zero position.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support auxiliary encoders.
Closed-loop steppers do not support auxiliary encoder functions, since the connected encoder is considered a primary
encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetAuxEncIdxEx(hCtlr: HCTRLR; axis: Word; var pIndex: Double): Longint; stdcall;
VB: Function MCGetAuxEncIdxEx(ByVal hCtrlr As Integer, ByVal axis As Integer, index As Double) As Long
LabVIEW: Not Supported

MCAPI Reporting Functions

Precision MicroControl

230

MCCL Reference
AZ

See Also
MCFindAuxEncIdx(), MCGetAuxEncPosEx(), MCSetAuxEncPos()

MCGetAuxEncPosEx
MCGetAuxEncPosEx() returns the current position of the auxiliary encoder.

long int MCGetAuxEncPosEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pPosition // position return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pPosition Pointer to a double precision floating point variable that will hold the auxiliary

encoder position for the specified axis.

Returns
The auxiliary encoder position is placed in the variable specified by the pointer pPosition and MCERR_NOERROR is
returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable
pointed to by pPosition is left unchanged.

Comments
The auxiliary encoder's position may be set using the MCSetAuxEncPos() function.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support auxiliary encoders.
Closed-loop steppers do not support auxiliary encoder functions, since the connected encoder is considered a primary
encoder.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetAuxEncPosEx(hCtlr: HCTRLR; axis: Word; var pPosition: Double): Longint; stdcall;

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

231

VB: Function MCGetAuxEncPosEx(ByVal hCtrlr As Integer, ByVal axis As Integer, position As Double) As Long
LabVIEW:

MCCL Reference
AT

See Also
MCGetAuxEncIdxEx(), MCSetAuxEncPos ())

MCGetAxisConfiguration
MCGetAxisConfiguration() obtains the configuration for the specified axis. Configuration information includes the axis
type, servo motor update rates, stepper motor step rates, etc.

long int MCGetAxisConfiguration(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCAXISCONFIG* pAxisCfg // address of axis configuration structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pAxisCfg Points to an MCAXISCONFIG structure that receives the configuration

information.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function allows the application to query the driver about installed motor axis hardware and capabilities.

Before you call MCGetAxisConfiguration() you must set the cbSize member to the size of the MCAXISCONFIG data
structure. C/C++ programmers may use sizeof(), Visual Basic and Delphi programmers will find current sizes for these
data structures in the appropriate MCAPI.XXX header file.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

MCAPI Reporting Functions

Precision MicroControl

232

Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCGetAxisConfiguration(hCtlr: HCTRLR; axis: Word; var pAxisCfg: MCAXISCONFIG): Longint; stdcall;
VB: Function MCGetAxisConfiguration(ByVal hCtrlr As Integer, ByVal axis As Integer, axisCfg As MCAxisConfig) As Long
LabVIEW: Not Supported

MCCL Reference
Dual Port RAM

See Also
MCAXISCONFIG structure definition

MCGetBreakpointEx
MCGetBreakpointEx() returns the current breakpoint position as placed by the MCWaitForPosition() or
MCWaitForRelative() command.

long int MCGetBreakpointEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pBreakpoint // breakpoint position return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pBreakpoint Pointer to a double precision floating point variable that will hold the breakpoint

position for the specified axis.

Returns
The breakpoint position is placed in the variable specified by the pointer pBreakpoint and MCERR_NOERROR is returned
if there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by
pBreakpoint is left unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DCX-PC100 controller and stepper axes do not support this command.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

233

Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetBreakpointEx(hCtlr: HCTRLR; axis: Word; var pBreakpoint: Double): Longint; stdcall;
VB: Function MCGetBreakpointEx(ByVal hCtrlr As Integer, ByVal axis As Integer, breakpoint As Double) As Long
LabVIEW:

MCCL Reference
TB

See Also
MCWaitForPosition(), MCWaitForRelative()

MCGetCaptureData
MCGetCaptureData() retrieves data collected following the most recent MCCaptureData() call.

long int MCGetCaptureData(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number to get capture data from
 long int type, // type of capture data to retrieve
 long int start, // index of starting point
 long int points, // number of data points to retrieve
 double* pData // pointer to data array to for data
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
type Specifies the type of data to retrieve:

Value Description
MC_CAPTURE_ACTUAL Retrieves the captured actual position data.
MC_CAPTURE_ERROR Retrieves the following error (difference between actual and

optimal positions).
MC_CAPTURE_OPTIMAL Retrieves the captured optimal position data.
MC_CAPTURE_TORQUE Retrieves the captured torque data.

start Index of the first data point to retrieve. The index is zero based, i.e. the first

data point is 0, not 1.

MCAPI Reporting Functions

Precision MicroControl

234

points Total number of data points to retrieve.
pData Pointer to a double precision floating point variable that will hold the breakpoint

position for the specified axis.

Returns
This function places one or more captured data values in the array specified by the pointer pData, and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is
returned and state of the array pointed to by pData is undefined.

Comments
Capture data settings (number of points, delay, etc.) are set with the MCCaptureData() function.

Beginning with version 3.0 of the MCAPI users may use the MCGetAxisConfiguration() function to determine the data
capture capabilities of an axis.

Compatibility
The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the DCX-PC100 controller do
not support data capture. The DCX-PCI100 controller does not support torque mode nor do any stepper axes, which
prevents the capture of torque values.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetCaptureData(hCtlr: HCTRLR; axis: Word; type, start, points: Longint; var pData: Double): Longint;

stdcall;
VB: Function MCGetCaptureData(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal start, ByVal argtype As Long,

ByVal points As Long, data As Double) As Long
LabVIEW: Not Supported

MCCL Reference
DO, DR, DQ

See Also
MCCaptureData(), MCGetAxisConfiguration()

MCGetContourConfig
MCGetContourConfig() obtains the contouring configuration for the specified axis.

long int MCGetContourConfig(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCCONTOUR* pContour // structure to hold contour data
);

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

235

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pContour Points to an MCCONTOUR structure that receives the configuration information

for Axis.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates the function did not find the Axis
specified (hCtlr or axis incorrect).

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetContourConfig(hCtlr: HCTRLR; axis: Word; var pContour: MCCONTOUR): SmallInt; stdcall;
VB: Function MCGetContourConfig Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, contour As MCContour) As Integer
LabVIEW: Not Supported

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetContourConfig(), MCCONTOUR structure definition

MCGetContouringCount
MCGetContouringCount() obtains the current contour path motion that an axis is performing.

long int MCGetContouringCount(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

MCAPI Reporting Functions

Precision MicroControl

236

axis Axis number to query.

Returns
The return value is the number of linear or user defined contour path motions that have been completed.

Comments
This function allows the application to determine in what area of a continuous path motion an axis is at any given time.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetContouringCount(hCtlr: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MCGetContouringCount(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
TX

See Also
MCGetContourConfig(), MCSetContourConfig(), MCCONTOUR structure definition

MCGetCount
MCGetCount() retrieves various count values from the specified axis.

long int MCGetCount(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int type, // type of count to retrieve
 long int* pCount // variable to hold count value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
type Specifies the type of data to retrieve:

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

237

Value Description
MC_COUNT_CAPTURE Retrieves the number of captured positions in high-speed

capture mode.
MC_COUNT_COMPARE Retrieves the number of successful comparisons in high-

speed compare mode.
MC_COUNT_CONTOUR Retrieves the index of the currently executing contour move

in contouring mode.
MC_COUNT_FILTER Retrieves the number of digital filter coefficients currently

loaded.
MC_COUNT_FILTERMAX Retrieves the maximum number of digital filter coefficients

supported.

pCount Variable to hold requested count value.

Returns
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is
returned.

Comments
MCGetCount() is a general purpose function for retrieving values related to high-speed capture mode, high-speed
compare mode, contouring mode, and digital filter mode.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the DCX-PC100 controller do
not support data capture. The DCX-PCI100 controller does not support torque mode nor do any stepper axes, which
prevents the capture of torque values. The DC2, DCX-PC100, DCX-AT200, and DCX-PCI100 controllers do not support
high-speed position compare. The MCAPI does not does not support contouring on the DC2, DCX-PC100, and DCX-
PCI100 controllers. The DC2, DCX-PC100, DCX-AT200, DCX-PCI100 controllers, MC360, and MC362 modules do not
support digital filtering.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCGetCount(hCtlr: HCTRLR; axis: Word; type: Longint; var pCount: Longint): Longint; stdcall;
VB: Function MCGetCount(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal argtype As Long, count As Long) As Long
LabVIEW: Not Supported

MCCL Reference
CG, GC, TX

See Also
MCGetContouringCount()

MCAPI Reporting Functions

Precision MicroControl

238

MCGetDecelerationEx
MCGetDecelerationEx() returns the current programmed deceleration value for the given axis, in whatever units the axis
is configured for.

long int MCGetDecelerationEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pDecel // deceleration return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pDecel Pointer to a double precision floating point variable that will hold the

deceleration for the specified axis.

Returns
The deceleration is placed in the variable specified by the pointer pDecel and MCERR_NOERROR is returned if there
were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by pDecel
is left unchanged.

Comments
The deceleration value is the same as that reported by the MCGetMotionConfigEx() function, these functions provide a
short-hand method for obtaining just the deceleration value.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetDecelerationEx(hCtlr: HCTRLR; axis: Word; var pDecel: Double): Longint; stdcall;
VB: Function MCGetDecelerationEx(ByVal hCtrlr As Integer, ByVal axis As Integer, decel As Double) As Long

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

239

LabVIEW:

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetDeceleration(), MCGetMotionConfigEx()

MCGetDigitalFilter
MCGetDigitalFilter() obtains the digital filter coefficients for the specified axis.

long int MCGetDigitalFilter(
 HCTRLR hCtlr // controller handle
 WORD axis, // axis number
 double* pCoeff, // array to hold retrieved coefficients
 long int num, // number of coefficients to retrieve
 long int* pActual // number of valid coefficients retrieved
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pCoeff Array to hold retrieved coefficients, must be num elements long (or longer). If

this pointer is NULL, no coefficients are retrieved.
num Number of coefficients to retrieve, cannot be larger than the maximum digital

filter size supported by the controller.
pActual Points to long integer that will be set equal to the number of valid coefficients

currently loaded for this axis. If this pointer is NULL, no value is returned.

Returns
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is
returned.

Comments
This function retrieves zero or more of the digital filter coefficients currently loaded in an axis. Optionally the actual
number of loaded coefficients is also returned (this value is also available from MCGetCount()).

i

You may not set the axis parameter to MC_ALL_AXES for this command.

MCAPI Reporting Functions

Precision MicroControl

240

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100 controllers, MC360, and MC362 modules do not support digital
filtering.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCGetDigitalFilter(hCtlr: HCTRLR; axis: Word; coeff: Array of Double; num: Longint; var pActual: Longint):

Longint; stdcall;
VB: Function MCGetDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer, coeff As Double, ByVal num As Long,

actual As Long) As Long
LabVIEW: Not Supported

MCCL Reference
GF

See Also
MCEnableDigitalFilter(), MCGetCount(), MCIsDigitalFilter(), MCSetDigitalFilter()

MCGetError
MCGetError() returns the most recent error code for hCtlr.

short int MCGetError(
 HCTRLR hCtlr // controller handle
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Returns
The return value is a numeric error code (or MCERR_NOERROR if there is no error) for the most recent error detected for
the specified controller.

Comments
The error is cleared (set equal to MCERR_NOERROR) after it has been read. Errors are maintained on a per-handle basis,
such that calls to MCGetError() only return errors that occurred during function calls that used the same handle.

A more flexible way to detect errors is to use the MCErrorNotify(). This function delivers error messages directly to the
window procedure of your choice.

Compatibility
There are no compatibility issues with this function.

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

241

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.2 or higher

Prototypes
Delphi: function MCGetError(hCtlr: HCTRLR): SmallInt; stdcall;
VB: Function MCGetError(ByVal hCtrlr As Integer) As Integer
LabVIEW:

MCCL Reference
None

See Also
MCErrorNotify(), MCTranslateErrorEx()

MCGetFilterConfigEx
MCGetFilterConfigEx() obtains the current PID filter configuration for a servo motor or the closed-loop configuration for
a stepper motor operating in closed-loop mode. Please see the online MCAPI Reference for the MCGetFilterConfig()
prototype.

long int MCGetFilterConfigEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCFILTEREX* pFilter // address of filter configuration
 // structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pFilter Points to an MCFILTEREX structure that receives the PID filter configuration

information for axis.

Returns
MCGetFilterConfigEx() places the PID filter settings in the structure specified by the pointer pFilter.
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is
returned.

Comments
This function must be used to obtain the current PID filter configuration for a servo motor or the closed-loop configuration
for a stepper motor operating in closed-loop mode.

MCAPI Reporting Functions

Precision MicroControl

242

Closed-loop stepper operation requires firmware version 2.1a or higher on the DCX-PCI300 and firmware version 2.5a or
higher on the DCX-AT300.

i

You may not set the axis parameter to MC_ALL_AXES for this command..

Compatibility
VelocityGain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-loop steppers.
AccelGain is not supported on the DC2, DCX-PC100, and DCX-PCI100 controllers. DecelGain is not supported on the
DC2, DCX-PC100, and DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCGetFilterConfigEx(hCtlr: HCTRLR; axis: Word; var pFilter: MCFILTEREX): SmallInt; stdcall;
VB: Function MCGetFilterConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, filter As MCFilterEx) As Integer
LabVIEW:

MCCL Reference
TD, TF, TG, TI, TL, Controller RAM Motor Tables

See Also
MCSetFilterConfigEx(), MCFILTEREX structure definition

MCGetFollowingError
MCGetFollowingError() returns the current following error (difference between the actual and the optimal positions) for
the specified axis.

long int MCGetFollowingError(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pError // following error return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pError Points to a double precision variable that will hold the following error.

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

243

Returns
This function places the following error in the variable specified by the pointer pError, and MCERR_NOERROR is
returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable
pointed to by pError is left unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetFollowingError(hCtlr: HCTRLR; axis: Word; var pError: Double): Longint; stdcall;
VB: Function MCGetFollowingError(ByVal hCtrlr As Integer, ByVal axis As Integer, error As Double) As Long
LabVIEW:

MCCL Reference
TF

See Also
MCGetOptimalEx(), MCGetPositionEx()

MCGetGain
MCGetGain() returns the current gain setting for the specified axis.

long int MCGetGain(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pGain // gain return value
);

MCAPI Reporting Functions

Precision MicroControl

244

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pGain Points to a double precision variable that will hold the gain value.

Returns
MCGetGain() places the gain value in the variable specified by the pointer pGain and MCERR_NOERROR is returned if
there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by
pGain is left unchanged.

Comments
The gain value is the same as that reported by the MCGetMotionConfigEx() function, this function provide a short-hand
method for obtaining just the gain value.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetGain(hCtlr: HCTRLR; axis: Word; var pGain: Double): Longint; stdcall;
VB: Function MCGetGain(ByVal hCtrlr As Integer, ByVal axis As Integer, gain As Double) As Long
LabVIEW:

MCCL Reference
TG

See Also
MCGetMotionConfigEx() , MCSetGain()

MCGetIndexEx
MCGetIndexEx() returns the position where the encoder index pulse was observed for the specified axis, in whatever
units the axis is configured for.

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

245

long int MCGetIndexEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pIndex // index position return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pIndex Pointer to a double precision floating point variable that will hold the index

position for the specified axis.

Returns
The index position is placed in the variable specified by the pointer pIndex and MCERR_NOERROR is returned if there
were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by pIndex
is left unchanged.

Comments
Controller resets and the MCSetPosition() function may be change the position reading of the primary encoder.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The MC100, MC110 modules, and all stepper axes do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetIndexEx(hCtlr: HCTRLR; axis: Word; var pIndex: Double): Longint; stdcall;
VB: Function MCGetIndexEx(ByVal hCtrlr As Integer, ByVal axis As Integer, index As Double) As Long
LabVIEW:

MCCL Reference
TZ

See Also
MCGetAuxEncIdxEx(), MCSetPosition()

MCAPI Reporting Functions

Precision MicroControl

246

MCGetInstalledModules
MCGetInstalledModules() enumerates the types of modules installed on a motion controller.

long int MCGetInstalledModules(
 HCTRLR hCtlr, // controller handle
 long int* modules, // pointer to an array for controller type
 // IDs
 long int size // size of Modules array
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
modules Pointer to an array of long integers, filled with module types on return.
size Size of modules array (number of integers).

Returns
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is
returned.

Comments
MCGetInstalledModules() fills the modules array with module type identifiers, where the type of module installed in
position #1 on the controller is stored in Modules[0], the type of module installed in position #2 on the controller is stored
in Modules[1], etc. In order to list all installed controllers the array must have a size at least equal to the value in the
MaximumModules field of the MCPARAMEX() data structure.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCGetInstalledModules(hCtlr: HCTRLR; modules: Array of LongInt; size: LongInt): Longint; stdcall;
VB: Function MCGetInstalledModules(ByVal hCtrlr As Integer, modules As Any, ByVal size As Long) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCGetConfigurationEx()

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

247

MCGetJogConfig
MCGetJogConfig() obtains the current jog configuration block for the specified axis.

short int MCGetJogConfig(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCJOG* pJog // address of jog configuration structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number from which to retrieve jog information.
pJog Points to a MCJOG structure that contains jog configuration information for

axis.

Returns
The return value is TRUE if the function is successful. Otherwise it returns FALSE, indicating the function did not find the
axis specified (hCtlr or axis incorrect).

Comments
This function must be used to obtain current jog configuration information for an axis.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DCX-PCI controllers, DC2 stepper axes, MC150, and MC160 modules do not support jogging.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetJogConfig(hCtlr: HCTRLR; axis: Word; var pJog: MCJOG): SmallInt; stdcall;
VB: Function MCGetJogConfig(ByVal hCtrlr As Integer, ByVal axis As Integer, jog As MCJog) As Integer
LabVIEW: Not Supported

MCCL Reference
Controller RAM Motor Tables

See Also
MCEnableJog(), MCGetJogConfig(), MCJOG structure definition

MCAPI Reporting Functions

Precision MicroControl

248

MCGetLimits
MCGetLimits() obtains the current hard and soft limit settings for the specified axis.

long int MCGetLimits(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 short int* pHardMode, // hard limit mode flags
 short int* pSoftMode, // soft limit mode flags
 double* pLimitMinus, // soft low limit value
 double* pLimitPlus // soft high limit value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pHardMode Combination of limit mode flags for the hard limits. See description of

pSoftMode for details.
pSoftMode Combination of the following limit mode flags for the soft limits:

Value Description
MC_LIMIT_PLUS Enables the positive limit.
MC_LIMIT_MINUS Enables the negative limit.
MC_LIMIT_BOTH Enables both the positive and negative limits.
MC_LIMIT_OFF Limit stopping mode is set to turn the motor off when a limit

is tripped.
MC_LIMIT_ABRUPT Limit stopping mode is set to abrupt (target position is set to

current position and PID loop stops axis as quickly as
possible).

MC_LIMIT_SMOOTH Limit stopping mode is set to smooth (axis executes pre-
programmed deceleration when limit is tripped).

MC_LIMIT_INVERT Inverts the polarity of the hardware limit switch inputs. This
value may not be used with soft limits.

pLimitMinus Pointer to a variable where the negative limit value for soft limits, if supported

by this controller, will be stored.
pLimitPlus Pointer to a variable where the positive limit value for soft limits, if supported by

this controller, will be stored.

Returns
MCGetLimits() returns the value MCERR_NOERROR if the function completed without errors. If there was an error, one
of the MCERR_xxxx error codes is returned, and the variables pointed to by the function pointers will be left in an
undetermined state.

Comments
The limit settings are the same as those reported by the MCGetMotionConfigEx() function, this function provide a short-
hand method for obtaining just the limit settings.

Beginning with Version 2.23 of the Motion Control API you may pass a NULL pointer for pHardMode, pSoftMode,
pLimitMinus, or pLimitPlus. This permits a program to easily ignore values it is not interested in. A program that needs to
check the Hard Limit settings might set all the pointers for Soft Limit values to NULL to ignore those values, as opposed to

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

249

having to create dummy variables to hold the values that will never be used. Because this feature is new in Version 2.23,
only applications that do not require backward compatibility with an earlier MCAPI version should take advantage of it.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2 and DCX-PC100 controllers do not support soft limits.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetLimits(hCtlr: HCTRLR; axis: Word; var pHardMode, pSoftMode: SmallInt; var pLimitMinus, pLimitPlus:

Double): Longint; stdcall;
VB: Function MCGetLimits(ByVal hCtrlr As Integer, ByVal axis As Integer, hardMode As Integer, softMode As Integer,

limitMinus As Double, limitPlus As Double) As Long
LabVIEW:

MCCL Reference
Controller RAM Motor Tables

See Also
MCGetMotionConfigEx(), MCSetLimits(), MCSetMotionConfigEx()

MCGetModuleInputMode
MCGetModuleInputMode() returns the current input mode for the specified axis.

long int MCGetModuleInputMode(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int* mode // input mode value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.

MCAPI Reporting Functions

Precision MicroControl

250

mode Pointer to a long integer variable that will hold the input mode for the specified
axis:

Value Description
MC_IM_OPENLOOP Stepper motor axis is in open-loop mode.
MC_IM_CLOSEDLOOP Stepper motor axis is in closed-loop mode.

Returns
The return value is MCERR_NOERROR if no errors were detected. If there was an error, one of the MCERR_xxxx error
codes is returned and the variable pointed to by mode is left unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, and DCX-AT200 controllers do not support a module which is
capable of closed-loop stepper operation. The MC362 module is not capable of closed-loop stepper operation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCGetModuleInputMode(hCtlr: HCTRLR; axis: Word; var mode: LongInt): Longint; stdcall;
VB: Function MCGetModuleInputMode(ByVal hCtrlr As Integer, ByVal axis As Integer, mode As Long) As Long
LabVIEW: Not Supported

MCCL Reference
IM

See Also
MCSetModuleInputMode()

MCGetMotionConfigEx
MCGetMotionConfigEx() obtains the current motion configuration block for the specified axis.

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

251

short int MCGetMotionConfigEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCMOTIONEX* pMotion // address of motion configuration
 // structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pMotion Points to an MCMOTIONEX structure that receives motion configuration

information for axis.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates the function did not find the axis
specified (hCtlr or axis incorrect).

Comments
This function provides a way of initializing a MCMOTIONEX structure with the current motion parameters for the given
axis. When you need to setup many of the parameters for an axis it is easier to call MCGetMotionConfigEx(), update the
MCMOTIONEX structure, and write the changes back using MCSetMotionConfigEx(), rather than use a Get/Set
function call for each parameter.

Note that some less often used parameters will only be accessible from this function and from MCSetMotionConfigEx() -
they do not have individual Get/Set functions.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
Acceleration is not supported on the DC2 stepper axes. Deceleration is not supported on the DCX-PCI100 controller,
MC100, MC110, MC150, or MC160 modules. MinVelocity is not supported on the DCX-PCI100, DCX-PC100, or DC2
controllers. Torque is not supported on the DCX-PCI100 controller, MC100, or MC110 modules. Deadband is not
supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360 or MC362 modules.
DeadbandDelay is not supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360 or
MC362 modules. StepSize is not supported on the DC2 or DCX-PCI100 controllers. Current is not supported on the DC2
or DCX-PCI100 controllers. SoftLimitMode is not supported on the DC2 or DCX-PC100 controllers. SoftLimitLow is not
supported on the DC2 or DCX-PC100 controllers. SoftLimitHigh is not supported on the DC2 or DCX-PC100 controllers.
EnableAmpFault is not supported on the DC2 controllers. UpdateRate is not supported on the DC2 or DCX-PCI100
controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetMotionConfigEx(hCtlr: HCTRLR; axis: Word; var pMotion: MCMOTIONEX): SmallInt; stdcall;
VB: Function MCGetMotionConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, motion As MCMotionEx) As Integer
LabVIEW: Not Supported

MCAPI Reporting Functions

Precision MicroControl

252

MCCL Reference
TG, Controller RAM Motor Tables

See Also
MCSetMotionConfigEx(), MCMOTIONEX structure definition

MCGetOperatingMode
MCGetOperatingMode() returns the current operating mode for the specified axis.

long int MCGetOperatingMode(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 long int* mode // operating mode value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
mode Pointer to a long integer variable that will hold the operating mode for the

specified axis:

Value Description
MC_MODE_CONTOUR Contouring mode operation.
MC_MODE_GAIN Gain mode operation.
MC_MODE_POSITION Position mode operation.
MC_MODE_TORQUE Torque mode operation.
MC_MODE_UNKNOWN Unable to determine current mode of operation.
MC_MODE_VELOCITY Velocity mode operation.

Returns
The return value is MCERR_NOERROR if no errors were detected. If there was an error, one of the MCERR_xxxx error
codes is returned and the variable pointed to by mode is left unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

253

Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCGetOperatingMode(hCtlr: HCTRLR; axis: Word; var mode: LongInt): Longint; stdcall;
VB: Function MCGetOperatingMode(ByVal hCtrlr As Integer, ByVal axis As Integer, mode As Long) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCSetOperatingMode()

MCGetOptimalEx
MCGetOptimalEx() returns the current optimal position from the trajectory generator for the specified axis, in whatever
units the axis is configured for.

long int MCGetOptimalEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pOptimal // optimal return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pOptimal Pointer to a double precision floating point variable that will hold the optimal

position for the specified axis.

Returns
The optimal position is placed in the variable specified by the pointer pOptimal and a zero is returned, if there were no
errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by pOptimal is left
unchanged.

Comments
The trajectory generator generates an optimal position based upon an ideal (i.e. error free) motor. The PID loop then
compares the actual position to the optimal position to calculate a correction to the actual trajectory. The maximum
difference allowed between the optimal and actual positions is set with the FollowingError member of an MCFILTEREX
structure.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

MCAPI Reporting Functions

Precision MicroControl

254

Compatibility
The DC2 stepper axes do not support this command.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetOptimalEx(hCtlr: HCTRLR; axis: Word; var pOptimal: Double): Longint; stdcall;
VB: Function MCGetOptimalEx(ByVal hCtrlr As Integer, ByVal axis As Integer, optimal As Double) As Long
LabVIEW:

MCCL Reference
TO

See Also
MCGetFilterConfigEx(), MCSetFilterConfigEx(), MCSetPosition()

MCGetPositionEx
MCGetPositionEx() returns the current position for the specified axis, in whatever units the axis is configured for.

void MCGetPositionEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pPosition // position return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pPosition Pointer to a double precision floating point variable that will hold the position for

the specified axis.

Returns
The position value is placed in the variable specified by the pointer pPosition and a zero is returned, if there were no errors.
If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by pPosition is left
unchanged.

Comments

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

255

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetPositionEx(hCtlr: HCTRLR; axis: Word; var pPosition: Double): Longint; stdcall;
VB: Function MCGetPositionEx(ByVal hCtrlr As Integer, ByVal axis As Integer, position As Double) As Long
LabVIEW:

MCCL Reference
TP

See Also
MCSetPosition(), MCSetScale()

MCGetProfile
MCGetProfile() returns the current acceleration / deceleration profile for the specified axis.

long int MCGetProfile(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD* pProfile // profile return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pProfile Pointer to a WORD variable that will hold the profile for the specified axis:

Value Description
MC_PROF_PARABOLIC Indicates that a parabolic acceleration / deceleration profile

has been selected.

MCAPI Reporting Functions

Precision MicroControl

256

Value Description
MC_PROF_SCURVE Indicates that an S-curve acceleration / deceleration profile

has been selected.
MC_PROF_TRAPEZOID Indicates that a trapezoidal acceleration / deceleration profile

has been selected.
MC_PROF_UNKNOWN This value is returned when MCGetProfile() cannot

determine the current profile setting.

Returns
The return value is MCERR_NOERROR, if no errors were detected. If there was an error, the return value is one of the
MCERR_xxxx error codes is returned and the variable pointed to by pProfile is left unchanged.

Comments
To determine if the controller supports user configurable acceleration profiles check the CanChangeProfile field of the
MCPARAMEX structure returned by MCGetConfigurationEx().

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetProfile(hCtlr: HCTRLR; axis: Word; var pProfile: Word): Longint; stdcall;
VB: Function MCGetProfile(ByVal hCtrlr As Integer, ByVal axis As Integer, profile As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetProfile(), MCPARAMEX structure definition

MCGetRegister
MCGetRegister() returns the value of the specified general purpose register.

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

257

long int MCGetRegister(
 HCTRLR hCtlr, // controller handle
 long int register, // register number
 void* pValue // pointer to variable to hold register
 // value
 long int type // type of variable pointed to by pValue
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
register Register number to read from (0 to 255).
pValue Pointer to a variable that will hold the register contents.
type Type of data pointed to by pValue:

Value Description
MC_TYPE_LONG Indicates pValue points to a variable of type long integer.
MC_TYPE_DOUBLE Indicates pValue points to a variable of type double precision

floating point.
MC_TYPE_FLOAT Indicates pValue points to a variable of type single precision

floating point.

Returns
The return value is MCERR_NOERROR, if no errors were detected. If there was an error, the return value is one of the
MCERR_xxxx error codes is returned and the variable pointed to by pValue is left unchanged.

Comments
MCGetRegister() and MCSetRegister() allow you to read from and write to, respectively, the general purpose registers
on the motion controller. When running background tasks on a multitasking controller the only way to communicate with
the background tasks is to pass parameters in the general purpose registers.

You cannot read from the local registers (registers 0 - 9) of a background task. When you need to communicate with a
background task be sure to use one or more of the global registers (10 - 255).

To determine if your controller supports multi-tasking check the MultiTasking field of the MCPARAMEX structure
returned by MCGetConfigurationEx().

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCGetRegister(hCtlr: HCTRLR; register: Longint; var pValue: Pointer; type: Longint): Longint; stdcall;
VB: Function MCGetRegister(ByVal hCtrlr As Integer, ByVal register As Long, value As Any, ByVal argtype As Long) As

Long

MCAPI Reporting Functions

Precision MicroControl

258

LabVIEW:

MCCL Reference
TR

See Also
MCSetRegister()

MCGetScale
MCGetScale() obtains the current scaling factors for the specified axis.

void MCGetScale(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 MCSCALE* pScale // address of scale factors structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pScale Pointer to a MCSCALE structure that will hold scaling information for axis.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates the function did not find the axis
specified (hCtlr or axis incorrect).

Comments
Scaling allows the application to communicate with the controller in real world units such as inches, meters, and radians; as
opposed to low level (i.e. un-scaled) values such as raw encoder counts, etc.

In order to see if a controller supports scaling, an application can test the Boolean flag CanDoScaling in the
MCPARAMEX structure returned by MCGetConfigurationEx().

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2 and DCX-PC controllers do not support scaling.

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

259

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetScale(hCtlr: HCTRLR; axis: Word; var pScale: MCSCALE): SmallInt; stdcall;
VB: Function MCGetScale(ByVal hCtrlr As Integer, ByVal axis As Integer, scale As MCScale) As Integer
LabVIEW:

MCCL Reference
Controller RAM Motor Tables

See Also
MCGetConfigurationEx(), MCSetScale(), MCSCALE structure definition

MCGetServoOutputPhase
MCGetServoOutputPhase() returns the current servo output phasing for the specified axis.

long int MCGetServoOutputPhase(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 WORD* pPhase // phase return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query for phase setting.
pPhase Pointer to a WORD variable that will hold the phase setting for the specified

axis:

Value Description
MC_PHASE_STD Indicates that the axis is configured for standard phasing.
MC_PHASE_REV Indicates that the axis is configured for reverse phasing.

Returns
The return value is MCERR_NOERROR if no errors were detected. If there was an error, the return value is one of the
MCERR_xxxx error codes is returned, and the variable pointed to by pPhase is left unchanged.

Comments

MCAPI Reporting Functions

Precision MicroControl

260

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The MC100 and MC110 modules do not support phase reverse.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetServoOutputPhase(hCtlr: HCTRLR; axis: Word; var pPhase: Word): Longint; stdcall;
VB: Function MCGetServoOutputPhase(ByVal hCtrlr As Integer, ByVal axis As Integer, phase As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCSetServoOutputPhase()

MCGetStatus
MCGetStatus() returns the controller dependent status word for the specified axis.

long int MCGetStatus(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.

Returns
The return value is the 32-bit status word for the selected axis.

Comments
Please refer to the hardware manual for your controller for specific information about meaning and location of the flags
located within the status word. As an alternative, the MCAPI function MCDecodeStatus() provides a controller-
independent way to process the flags in the status word.

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

261

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetStatus(hCtlr: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MCGetStatus(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long
LabVIEW:

MCCL Reference
TS

See Also
MCDecodeStatus(), Controller hardware reference manual

MCGetTargetEx
MCGetTargetEx() returns the move target position, as set by the most recent MCMoveAbsolute() or
MCMoveRelative() function call, for the specified axis.

void MCGetTargetEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pTarget // target position return
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pTarget Pointer to a double precision floating point variable that will hold the target

position for the specified axis.

MCAPI Reporting Functions

Precision MicroControl

262

Returns
The target position value is placed in the variable specified by the pointer pTarget and MCERR_NOERROR is returned if
there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned, and the variable pointed to by
pTarget is left unchanged.

Comments
The API move functions MCMoveAbsolute() and MCMoveRelative() update the target position for an axis. The
controller will then generate an optimal trajectory to the target position, and the PID loop will seek to minimize the error
(difference between actual and optimal trajectories).

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetTargetEx(hCtlr: HCTRLR; axis: Word; var pTarget: Double): Longint; stdcall;
VB: Function MCGetTargetEx(ByVal hCtrlr As Integer, ByVal axis As Integer, target As Double) As Long
LabVIEW:

MCCL Reference
TT

See Also
MCMoveAbsolute(), MCMoveRelative()

MCGetTorque
MCGetTorque() returns the current torque setting for the specified axis.

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

263

long int MCGetTorque(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pTorque // torque return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pTorque Points to a double precision variable that will hold the torque.

Returns
MCGetTorque() places the torque setting in the variable specified by the pointer pTorque and a zero is returned if there
were no errors. If there was an error, one of the MCERR_xxxx error codes is returned, and the variable pointed to by
pTorque is left unchanged.

Comments

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
Torque mode is not supported on stepper axes, DCX-PCI100 controller, MC100, or MC110 modules.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetTorque(hCtlr: HCTRLR; axis: Word; var pTorque: Double): Longint; stdcall;
VB: Function MCGetTorque(ByVal hCtrlr As Integer, ByVal axis As Integer, torque As Double) As Long
LabVIEW:

MCCL Reference
TQ

See Also
MCGetMotionConfigEx(), MCSetMotionConfigEx(), MCSetTorque(), MCMOTIONEX structure definition

MCAPI Reporting Functions

Precision MicroControl

264

MCGetVectorVelocity
MCGetVectorVelocity() returns the current programmed velocity for the specified axis, in whatever units the axis is
configured for.

long int MCGetVectorVelocity(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pVelocity // vector velocity return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pVelocity Pointer to a double precision floating point variable that will hold the vector

velocity value for the specified axis.

Returns
The position value is placed in the variable specified by the pointer pVelocity and MCERR_NOERROR is returned if there
were no errors. If there was an error, one of the MCERR_xxxx error codes is returned, and the variable pointed to by
pVelocity is left unchanged.

Comments
The vector velocity value for a particular axis may also be obtained using MCGetContourConfig().
MCGetVectorVelocity() provides a short-hand method for getting just the vector velocity value and is most useful when
updating vector velocity settings on the fly.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCGetVectorVelocity(hCtlr: HCTRLR; axis: Word; var pVelocity: Double): Longint; stdcall;
VB: Function MCGetVectorVelocity(ByVal hCtrlr As Integer, ByVal axis As Integer, velocity As Double) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCGetContourConfig(), MCSetVectorVelocity()

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

265

MCGetVelocityEx
MCGetVelocityEx() returns the current programmed velocity for the specified axis, in whatever units the axis is
configured for.

long int MCGetVelocityEx(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double* pVelocity // velocity return value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pVelocity Pointer to a double precision floating point variable that will hold the velocity

value for the specified axis.

Returns
The position value is placed in the variable specified by the pointer pVelocity, and MCERR_NOERROR is returned if there
were no errors. If there was an error, one of the MCERR_xxxx error codes is returned, and the variable pointed to by
pVelocity is left unchanged.

Comments
The programmed velocity value for a particular axis may also be obtained using the MCGetMotionConfigEx() function.
MCGetVelocityEx() provides a short-hand method for getting just the velocity value and is most useful when updating
velocity settings on the fly in velocity mode.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetVelocityEx(hCtlr: HCTRLR; axis: Word; var pVelocity: Double): Longint; stdcall;
VB: Function MCGetVelocityEx(ByVal hCtrlr As Integer, ByVal axis As Integer, velocity As Double) As Long
LabVIEW:

MCAPI Reporting Functions

Precision MicroControl

266

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetVelocity(), MCSetMotionConfigEx()

MCIsAtTarget
MCIsAtTarget() waits for the "At Target" condition to go true for the specified axis. Use it to determine when motion has
completed for an axis.

long int MCIsAtTarget(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double timeout // timeout, in seconds
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "At Target" condition.
timeout Time to wait, in seconds, for the At Target condition to go true.

Returns
This function returns TRUE, if the axis is "At Target." A return value of FALSE indicates the specified axis is not "At
Target" by the end of timeout. If MC_ALL_AXES is specified for Axis, TRUE will be returned only if all axes are "At
Target."

Comments
This function waits for up to timeout seconds for the At Target status of the axis to be TRUE. It returns as soon as the status
goes TRUE or when timeout expires. Set timeout to zero to check the At Target status only once and return immediately
(i.e. no wait is performed).

Compatibility
The DC2, DCX-PC, and DCX-PCI100 do not support the At Target status bit and should use MCIsStopped() instead.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCIsAtTarget(hCtlr: HCTRLR; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MCIsAtTarget(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long
LabVIEW: Not Supported

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

267

MCCL Reference
None

See Also
MCIsStopped()

MCIsDigitalFilter
MCIsDigitalFilter() is used to determine the enabled state of the digital filter mode.

long int MCIsDigitalFilter(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.

Returns
This function returns TRUE if the digital filter for the specified axis is enabled, or it returns FALSE if the digital filter is
disabled.

Comments
This function is used to determine the enabled state of the digital filter mode supported by advanced motion control
modules, such as the MC300.

i

You may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100 controllers, MC360 and MC362 modules do not support digital
filtering.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCIsDigitalFilter(hCtlr: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MCIsDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long
LabVIEW: Not Supported

MCAPI Reporting Functions

Precision MicroControl

268

MCCL Reference
None

See Also
MCEnableDigitalFilter(), MCGetCount(), MCGetDigitalFilter(), MCSetDigitalFilter()

MCIsEdgeFound
MCIsEdgeFound() waits for the "Edge Found" condition to go true for the specified axis. Use it to determine when an
open-loop stepper motor homing sequence has detected the edge sensor.

long int MCIsEdgeFound(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
 double timeout // timeout, in seconds
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "Edge Found" condition.
timeout Time to wait, in seconds, for the “Edge Found” condition to go true.

Returns
This function returns TRUE if the stepper axis has detected the edge input or FALSE if the axis has not detected the edge
input by the end of timeout.

Comments
This function waits for up to timeout seconds for the Edge Found status of a stepper motor axis to go TRUE. It returns as
soon as the status goes TRUE or when timeout expires. Set timeout to zero to check the edge found status only once and
return immediately (i.e. no wait is performed). This function uses MCDecodeStatus() internally to test the
MC_STAT_EDGE_FOUND status bit.

Compatibility
The DC2, DCX-PC100, and DCX-AT200 controllers do not support this function. Stepper modules when run in closed-
loop mode do not support this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCIsEdgeFound(hCtlr: HCTRLR; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MCIsEdgeFound(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long
LabVIEW: Not Supported

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

269

MCCL Reference
TS

See Also
MCDecodeStatus(), MCEdgeArm(), MCWaitForEdge()

MCIsIndexFound
MCIsIndexFound() waits for the "Index Found" condition to go true for the specified axis. Use it to determine when a
servo or closed-loop stepper motor homing sequence has detected the encoder index.

long int MCIsIndexFound(
 HCTRLR hCtlr, // controller handle
 WORD axis // axis number
 double timeout // timeout, in seconds
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "Index Found" condition.
timeout Time to wait, in seconds, for the “Index Found” condition to go true.

Returns
This function returns TRUE if the servo axis has detected the encoder index or FALSE if the axis has not detected the
encoder index by the end of timeout.

Comments
This function waits for up to timeout seconds for the Index Found status of a servo motor axis to go TRUE. It returns as
soon as the status goes TRUE or when timeout expires. Set timeout to zero to check the encoder index status only once and
return immediately (i.e. no wait is performed). This function uses MCDecodeStatus() internally to test the
MC_STAT_INDEX_FOUND status bit.

Compatibility
The DC2, DCX-PC100, and DCX-AT200 controllers do not support this function. Stepper modules when run in open-loop
mode with an auxiliary encoder do not support primary encoder functions such as this.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCIsIndexFound(hCtlr: HCTRLR; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MCIsIndexFound(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long
LabVIEW: Not Supported

MCAPI Reporting Functions

Precision MicroControl

270

MCCL Reference
TS

See Also
MCDecodeStatus(), MCIndexArm(), MCWaitForIndex()

MCIsStopped
MCIsStopped() waits for the "Trajectory Complete" condition to go true for the specified axis. Use it to determine when
motion has completed for an axis.

long int MCIsStopped(
 HCTRLR hCtlr, // controller handle
 WORD axis, // axis number
 double timeout // timeout, in seconds
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "Trajectory Complete" condition.
timeout Time to wait, in seconds, for the Trajectory Complete condition to go true.

Returns
This function returns TRUE if the axis is "Trajectory Complete." A return value of FALSE indicates the specified axis is
not "Trajectory Complete" by the end of timeout. If MC_ALL_AXES is specified for Axis, TRUE will be returned only if
all axes are "Trajectory Complete."

Comments
This function waits for up to timeout seconds for the Trajectory Complete status of the axis to be TRUE. It returns as soon
as the status goes TRUE or when timeout expires. Set timeout to zero to check the Trajectory Complete status only once
and return immediately (i.e. no wait is performed).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCIsStopped(hCtlr: HCTRLR; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MCIsStopped(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long
LabVIEW: Not Supported

MCCL Reference
None

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

271

See Also
MCIsAtTarget()

MCTranslateErrorEx
MCTranslateErrorEx() translates numeric error codes into ASCII text messages.

long int MCTranslateErrorEx(
 short int error, // error code to translate
 char* buffer, // character buffer for message
 long int length // length of Buffer, in bytes
);

Parameters
error Numeric error code to translate.
buffer String buffer to hold ASCII error message.
length Length of string buffer (in bytes).

Returns
This function returns a pointer to the ASCII error message corresponding to Error. If Error does not correspond to a valid
error message, a NULL pointer is returned. It will work with errors returned from MCGetError() and MCErrorNotify()
error messages.

Comments
Beginning with version 2.1 of the MCAPI this function is included as a native MCAPI function (previously it was
contained in a separate module). Incorporating MCTranslateErrorEx() into the MCAPI DLL will facilitate future
updates, but has required changes from how It previously worked. The string buffer and buffer length have been added to
the argument list. These changes make it possible to call MCTranslateErrorEx() from a much wider range of
programming languages.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCTranslateErrorEx(error: SmallInt; buffer: PChar; length: Longint): Longint; stdcall;
VB: Function MCTranslateErrorEx(ByVal error As Integer, ByVal buffer As String, ByVal length As Long) As Long
LabVIEW:

MCAPI Reporting Functions

Precision MicroControl

272

MCCL Reference
None

See Also
MCErrorNotify(), MCGetError()

MCAPI Reporting Functions

DCX-PCI100 User’s Manual

273

MCAPI I/O Functions

Precision MicroControl

274

Chapter Contents

DCX-PCI100 User’s Manual

275

MCAPI I/O Functions

Digital I/O functions allow configuration of high or low “true” states, reading of inputs, sequencing based on input, and
setting outputs. Analog I/O functions control the input and output of analog values through A/D and D/A ports installed on
the controller.

A word of caution must be given regarding the use of board-level sequencing commands. Even though a warning is
included with MCWaitForDigitalIO(), it should be stressed that once this command is called, the board will not accept
another command nor will it respond to the calling program until the board has completed what it was initially told to do.
This can lead to scenarios where the calling program has absolutely no control during potentially dangerous or otherwise
expensive situations.

To see examples of how the functions in this chapter are used, please refer to the online Motion Control API Reference.

MCConfigureDigitalIO
MCConfigureDigitalIO() configures a specific digital I/O channel for input or output and for high or low true logic.

short int MCConfigureDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD channel, // channel number
 WORD mode // configuration flags
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to configure.
mode Specifies how the channel is to be configured. This parameter may be any one

of the digital I/O flags listed below. An input/output flag and a logic level flag
may be OR'ed together.

Value Description
MC_DIO_INPUT Configures the channel for input.

Chapter

15

MCAPI I/O Functions

Precision MicroControl

276

Value Description
MC_DIO_OUTPUT Configures the channel for output.
MC_DIO_LOW Configures the channel for negative logic level.
MC_DIO_HIGH Configures the channel for positive logic level.
MC_DIO_LATCH Configures the (input) channel for latched

operation.

Returns
The return value is TRUE if the function is successful. A return value of FALSE indicates MCConfigureDigitalIO() was
unable to configure the channel as requested.

Comments
Each digital I/O channel may be configured for input or for output. The logic level maps the logical "on" and "off" states of
the channel to the physical input and output voltages for that channel. If the channel is set to MC_DIO_LOW (negative
logic) the "on" state of a channel will represent a low voltage (<0.4VDC) and "off" a high voltage (>2.4VDC). When set to
MC_DIO_HIGH (positive logic) the "on" state of a channel will represent a high voltage (>2.4VDC) and "off" a low
voltage (<.0.4VDC).

On the DC2-STN controller, beginning with firmware release 1.2a, it is possible to configure an input channel to "latch"
input events (see the controller manual for details of signal hold time, etc.). Configure an input channel using the
MC_DIO_LATCH constant to enable latching or clear the latched state. Configure an input channel using the
MC_DIO_INPUT constant to disable latching.

The DCX-PCI motherboard has 16 general I/O, consisting of 8 fixed inputs and 8 fixed outputs. Since these digital I/O are
fixed, they may not be configured for input or output. A program may verify the functionality (input or output) of a channel
by using MCGetDigitalIOConfig() to check the current configuration.

i

Under the MCAPI, the DC2-STN controller's input channels are numbered 1 - 8, and the
output channels are numbered 9 - 16 (the MCAPI requires that each channel have a
unique channel number).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCConfigureDigitalIO(hCtlr: HCTRLR; channel, mode: Word): SmallInt;
VB: Function MCConfigureDigitalIO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal mode As Integer) As Integer
LabVIEW:

MCCL Reference
CH, CI, CL, CT

MCAPI I/O Functions

DCX-PCI100 User’s Manual

277

See Also
MCEnableDigitalIO(), MCGetDigitalIO(), MCGetDigitalIOConfig()

MCEnableDigitalIO
MCEnableDigitalIO() turns the specified digital I/O channel on or off.

void MCEnableDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD channel, // channel number
 short int state // enable state
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to enable.
state Specifies whether the channel is to be turned on or turned off.

Value Description
TRUE Turns the channel on.
FALSE Turns the channel off.

Returns
This function does not return a value.

Comments
The I/O channel selected by hCtlr and channel must have previously been configured for output using the
MCConfigureDigitalIO() command. Note that depending upon how a channel has been configured "on" (and conversely
"off") may represent either a high or a low voltage level.

i

state will accept any non-zero value as TRUE, and will work correctly with most
programming languages, including those that define TRUE as a non-zero value other
than one (one is the Windows default value for TRUE).

i

Under the MCAPI, the DC2-STN controller's input channels are numbered 1 - 8, and the
output channels are numbered 9 - 16 (the MCAPI requires that each channel have a
unique channel number).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

MCAPI I/O Functions

Precision MicroControl

278

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableDigitalIO(hCtlr: HCTRLR; channel: Word; state: SmallInt); stdcall;
VB: Sub MCEnableDigitalIO(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
LabVIEW:

MCCL Reference
CF, CN

See Also
MCConfigureDigitalIO(), MCEnableDigitalIO(), MCGetDigitalIOConfig(), MCPARAMEX structure definition

MCGetAnalog
MCGetAnalog() reads the current input state of the specified input Channel.

WORD MCGetAnalog(
 HCTRLR hCtlr, // controller handle
 WORD channel // channel number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Analog channel number to read from.

Returns
This function returns the current A/D reading for channel.

Comments
The DC2, DCX-AT, and DCX-PC controllers all include four undedicated 8-bit analog input channels. By default these
channels are assigned channel numbers 1 to 4. Each analog input accepts an input voltage between 0 and +5 volts. The
value read in from the channel will be the ratio of the input voltage to the reference voltage times 255. An internal 5.0 volt
reference is supplied by the controller; an external reference may be supplied in place of the internal reference if desired.

value =
V

V
 x 255Input

Reference

Additional analog input/output channels supplied by MC500 modules will occupy sequential channel numbers beginning
with channel 5. The fields AnalogInput and AnalogOutput in the MCPARAMEX structure contain the number of input
and output channels the controller is configured for.

MCAPI I/O Functions

DCX-PCI100 User’s Manual

279

Compatibility
There are no compatibility issues with this function, however, please note that the DCX-PCI controllers have no built-in
analog inputs.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetAnalog(hCtlr: HCTRLR; channel: Word): Word; stdcall;
VB: Function MCGetAnalog(ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
LabVIEW:

MCCL Reference
TA

See Also
MCSetAnalog(), MCPARAMEX structure definition

MCGetDigitalIO
MCGetDigitalIO() returns the current state of the specified digital I/O channel.

short int MCGetDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD channel // channel number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to get state of.

Returns
The return value is TRUE if the channel is "on." A return value of FALSE indicates the channel is "off".

Comments
This function will read the current state of both input and output digital I/O channels. Note that this function simply reports
if the channel is "on" or "off"; depending upon how a channel has been configured "on" (and conversely "off") may
represent either a high or a low voltage level.

The field DigitalIO in the MCPARAMEX structure contains the total number of digital I/O channels the controller is
configured for.

MCAPI I/O Functions

Precision MicroControl

280

i

Under the MCAPI, the DC2-STN controller's input channels are numbered 1 - 8, and the
output channels are numbered 9 - 16 (the MCAPI requires that each channel have a
unique channel number).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetDigitalIO(hCtlr: HCTRLR; channel: Word): SmallInt; stdcall;
VB: Function MCGetDigitalIO(ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
LabVIEW:

MCCL Reference
TC

See Also
MCEnableDigitalIO(), MCGetDigitalIO(), MCGetDigitalIOConfig()

MCGetDigitalIOConfig
MCGetDigitalIOConfig() returns the current configuration (in / out / high / low) of the specified digital I/O channel.

short int MCGetDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD channel, // channel number
 WORD* pMode // variable to hold the channel settings
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to get configuration of.
pMode Pointer to a variable to hold the current configuration settings of the specified

channel. This variable will contain one or more of the following flags on return:

Value Description
MC_DIO_INPUT Channel configured for input.
MC_DIO_OUTPUT Channel configured for output.

MCAPI I/O Functions

DCX-PCI100 User’s Manual

281

Value Description
MC_DIO_LOW Channel configured for low true logic level.
MC_DIO_HIGH Channel configured for high true logic level.
MC_DIO_LATCH Input channel configured for latched operation.
MC_DIO_FIXED Channel is a fixed input or output and cannot be changed

using MCConfigureDigitalIO().
MC_DIO_LATCHABLE Input channel is capable of latched operation.
MC_DIO_STEPPER Input channel has been dedicated to driving a stepper motor

(DC2-PC or DC2-STN).

Returns
The current configuration of the specified digital I/O channel is placed in the variable specified by the pointer pMode, and
MCERR_NOERROR is returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is
returned, and the variable pointed to by pMode is left unchanged.

Comments
The configuration of the specified channel is returned as one or more of the MC_DIO_xxx constants OR'ed together. This
value is identical to the value you would create to configure the channel using MCConfigureDigitalIO(), with the
exception of the MC_DIO_FIXED, MC_DIO_LATCHABLE, and MC_DIO_STEPPER which are read-only (i.e.
MCGetDigitalIOConfig() only) parameters.

Currently none of the motion controllers supported by the MCAPI allow you to read back the configuration of the digital
I/O. To implement MCGetDigitalIOConfig() the MCAPI "remembers" any changes made to the digital I/O using
MCConfigureDigitalIO(). When the MCAPI DLL is loaded into memory (at application run time), it assumes the default
state power-on state for all the installed digital I/O. Therefore, this function is most useful within a single application, after
you have explicitly configured each I/O channel.

The field DigitalIO in the MCPARAMEX structure contains the total number of digital I/O channels the controller is
configured for.

i

Under the MCAPI, the DC2-STN controller's input channels are numbered 1 - 8, and the
output channels are numbered 9 - 16 (the MCAPI requires that each channel have a
unique channel number).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCGetDigitalIOConfig(hCtlr: HCTRLR; channel: Word; var pMode: Word): LongInt; stdcall;
VB: Function MCGetDigitalIOConfig(ByVal hCtrlr As Integer, ByVal channel As Integer, mode As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
None

MCAPI I/O Functions

Precision MicroControl

282

See Also
MCConfigureDigitalIO(), MCEnableDigitalIO(), MCPARAMEX structure definition

MCSetAnalog
MCGetAnalog() reads the current input state of the specified input Channel.

void MCSetAnalog(
 HCTRLR hCtlr, // controller handle
 WORD channel, // channel number
 WORD value // new output value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Analog output channel number to set
value New output value.

Returns
This function does not return a value.

Comments
Analog output ports on MC500 and MC520 Analog Modules accept values in the range of 0 to 4095 counts (12 bits). This
range of values corresponds to an output voltage of 0 to 5V or -10 to +10V, depending upon how the output is configured
(see your controller's hardware manual). Each digital bit corresponds to a voltage level as follows:

Output Used Volts per Count
0 to 5V 0.0012V
-10 to +10V 0.0049V

Compatibility
Analog output channels are not supported by the DC2-PC100 dedicated 2 axis controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetAnalog(hCtlr: HCTRLR; channel, value: Word); stdcall;
VB: Sub MCSetAnalog(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal value As Integer)
LabVIEW:

MCAPI I/O Functions

DCX-PCI100 User’s Manual

283

MCCL Reference
OA

See Also
MCGetAnalog()

MCWaitForDigitalIO
MCWaitForDigitalIO() waits for the specified digital I/O channel to go on or off, depending upon the value of state.

void MCWaitForDigitalIO(
 HCTRLR hCtlr, // controller handle
 WORD channel, // digital I/O channel to watch
 short int state // state of channel to watch for
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to wait for.
state Selects state of channel to wait for:

Value Description
TRUE Wait for channel to go "on.”
FALSE Wait for channel to go "off.”

Returns
This function does not return a value.

Comments
Digital channels 1 to 16 are built into each controller. Additional digital channels, beginning with channel 17, may be added
in blocks of 16 channels using MC400 Digital I/O Modules. The field DigitalIO in the MCPARAMEX structure contains
the total number of digital channels installed on the controller.

!

Once this command is issued, the calling program will not be able to communicate with
the board until the digital I/O is equal to state. We recommend creating your own
looping structure based on MCGetDigitalIO() instead.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

MCAPI I/O Functions

Precision MicroControl

284

Prototypes
Delphi: procedure MCWaitForDigitalIO(hCtlr: HCTRLR; channel: Word; state: SmallInt); stdcall;
VB: Sub MCWaitForDigitalIO(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
LabVIEW:

MCCL Reference
WF, WN

See Also
MCConfigureDigitalIO(), MCEnableDigitalIO(), MCGetDigitalIO(), MCPARAMEX structure definition

MCAPI I/O Functions

DCX-PCI100 User’s Manual

285

MCAPI Macros and Multi-tasking Functions

Precision MicroControl

286

Chapter Contents

DCX-PCI100 User’s Manual

287

Macros and Multi-tasking Functions

Macro and multi-tasking functions provide access to the motion controllers on-board macro capability, as well as the
multitasking features of advanced controllers.

To see examples of how the functions in this chapter are used, please refer to the online Motion Control API Reference.

MCCancelTask
MCCancelTask() cancels an executing task on a multi-tasking controller. The task should have been previously started
with an MCBlockBegin() / MCBlockEnd() pair.

long int MCCancelTask(
 HCTRLR hCtlr, // controller handle
 long int taskID // ID of task to cancel
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
taskID Task ID value for the task to be stopped. This value was returned by the

MCBlockEnd() function when the task was generated.

Returns
This function returns MCERR_NOERROR if there were no errors. One of the MCERR_xxxx defined error codes will be
returned if there was a problem.

Comments
MCCancelTask() is the only way to stop tasks that are not programmed to stop themselves (i.e. infinite loop tasks).

See the description of MCBlockBegin() for more information and reference the online help for examples.

Compatibility
The DC2 and DCX-PC100 controllers do not support background tasks.

Chapter

16

MCAPI Macros and Multi-tasking Functions

Precision MicroControl

288

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCCancelTask(hCtlr: HCTRLR; taskID: Longint): Longint; stdcall;
VB: Function MCCancelTask(ByVal hCtrlr As Integer, ByVal taskID As Long) As Long
LabVIEW: Not Supported

MCCL Reference
ET

See Also
MCBlockBegin(), MCCancelTask()

MCMacroCall
MCMacroCall() causes a previously loaded macro to be executed.

void MCMacroCall(
 HCTRLR hCtlr, // controller handle
 WORD macro // macro number
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
macro Macro number to execute.

Returns
This function does not return a value.

Comments
Macros are normally downloaded using the pmcputs() ASCII interface command, using the Motion Control Command
Language (MCCL); or by converting the MCAPI functions to a macro with the MCBlockBegin() / MCBlockEnd()
functions. These controller level macros are often the only efficient way to implement hardware specific sequences, such as
special homing routines, initializing encoder positions, etc.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

MCAPI Macros and Multi-tasking Functions

DCX-PCI100 User’s Manual

289

Prototypes
Delphi: procedure MCMacroCall(hCtlr: HCTRLR; macro: Word); stdcall;
VB: Sub MCMacroCall(ByVal hCtrlr As Integer, ByVal macro As Integer)
LabVIEW:

MCCL Reference
MC

See Also
MCBlockBegin(), MCBlockEnd(), pmcputs(), Controller hardware manual

MCRepeat
MCRepeat() inserts a repeat command into a block command - task, compound command, or macro.

long int MCRepeat(
 HCTRLR hCtlr, // controller handle
 long int count // repeat count
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
count Repeat count. Commands that precede the MCRepeat() in the block command

will be repeated count more times (for a total execution of count + 1).

Returns
MCRepeat() returns the value MCERR_NOERROR if the function completed without errors. If there was an error, one of
the MCERR_xxxx error codes is returned.

Comments
This function may only be used within an MCBlockBegin() / MCBlockEnd() command pair.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCRepeat(hCtlr: HCTRLR; count: Longint): Longint; stdcall;
VB: Function MCRepeat(ByVal hCtrlr As Integer, ByVal count As Long) As Long

MCAPI Macros and Multi-tasking Functions

Precision MicroControl

290

LabVIEW: Not Supported

MCCL Reference
RP

See Also
MCBlockBegin(), MCBlockEnd()

MCAPI Macros and Multi-tasking Functions

DCX-PCI100 User’s Manual

291

MCAPI Driver Functions

Precision MicroControl

292

Chapter Contents

DCX-PCI100 User’s Manual

293

MCAPI Driver Functions

Driver functions handle driver related housekeeping, and as such do not directly affect the controller.

To see examples of how the functions in this chapter are used, please refer to the online Motion Control API Reference.

MCBlockBegin
MCBlockBegin() initiates a block command sequence. All commands up to the subsequent MCBlockEnd() will be
included in the block. Block commands include compound commands, macro definition commands, contour path motions,
and tasks on multitasking controllers.

long int MCBlockBegin(
 HCTRLR hCtlr, // controller handle
 long int mode, // block mode type
 long int num // macro / task number / controlling axis
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
mode Type of block command to begin:

Value Description
MC_BLOCK_COMPOUND Specifies that this block is a compound command.
MC_BLOCK_TASK Specifies this block as an individual task on multitasking

controllers. num should be set to the desired task number.
MC_BLOCK_MACRO Specifies this block as a macro definition. num should be set

to the desired macro number for this macro.
MC_BLOCK_RESETM Resets macro memory. Setting num to zero resets all macros

(and works with all controllers), num may also be set to 1 or 2
on the DCX AT200 to selectively delete ram or flash based
macros.

Chapter

17

MCAPI OEM Low Level Functions

Precision MicroControl

294

Value Description
MC_BLOCK_CANCEL Cancels a block command without sending any commands to

the controller.
MC_BLOCK_CONTR_USER Specifies that this block is a user defined contour path

motion. num should be set to the controlling axis number.
MC_BLOCK_CONTR_LIN Specifies that this block is a linear contour path motion. num

should be set to the controlling axis number.
MC_BLOCK_CONTR_CW Specifies that this block is a clockwise arc contour path

motion. num should be set to the controlling axis number.
MC_BLOCK_CONTR_CCW Specifies that this block is a counter clockwise arc contour

path motion. num should be set to the controlling axis
number.

num Specifies the macro number for macro blocks, the task number for task blocks,

the controlling axis for contour blocks, or the macro types for macro reset.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
The MCBlockBegin() and MCBlockEnd() commands are used to bracket other API commands in order to affect how
those commands are executed. While the high level MCAPI is function based (as are most Windows APIs), PMC's motion
control cards are command based. They are capable of accepting single commands or blocks of commands, depending upon
the complexity of the motion. To provide the same block functionality to the MCAPI the MCBlockBegin() and
MCBlockEnd() functions where created. These functions may be used to bracket one or more MCAPI function calls to
create function blocks.

One use is to create a compound command block - where multiple commands are sent to the controller as a single block.
This is useful for data capture sequences, homing sequences, or anywhere you want to synchronize a complex group of
commands.

For multi-tasking controllers, the block commands can be used to group individual commands as separate tasks. Multi-
tasking permits multiple user programs to run in parallel on PMC's advanced motion control cards. Multi-tasking also
permits you to run command sequences that would normally lock-up the controller's command interpreter in the
background, thus leaving the command interpreter unaffected.

A third use of the block commands is to store the bracketed command sequence as a macro. Macros may be replayed at any
time using the MCMacroCall() function. Please note that API commands that read data from a controller, such as any of
the MCGet… functions, should not be included in macros. Macro memory may be reset (cleared) by calling
MCBlockBegin() with Mode set to MC_BLOCK_RESETM. If your controller allows you to reset selected blocks of
macros you may specify this by setting num to 1 for RAM-based macros or 2 for Flash memory macros.

All calls to MCBlockBegin(), except those with a mode of MC_BLOCK_RESETM or MC_BLOCK_CANCEL require a
corresponding call to MCBlockEnd(). Calls to MCBlockBegin() may not be nested, except that MCBlockBegin() calls
with an Mode of MC_BLOCK_CANCEL may be included within other MCBlockBegin() blocks (this call terminates the
outer MCBlockBegin(), so no MCBlockEnd() is needed in this case).

Beginning with version 2.0 of the MCAPI, blocks are also used for multi-axis contouring. Contouring requires first that the
selected axes be placed in contouring mode and a controlling axis specified. This is done with the
MCSetOperatingMode() function. Then blocks of contour path moves are issued. Under the MCAPI, these contour path
blocks are specified by bracketing MCArcCenter(), MCGoHome(), MCMoveAbsolute(), MCMoveRelative(), or
MCSetVectorVelocity() with block commands that are one of the MC_BLOCK_CONTR_xxx types.

MCAPI Driver Functions

DCX-PCI100 User’s Manual

295

Block commands may be canceled prior to issuing an MCBlockEnd() by calling MCBlockBegin() with Mode set to
MC_BLOCK_CANCEL.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers. The DC2 and
DCX-PC100 controllers do not support background tasks.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCBlockBegin(hCtlr: HCTRLR; mode, num: Longint): Longint; stdcall;
VB: Function MCBlockBegin(ByVal hCtrlr As Integer, ByVal mode As Long, ByVal num As Long) As Long
LabVIEW: Not Supported

MCCL Reference
CP, GT, MD, RM

See Also
MCBlockEnd(), MCCancelTask(), MCMacroCall(), MCRepeat()

MCBlockEnd
MCBlockEnd() ends a block command and transmits the compound command, task, macro, or contour path to the
controller.

long int MCBlockEnd(
 HCTRLR hCtlr, // controller handle
 long int* pTaskID // task ID for MC_BLOCK_TASK blocks
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pTaskID Pointer to variable to hold the Task ID value for MC_BLOCK_TASK blocks, this

parameter is ignored and may be set to NULL for MC_BLOCK_COMPOUND or
MC_BLOCK_MACRO blocks. Setting this parameter to NULL for
MC_BLOCK_TASK will cause the function to not return the Task ID for this
task.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

MCAPI OEM Low Level Functions

Precision MicroControl

296

Comments
The MCBlockBegin() and MCBlockEnd() commands are used to bracket other API commands in order to affect how
those commands are executed.

See the description of MCBlockBegin() for more information.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100 controllers. The DC2 and
DCX-PC100 controllers do not support background tasks.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCBlockEnd(hCtlr: HCTRLR; var pTaskID: LongInt): Longint; stdcall;
VB: Function MCBlockEnd(ByVal hCtrlr As Integer, taskID As Long) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCBlockBegin(), MCCancelTask()

MCClose
MCClose() closes the specified motion controller handle, and is typically called at the end of a program.

short int MCClose(
 HCTRLR hCtlr // controller handle
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
Following a call to MCClose(), no further calls should be made to the Motion Control API functions with this handle (the
exception being MCOpen(), which may be called to open or reopen the API at any time).

By calling MCClose() you notify Windows that you are done with the controller and device driver. When the last user has
closed the driver Windows is then free to unload the driver from memory. Failure to call close leaves the handle open,
reducing the number of available controller handles for other applications.

MCAPI Driver Functions

DCX-PCI100 User’s Manual

297

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCClose(hCtlr: HCTRLR): SmallInt; stdcall;
VB: Function MCClose(ByVal hCtrlr As Integer) As Integer
LabVIEW:

MCCL Reference
None

See Also
MCOpen()

MCGetConfigurationEx
MCGetConfigurationEx() obtains the configuration for the specified controller. Configuration information includes the
controller type, number and type of installed motor modules, and if the controller supports scaling, contouring, etc.

long int MCGetConfigurationEx(
 HCTRLR hCtlr, // controller handle
 MCPARAMEX* pParam // address of extended configuration
 // structure
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pParam Points to an MCPARAMEX structure that receives the configuration information

for hCtlr.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function allows the application to query the driver about installed controller hardware and capabilities. Included are
the number and type of axes, digital and analog IO channels, scaling, and contouring.

MCAPI OEM Low Level Functions

Precision MicroControl

298

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCGetConfigurationEx(hCtlr: HCTRLR; var pParam: MCPARAMEX): LongInt; stdcall;
VB: Function MCGetConfigurationEx(ByVal hCtrlr As Integer, param As MCParamEx) As Long
LabVIEW: Not Supported

MCCL Reference
Dual Port RAM

See Also
MCPARAMEX structure definition

MCGetVersion
MCGetVersion() returns version information about the MCAPI.DLL and, optionally, about the device driver in use for a
particular controller.

DWORD MCGetVersion(
 HCTRLR hCtlr // controller handle
);

Parameters
hCtlr Controller handle, selects which motion controller to obtain device driver

version info from. May be NULL (if NULL MCGetVersion() version number info
is returned for the MCAPI DLL only).

Returns
The return version number for the MCAPI DLL and, if hCtlr is not NULL, the version number for the device driver in use
for the controller. If hCtlr is NULL, device driver version info will be zero.

Comments
The DLL version number is contained in the low order word of the return value. The major version number is stored as the
low order byte of this word, while the release number is multiplied by 10, added to the revision number, and stored as the
high order byte.

If the controller handle is not NULL, the version information for the device driver that is associated with this controller will
be placed in the high order word of the return value, using the same format as was used for the DLL version information.

Compatibility
There are no compatibility issues with this function.

MCAPI Driver Functions

DCX-PCI100 User’s Manual

299

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.2 or higher

Prototypes
Delphi: function MCGetVersion(hCtlr: HCTRLR): Longint; stdcall;
VB: Function MCGetVersion(ByVal hCtrlr As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
None

MCOpen
MCOpen() returns a handle to a particular controller for use with subsequent API calls.

HCTRLR MCOpen(
 short int id, // controller ID
 WORD mode, // open mode - ASCII / binary
 char* pName // not used
);

Parameters
id Controller ID, selects the controller to open.
mode I/O mode to open controller in:

Value Description
MC_OPEN_ASCII Open controller for ASCII (character) I/O.
MC_OPEN_BINARY Open the binary command interface of the controller.
MC_OPEN_EXCLUSIVE May be OR'ed with MC_OPEN_ASCII or

MC_OPEN_BINARY to request exclusive access to the
controller.

pName Should be set to NULL for the present

Returns
This function returns handle to the specified controller for use in subsequent API calls. The handle will be greater than zero
if the open call succeeds or less than zero if there is an error. Standard error codes (see the file MCERR.H) will be
multiplied by -1 to make their values negative and returned in place of a handle, if there is an error:

Value Description
MCERR_ALLOC_MEM Unable to allocate memory for handle.
MCERR_CONSTANT The constant value supplied for mode is invalid.
MCERR_INIT_DRIVER Unable to initialize device driver.

MCAPI OEM Low Level Functions

Precision MicroControl

300

MCERR_MODE_UNAVAIL The requested mode (ASCII or binary) is unavailable.
Typically due to the fact that another process has an open
handle to the controller in the opposite mode.

MCERR_NO_CONTROLLER No controller is installed at this ID, run MCSETUP.
MCERR_NOT_PRESENT The specified controller hardware is missing or not

responding.
MCERR_OPEN_EXCLUSIVE Unable to open controller for exclusive use - another process

must already have an open handle to this controller.
MCERR_OUT_OF_HANDLES The driver is out of handles, try closing unused handles first.
MCERR_RANGE Specified id is out of range.
MCERR_UNSUPPORTED_MODE The requested open mode (ASCII or binary) is not supported

for this controller.

i

Please note that the error codes in the table above, when an error has occurred, will
returned as a negative value.

Comments
Always save the handle returned by MCOpen() and use that value in subsequent calls to the API. MCOpen() must be
called before any other API calls are attempted. If a call is made to any other API function with a bad handle, a handle error
message (MCERR_CONTROLLER) will be broadcast to all windows. Everyone is notified in the case of a bad handle
because the MCAPI normally uses the handle to route error messages, and obviously can't do this if the handle is invalid.

If it is necessary that no one else gains access to a controller while you are using it, you may combine the open mode with
MC_OPEN_EXCLUSIVE:

 if ((hCtlr = MCOpen(7, MC_OPEN_ASCII | MC_OPEN_EXCLUSIVE, NULL)) > 0)
 {
 // got an exclusive handle
 }

will only return a valid handle if no other process has an open handle to this controller already, and will prevent any one
else from opening the controller while the exclusive handle is open.

The name argument in the MCOpen() function call is for future enhancements to the API and should be set to NULL for
the present.

If you are using an DCX-AT or DCX-PCI configured for multi-interface, you may open binary and ASCII handles
simultaneously. Exclusive handles are interface based, not controller based, in this case (i.e. you may have one exclusive
ASCII handle and one exclusive binary handle open at the same time).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCOpen(id: SmallInt; mode: Word; pName: PChar): HCTRLR; stdcall;
VB: Function MCOpen(ByVal id As Integer, ByVal mode As Integer, ByVal name As String) As Integer

MCAPI Driver Functions

DCX-PCI100 User’s Manual

301

LabVIEW:

MCCL Reference
None

See Also
MCClose(), MCErrorNotify()

MCReopen
MCReopen() may be used to change the mode of an existing handle.

long int MCReopen(
 HCTRLR hCtlr, // controller handle
 WORD mode // new mode
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
mode New mode flags:

Value Description
MC_OPEN_ASCII Open controller for ASCII (character) I/O.
MC_OPEN_BINARY Open the binary command interface of the controller.
MC_OPEN_EXCLUSIVE May be combined with MC_OPEN_ASCII or

MC_OPEN_BINARY using the binary or operator '|' to
request exclusive access.

Returns
MCReopen() returns the value MCERR_NOERROR, if the function completed without errors. If there was an error, one
of the MCERR_xxxx error codes is returned.

Comments
The most likely cause for failure is that another open handle exists for the same controller. MCReopen() cannot change a
controller’s open mode if there are multiple handles, as there is no way to notify the owners of those other handles that a
mode switch has occurred. If you plan on using this function in an application, it is suggested that you open the controller in
exclusive mode to prevent any additional handles from being opened.

If you are using a DCX-PCI or DCX-AT in multi-interface mode, the above restrictions do not apply.

Compatibility
There are no compatibility issues with this function.

MCAPI OEM Low Level Functions

Precision MicroControl

302

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCReopen(hCtlr: HCTRLR; mode: Word): Longint; stdcall;
VB: Function MCReopen(ByVal hCtrlr As Integer, ByVal mode As Integer) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCClose(), MCOpen()

MCSetTimeoutEx
MCSetTimeoutEx() sets the timeout period for I/O to a particular controller.

long int MCSetTimeoutEx(
 HCTRLR hCtlr, // controller handle
 double timeout, // new timeout value
 double* pOldTimeout // old timeout value
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
timeout New timeout period, in seconds.
pOldTimeout Pointer to a double precision floating point variable that will hold the old timeout

setting for the specified axis. If the pointer is NULL, no value is returned.

Returns
If there were no errors, the previous timeout setting is placed in the variable specified by the pointer pOldTimeout, and
MCERR_NOERROR is returned. If there was an error, one of the MCERR_xxxx error codes is returned, and the variable
pointed to by pOldTimeout is left unchanged. If the pointer pOldTimeout is NULL, the old timeout value is not returned.

Comments
The timeout period is the maximum amount of time, in seconds, that the MCAPI device driver will wait to send a command
and/or receive a reply. The default setting for timeout for all controllers is zero seconds. A timeout setting of zero will cause
the controller to wait forever (i.e. no timeout) for I/O to complete.

Note that a timeout value that is acceptable for most functions may fail (i.e. timeout) if the controller is asked to perform a
lengthy operation (a long wait, a reset, etc.). One option in these cases is to change the timeout value for the duration of the
long operation, then change the timeout value back.

Compatibility
There are no compatibility issues with this function.

MCAPI Driver Functions

DCX-PCI100 User’s Manual

303

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetTimeoutEx(hCtlr: HCTRLR; timeout: Double; var pOldTimeout: Double): Longint; stdcall;
VB: Function MCSetTimeoutEx(ByVal hCtrlr As Integer, ByVal timeout As Double, oldTimeout As Double) As Long
LabVIEW: Not Supported

MCCL Reference
None

MCAPI OEM Low Level Functions

Precision MicroControl

304

Chapter Contents

DCX-PCI100 User’s Manual

305

MCAPI OEM Low Level Functions

The OEM low level commands provide direct access to controller functionality. The functions in this group are not part of
the formal Motion Control API.

These functions have been implemented in a way that is consistent with DOS mode libraries for these controllers. This
consistency is designed to simplify the task of porting existing DOS applications to Windows.

To see examples of how the functions in this chapter are used, please refer to the online Motion Control API Reference.

pmccmd
pmccmd() downloads a formatted binary command buffer directly to the PMC controller. Programmers should use the
more advanced pmccmdex() instead of this function when possible.

long int pmccmd(
 HCTRLR hCtlr, // controller handle
 short int bytes, // length of buffer
 void* pBuffer // pointer to command buffer
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
bytes Length of buffer, in bytes.
pBuffer Pointer to command buffer.

Returns
The return value from this function is the actual number of bytes downloaded. Because of the nature of the binary interface,
the return value will be equal to the buffer size (value of the bytes argument), indicating the command buffer was
successfully downloaded, or zero, indicating a problem communicating with the controller.

Chapter

18

MCAPI OEM Low Level Functions

Precision MicroControl

306

Comments
The binary interface is described in detail in the hardware manual that accompanied your controller. The user of this
function is responsible for correctly formatting the buffer - no checking is performed by the function. To send binary
commands to the motion controller the hCtlr handle must have opened in binary mode.

This function may be used within an MCBlockBegin() / MCBlockEnd() pair to create Macros, Compound commands, or
Tasks.

This command function may also be used in ASCII mode; in this case the command buffer should contain a correctly
formatted ASCII command (including the terminating carriage return "\r").

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmccmd(hCtlr: HCTRLR; bytes: SmallInt; pBuffer: PChar): SmallInt; stdcall;
VB: Function pmccmd(ByVal hCtrlr As Integer, ByVal bytes As Integer, ByVal buffer As String) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcrdy(), pmcrpy()

pmccmdex
pmccmdex() downloads a formatted binary command buffer directly to the PMC controller.

long int pmccmdex(
 HCTRLR hCtlr, // controller handle
 WORD axis, // Axis number for this command
 WORD cmd, // MCCL command
 void* pArgument, // pointer to command argument
 long int type // type of argument
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for this command.
cmd MCCL command to execute - see MCCL.H and the User's Manual for your

motion controller.
pArgument Pointer to a variable that has the argument for this command.

MCAPI OEM Low Level Functions

DCX-PCI100 User’s Manual

307

type Type of data pointed to by pArgument:

Value Description
MC_TYPE_LONG Indicates pArgument points to a variable of type long integer.
MC_TYPE_DOUBLE Indicates pArgument points to a variable of type double

precision floating point.
MC_TYPE_FLOAT Indicates pArgument points to a variable of type single

precision floating point.
MC_TYPE_REG Indicates pArgument points to a variable of the format of a 32

bit integer with register number.
MC_TYPE_NONE Indicates pArgument points to a variable of type which is

NULL.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
The binary interface is described in detail in the hardware manual that accompanied your controller. To send binary
commands to the motion controller the hCtlr handle must have opened in binary mode.

This function may be used within an MCBlockBegin() / MCBlockEnd() pair to create Macros, Compound commands, or
Tasks.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function pmccmdex(hCtlr: HCTRLR; axis: Word; cmd: Word; var pArgument: Pointer; type: Longint): Longint; stdcall;
VB: Function pmccmdex(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal cmd As Integer, argument As Any, ByVal

argtype As Long) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcrdy(), pmcrpyex()

pmcgetc
pmcgetc() reads a single character from the controller ASCII interface.

MCAPI OEM Low Level Functions

Precision MicroControl

308

short int pmcgetc(
 HCTRLR hCtlr // controller handle
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Returns
The return value from this function is number of bytes actually read from the controller (1 or 0).

Comments
This function will return immediately if there is no character available. Use the string get command, pmcgets(), if you
want to wait for a character, or place pmcgetc() in a loop.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order to use this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcgetc(hCtlr: HCTRLR): SmallInt; stdcall;
VB: Function pmcgetc(ByVal hCtrlr As Integer) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcgetc(), pmcputc(), pmcputs()

pmcgetram
pmcgetram() reads bytes from controller memory beginning at location offset.

MCAPI OEM Low Level Functions

DCX-PCI100 User’s Manual

309

short int pmcgetram(
 HCTRLR hCtlr, // controller handle
 WORD offset, // memory offset to read from
 void* pBuffer, // buffer to hold ram value
 short int bytes // number of bytes of memory to read
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
offset Starting memory location, relative to the beginning of controller dual ported ram,

to read from.
pBuffer Buffer to hold read in controller memory, must be at least bytes long.
bytes Number of bytes of memory to read.

Returns
This function does not return a value.

Comments
No range checking is performed on offset or bytes - it is the caller's responsibility to supply valid values for these
arguments. Consult the controller hardware manual for details on the controller memory map.

!

Do not use this command within an MCBlockBegin() / MCBlockEnd() block.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure pmcgetram(hCtlr: HCTRLR; offset: Word; pBuffer: PChar; bytes: SmallInt); stdcall;
VB: Sub pmcgetram(ByVal hCtrlr As Integer, ByVal offset As Integer, ByVal buffer As String, ByVal bytes As Integer)
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcputram()

MCAPI OEM Low Level Functions

Precision MicroControl

310

pmcgets
pmcgets() reads a null-terminated ASCII string of up to bytes characters from the controller ASCII interface.

short int pmcgets(
 HCTRLR hCtlr, // controller handle
 void* pBuffer, // pointer to buffer
 short int bytes // length of buffer
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pBuffer Pointer to reply buffer.
bytes Length of buffer, in bytes.

Returns
The return value from this function is number of bytes actually read from the controller.

Comments
This function will wait for a reply for as long as the controller is busy processing command. A zero will be returned when
the controller is idle and there are no reply characters. However, a non-zero timeout value will force the function to return
the number of characters it has received prior to the timeout.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order to use this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcgets(hCtlr: HCTRLR; pBuffer: PChar; bytes: SmallInt): SmallInt; stdcall;
VB: Function pmcgets(ByVal hCtrlr As Integer, ByVal buffer As String, ByVal bytes As Integer) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
MCSetTimeoutEx(), pmcgetc(), pmcputc(), pmcputs()

MCAPI OEM Low Level Functions

DCX-PCI100 User’s Manual

311

pmcputc
pmcputc() writes a single character to the controller ASCII interface.

short int pmcputc(
 HCTRLR hCtlr, // controller handle
 short int char // output char
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
char Character to output.

Returns
This function returns a one if the character is successfully written or a zero if it is unable to write to the controller.

Comments
Remember to terminate all command strings with a carriage return "\r" in order for the command to be executed. This
command does not wait for the controller - if it is unable to write the character it returns immediately with a return value of
zero.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order to use this
command.

!

Do not use this command within an MCBlockBegin() / MCBlockEnd() block. This
function attempts to write immediately to the motion controller.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcputc(hCtlr: HCTRLR; char: SmallInt): SmallInt; stdcall;
VB: Function pmcputc(ByVal hCtrlr As Integer, ByVal char As Integer) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcgetc(), pmcgets(), pmcputs()

MCAPI OEM Low Level Functions

Precision MicroControl

312

pmcputram
pmcputram() writes bytes directly into the controller's memory beginning at location offset.

void pmcputram(
 HCTRLR hCtlr, // controller handle
 WORD offset, // memory offset to write to
 void* pBuffer, // buffer to hold ram value
 short int bytes // number of bytes of memory to write
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
offset Starting memory location, relative to the beginning of controller dual ported ram,

to write to.
pBuffer Buffer of data to write into controller memory.
bytes Number of bytes of memory to write.

Returns
This function does not return a value.

Comments

!

No range checking is performed on offset or bytes. It is the caller’s
responsibility to supply valid values for these arguments. Writing directly
to dual ported ram can cause unpredictable results. USE THIS
FUNCTION WITH EXTREME CAUTION!

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure pmcputram(hCtlr: HCTRLR; offset: Word; pBuffer: PChar; bytes: SmallInt); stdcall;
VB: Sub pmcputram(ByVal hCtrlr As Integer, ByVal offset As Integer, ByVal buffer As String, ByVal bytes As Integer)
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcgetram()

MCAPI OEM Low Level Functions

DCX-PCI100 User’s Manual

313

pmcputs
pmcputs() writes a NULL terminated command string to the controller ASCII interface.

short int pmcputs(
 HCTRLR hCtlr, // controller handle
 char* pBuffer // output string
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pBuffer Output string.

Returns
This function returns the number of characters actually written to the controller. This number may be less than the length of
the string if the controller becomes busy and stops accepting characters.

Comments
Remember to terminate all command strings with a carriage return "\r" in order for the command to be executed. This
function consumes any reply characters from the controller while it is writing (this may change in future implementations).

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order to use this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcputs(hCtlr: HCTRLR; pBuffer: PChar): SmallInt; stdcall;
VB: Function pmcputs(ByVal hCtrlr As Integer, ByVal buffer As String) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmcgetc(), pmcgets(), pmcputs()

MCAPI OEM Low Level Functions

Precision MicroControl

314

pmcrdy
pmcrdy() checks the specified controller to see if it is ready to accept a binary command buffer.

short int pmcrdy(
 HCTRLR hCtlr // controller handle
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

Returns
The return value from this function is TRUE (+1) if the controller is ready to accept commands. The controller will return
FALSE if it is busy. For the AT200 controller, a value of -1 is returned if the controller is ready to accept data in file
download mode.

Comments
Basic language users are cautioned that Visual Basic defines TRUE as -1, while Windows defines TRUE to be +1 (the API
uses the Windows value for TRUE and returns a +1 if the controller is ready). Therefore, code such as:

 if pmcrdy(hCtlr) = True then

will not work as expected in Visual Basic.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcrdy(hCtlr: HCTRLR): SmallInt; stdcall;
VB: Function pmcrdy(ByVal hCtrlr As Integer) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmccmd(), pmcrpy()

pmcrpy
pmcrpy() reads a binary reply of up to bytes bytes from the controller. Programmers should use the more advanced
pmcrpyex() instead of this function when possible.

MCAPI OEM Low Level Functions

DCX-PCI100 User’s Manual

315

long int pmcrpy(
 HCTRLR hCtlr, // controller handle
 short int bytes, // length of buffer
 void* pBuffer // pointer to buffer
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
bytes Length of buffer, in bytes.
pBuffer Pointer to reply buffer.

Returns
The return value from this function is the actual number of bytes read. This value may be less than the argument bytes, but
will never exceed bytes. If the controller has no reply ready, the return value will be zero.

Comments
This function waits for a reply for as long as the controller is busy - it returns with a return value of zero if no reply is (or
will be) available.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order to use this
command.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcrpy(hCtlr: HCTRLR; bytes: SmallInt; pBuffer: PChar): SmallInt; stdcall;
VB: Function pmcrpy(ByVal hCtrlr As Integer, ByVal bytes As Integer, ByVal buffer As String) As Integer
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmccmd(), pmcrdy(), pmcrpyex()

pmcrpyex
pmcrpyex() reads a binary reply of up to bytes bytes from the controller.

MCAPI OEM Low Level Functions

Precision MicroControl

316

long int pmcrpyex(
 HCTRLR hCtlr, // controller handle
 void* pReply, // pointer to command reply
 long int type // type of argument
);

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pReply Pointer to a variable to hold the reply value.
type Type of data pointed to by pReply:

Value Description
MC_TYPE_LONG Indicates pReply points to a variable of type long integer.
MC_TYPE_DOUBLE Indicates pReply points to a variable of type double precision

floating point.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
The binary interface is described in detail in the hardware manual that accompanied your controller.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib
Version: MCAPI 2.2 or higher

Prototypes
Delphi: function pmcrpyex(hCtlr: HCTRLR; var pReply: Pointer; type: Longint): Longint; stdcall;
VB: Function pmcrpyex(ByVal hCtrlr As Integer, reply As Any, ByVal argtype As Long) As Long
LabVIEW: Not Supported

MCCL Reference
None

See Also
pmccmdex(), pmcrdy(), pmcrpy()

MCAPI OEM Low Level Functions

DCX-PCI100 User’s Manual

317

MCAPI Common Motion Dialog Functions

Precision MicroControl

318

Chapter Contents

DCX-PCI100 User’s Manual

319

MCAPI Common Motion Dialog Functions

The Common Motion Dialog library includes easy-to-use high-level functions for the control and configuration of your
motion controller. By combining these functions in a single library we've made it easy for programmers to include the
Common Motion Dialog functionality in their application programs. Functions are provided for the configuration of servo
and stepper axes, scaling setup, controller selection, file download, and save/restore of motor settings.

To see examples of how the functions in this chapter are used, please refer to the online Motion Control API Reference.

MCDLG_AboutBox
MCDLG_AboutBox() displays a simple About dialog box that includes version information about both the application
and the Motion Control API.

long int MCDLG_AboutBox(
 HWND hWnd, // handle to parent window
 LPCSTR title, // title string for the dialog box
 long int bitmapID // bitmap ID for the dialog box
);

Parameters
hWnd Handle to parent window of About Box. This handle is used by

MCDLG_AboutBox() to retrieve VERSIONINFO strings from the application.
title An optional title string for the About dialog box. If this pointer is NULL or points

to a zero length string the default title of “About” is used.
bitmapID An optional Bitmap resource identifier. If greater than zero, the specified bitmap

will be displayed in the About dialog box. If zero, MCDLG_AboutBox() will
display the default bitmap. Bitmaps should be no larger than 240 (width) by 80
(height) pixels, 16 colors.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was an error creating the dialog box.

Chapter

19

MCAPI Common Motion Dialog Functions

Precision MicroControl

320

Comments
Version information is obtained by retrieving VERSIONINFO values from the executable module. The specific strings
queried for are “CompanyName”, “FileDescription”, “FileVersion”, and “LegalCopyright”. It is a good idea to include a
VERSIONINFO resource in any application as it permits Windows to accurately determine the version of any executable
file or DLL. Applications and DLLs supplied with the Motion Control API include a VERSIONINFO resource.

The dialog box displays a default logo bitmap above the version information. By specifying a valid bitmap resource ID for
the bitmapID parameter you may change the bitmap displayed. If this parameter is greater than zero the new bitmap will
replace the default in the About dialog box. Bitmaps should be no larger than 240 (width) by 80 (height) pixels, 16 colors.

If a NULL pointer or a pointer to a zero length string is passed as the title argument the default title will be used.
Acceptance of a pointer to a zero length string was included to support programming languages that have difficulty with
NULL pointers (e.g. Visual Basic). To eliminate the title pass a pointer to a string with a single space (i.e. " ").

Note that MCDLG_AboutBox() uses the HWND argument passed to it to identify the executable file from which to read
the VERSIONINFO information. In some development environments, such as Visual Basic, window handles are owned by
a DLL supplied by the author of the development system, not the user's EXE file. In these situations,
MCDLG_AboutBox() is unable to correctly perform its VERSIONINFO query and should not be used.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_AboutBox(hWnd: HWnd; title: PChar; bitmapID: Longint): Longint; stdcall;
VB: Function MCDLG_AboutBox(ByVal hWnd As Long, ByVal title As String, ByVal bitmapID As Long) As Long
LabVIEW: Not Supported

MCDLG_CommandFileExt
MCDLG_CommandFileExt() returns the file extension for MCCL command files for a particular motion controller type.

long int MCDLG_CommandFileExt(
 long int type, // controller type identifier
 long int flags, // flags
 LPCSTR buffer, // buffer for file extension string
 long int length // length of string buffer, in bytes
);

Parameters
type Motion Controller type, must be equal to one of the predefined motion controller

types (see MCAPI.H).
flags Reserved for future use (set to zero).

MCAPI Common Motion Dialog Functions

DCX-PCI100 User’s Manual

321

buffer Pointer to a string buffer that will hold the file extension (should be _MAX_FILE
long).

length Size of buffer, in bytes.

Returns
This function returns a pointer to the file extension string for the specified motion controller type. It returns NULL if type
does not specify a valid controller type.

Comments
The Motion Control API registers a separate file extension for each controller type. The MCAPI tools, such as Win Control,
use these file extensions when they open MCCL command files. You can use this function to get the registered file
extension for any controller type.

See the MCAPI sample program Win Control for an example.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCDLG_CommandFileExt(type: LongInt; flags: LongInt; buffer: PChar; length: Longint): PChar; stdcall;
VB: Function MCDLG_CommandFileExt(ByVal argtype As Long, ByVal flags As Long, ByVal buffer As String, ByVal length

As Long) As String
LabVIEW: Not Supported

MCDLG_ConfigureAxis
MCDLG_ConfigureAxis() displays a servo or stepper axis setup dialog that permits user configuration of the axis.

long int MCDLG_ConfigureAxis(
 HWND hWnd, // handle to parent window
 HCTRLR hCtlr, // handle to a motion controller
 WORD axis, // axis number to configure
 long int flags, // configuration flags
 LPCSTR title // optional axis title for the dialog box
);

Parameters
hWnd Handle to parent window. May be NULL.
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
axis Axis number of axis to be configured.
flags Flags to control the operation (multiple flags may be OR'ed together):

MCAPI Common Motion Dialog Functions

Precision MicroControl

322

Value Description
MCDLG_CHECKACTIVE Checks if an axis is moving before the new settings are

written to the controller and skips if the axis is moving.
Combine with MCDLG_PROMPT to prompt user whether or
not to proceed.

MCDLG_PROMPT Combine with MCDLG_CHECKACTIVE to prompt user
whether or not to proceed if a motor is moving and the user
has dismissed the dialog box with OK.

title An optional title string for the axis. If this pointer is NULL or points to a zero

length string the default title, which includes the axis number and a description
of the axis type is used.

Returns
This function returns MCERR_NOERROR if the user pressed OK button to dismiss the dialog box. It returns
MCERR_CANCEL if the user pressed the CANCEL button to dismiss the dialog box. It returns one of the other
MCERR_xxxx error codes if there was an error creating the dialog box.

Comments
This function provides comprehensive, ready-to-use setup dialogs for stepper and servo motor axis types. The motion
controller is queried for the current axis settings to initialize this dialog box. Any changes the user makes are sent to the
motion controller if the user dismisses the dialog by pressing the OK button.

Changing the parameters of an axis while it is moving may result in erratic behavior (such as when you choose to include
the motor position in the changed parameters). The flag MCDLG_CHECKACTIVE forces this function to check the axis to
see if it is active before it proceeds. By default MCDLG_CHECKACTIVE will skip the changing of an active axis, but if
you also include the flag MCDLG_PROMPT the user will be prompted for how to proceed. The programming samples are
all built with MCDLG_CHECKACTIVE and MCDLG_PROMPT set.

If a NULL pointer or a pointer to a zero length string is passed as the title argument, the default title will be used.
Acceptance of a pointer to a zero length string was included to support programming languages that have difficulty with
NULL pointers (e.g. Visual Basic). To eliminate the title pass a pointer to a string with a single space (i.e. " ").

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_ConfigureAxis(hWnd: HWnd; hCtlr: HCTRLR; axis: Word; flags: Longint; title: PChar): Longint;

stdcall;
VB: Function MCDLG_ConfigureAxis(ByVal hWnd As Long, ByVal hCtlr As Integer, ByVal axis As Integer, ByVal flags As

Long, ByVal title As String) As Long
LabVIEW:

MCAPI Common Motion Dialog Functions

DCX-PCI100 User’s Manual

323

MCDLG_ControllerDescEx
MCDLG_ControllerDescEx() returns a descriptive string for the specified motion controller type.

LPCSTR MCDLG_ControllerDescEx(
 long int type, // controller type identifier
 long int flags, // flags
 LPSTR buffer, // buffer for descriptive string
 long int length // size of buffer, in bytes
);

Parameters
type Motion Controller type, must be equal to one of the predefined motion controller

types (see MCAPI.H).
flags Flags to control the operation:

Value Description
MCDLG_NAMEONLY Resulting string will contain only the name portion (no

description).
MCDLG_DESCONLY Resulting string will contain only the name portion (no

name).

buffer Pointer to a string buffer that will hold the descriptive string.
length Size of buffer, in bytes.

Returns
This function returns a pointer to the descriptive string buffer for the specified motion controller type, or it returns NULL if
type does not specify a valid controller type.

Comments
This extended version of MCDLG_ControllerDesc() includes by default the controller name and a description of the
controller in the output string. Use the flags parameter to control the information included in the string.

You may use this function to provide a descriptive string for a motion controller by passing the function the
ControllerType member of an MCPARAMEX structure following a call to MCGetConfigurationEx(). As an example,
the MCDLG function MCDLG_ControllerInfo() uses this function to produce its Controller Information dialog.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCDLG_ControllerDescEx(type: LongInt; flags: LongInt; buffer: PChar; length: Longint): PChar; stdcall;

MCAPI Common Motion Dialog Functions

Precision MicroControl

324

VB: Function MCDLG_ControllerDescEx(ByVal argtype As Long, ByVal flags As Long, ByVal buffer As String, ByVal length
As Long) As String

LabVIEW: Not Supported

MCDLG_ControllerInfo
MCDLG_ControllerInfo() displays configuration information about the specified motion controller.

long int MCDLG_ControllerInfo(
 HWND hWnd, // handle to parent window
 HCTRLR hCtlr, // handle to a motion controller
 long int flags, // configuration flags
 LPCSTR title // title for the dialog box
);

Parameters
hWnd Handle to parent window. May be NULL.
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
flags Currently no flags are defined for MCDLG_ControllerInfo(), and this argument

should be set to zero.
title An optional title string for the dialog box. If this pointer is NULL or points to a

zero length string, a default title is used.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was an error creating the dialog box.

Comments
This function displays a read only dialog providing information on the current motion controller configuration and
capabilities (this information is typically used by programs to control execution for example can the controller multi-task?
Is contouring supported?).

If a NULL pointer or a pointer to a zero length string is passed as the title argument the default title will be used.
Acceptance of a pointer to a zero length string was included to support programming languages that have difficulty with
NULL pointers (e.g. Visual Basic). To eliminate the title pass a pointer to a string with a single space (i.e. " ").

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_ControllerInfo(hWnd: HWnd; hCtlr: HCTRLR; flags: Longint; title: PChar): Longint; stdcall;
VB: Function MCDLG_ControllerInfo(ByVal hWnd As Long, ByVal hCtlr As Integer, ByVal flags As Long, ByVal title As

String) As Long

MCAPI Common Motion Dialog Functions

DCX-PCI100 User’s Manual

325

LabVIEW:

MCDLG_DownloadFile
MCDLG_DownloadFile() downloads an ASCII command file to the specified motion controller.

long int MCDLG_DownloadFile(
 HWND hWnd, // handle of window to echo download to
 HCTRLR hCtlr, // handle of motion controller
 long int flags, // configuration flags
 LPCSTR fileName // path/filename of file to download
);

Parameters
hWnd Handle of window to echo downloaded characters to. May be NULL.
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
flags Currently no flags are defined for MCDLG_ConfigureAxis(), and this field

should be left blank.
fileName Path / filename of file to download.

Returns
This function returns MCERR_NOERROR if the file was successfully downloaded, or it returns one of the other
MCERR_xxxx error codes if there was an error downloading the file.

Comments
MCDLG_DownloadFile() opens the specified file and downloads the contents to the specified controller. If a valid (non-
NULL) window handle is given for hWnd, downloaded characters (and replies from the controller) are sent to the window
via WM_CHAR messages. This feature allows you to use MCDLG_DownloadFile() with a terminal interface application,
such as Win Control, that displays the file while it is being downloaded.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_DownloadFile(hWnd: HWnd; hCtlr: HCTRLR; flags: Longint; fileName: PChar): Longint; stdcall;
VB: Function MCDLG_DownloadFile(ByVal hWnd As Long, ByVal hCtlr As Integer, ByVal flags As Long, ByVal fileName

As String) As Long

MCAPI Common Motion Dialog Functions

Precision MicroControl

326

LabVIEW:

MCDLG_Initialize
MCDLG_Initialize() must be called before any other MCDLG functions are called or any of the MCDLG window classes
are used.

long int MCDLG_Initialize(
 void
);

Returns
This function returns MCERR_NOERROR if the MCDLG library was successfully initialized, or it returns one of the other
MCERR_xxxx error codes if there was an error initializing the library.

Comments
Calling MCDLG_Initialize() ensures that internal MCDLG data structures are correctly initialized and that MCDLG
window classes are registered.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_Initialize: Longint; stdcall;
VB: Function MCDLG_Initialize() As Long
LabVIEW:

MCAPI Common Motion Dialog Functions

DCX-PCI100 User’s Manual

327

MCDLG_ListControllers
MCDLG_ListControllers() enumerates the types of motion controllers installed.

long int MCDLG_ListControllers(
 short int idArray[], // pointer to an array for controller type
 // IDs
 short int size // size of idArray[]
);

Parameters
idArray Pointer to an array of short integers, filled with controller types on return.
size Size of idArray[] (number of integers).

Returns
The return value is the number of installed controllers found.

Comments
MCDLG_ListControllers() fills idArray[] with controller type identifiers, where the type of the controller configured at
ID 0 is stored in idArray[0], the type of the controller configured at ID 1 is stored in idArray[1], etc. In order to list all
installed controllers the array must have a size of at least MC_MAX_ID + 1 (the constant MC_MAX_ID is defined in the
MCAPI header files).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_ListControllers(idArray: Array of SmallInt; size: SmallInt): Longint; stdcall;
VB: Function MCDLG_ListControllers Lib "mcdlg32.dll" (idArray As Any, ByVal size As Integer) As Long
LabVIEW: Not Supported

MCDLG_ModuleDescEx
MCDLG_ModuleDescEx() returns a descriptive string for the specified module/axis type.

LPCSTR MCDLG_ModuleDescEx(
 long int type, // axis type identifier
 long int flags, // flags
 LPSTR buffer, // buffer for descriptive string
 long int length // size of buffer, in bytes
);

MCAPI Common Motion Dialog Functions

Precision MicroControl

328

Parameters
type Module type, must be equal to one of the predefined module types (see

MCAPI.H).
flags Flags to control the operation:

Value Description
MCDLG_NAMEONLY Resulting string will contain only the name portion (no

description).
MCDLG_DESCONLY Resulting string will contain only the description portion (no

name).

buffer Pointer to a string buffer that will hold the descriptive string.
length Size of buffer, in bytes.

Returns
This function returns pointer to the descriptive string buffer for the specified axis type, or it returns NULL if type does not
specify a valid axis type.

Comments
This extended version of MCDLG_ModuleDesc() includes by default the module name and a description of the module in
the output string. Use the flags parameter to control the information included in the string.

You may use this function to provide a descriptive string for an axis by passing the function the ModuleType member of
an MCAXISCONFIG structure following a call to MCGetAxisConfiguration(). As an example, the MCDLG function
MCDLG_ConfigureAxis() uses this function to produce its default axis description string.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCDLG_ModuleDescEx(type: LongInt; flags: LongInt; buffer: PChar; length: Longint): PChar; stdcall;
VB: Function MCDLG_ModuleDescEx(ByVal argtype As Long, ByVal flags As Long, ByVal buffer As String, ByVal length

As Long) As String
LabVIEW: Not Supported

MCDLG_RestoreAxis
MCDLG_RestoreAxis() restores the settings of the given axis to a previously saved state.

MCAPI Common Motion Dialog Functions

DCX-PCI100 User’s Manual

329

long int MCDLG_RestoreAxis(
 HCTRLR hCtlr, // handle to a motion controller
 WORD axis, // axis number to configure
 long int flags, // configuration flags
 LPCSTR privateIniFile // optional INI file to read from
);

Parameters
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
axis Axis number of axis to be restored.
flags Flags to control the restore operation (multiple flags may be OR'ed together):

Value Description
MCDLG_CHECKACTIVE Checks if an axis is moving before the settings are restored

and skips if the axis is moving. Combine with
MCDLG_PROMPT to prompt user whether or not to
proceed.

MCDLG_NOMOTION Do not restore MCMOTIONEX structure settings.
MCDLG_NOFILTER Do not restore MCFILTEREX structure settings.
MCDLG_NOPHASE Do not restore phase setting.
MCDLG_NOPOSITION Do not restore axis position.
MCDLG_PROMPT If the stored data doesn't match the type of the axis being

restored to a Message Box will be displayed. Also affects the
behavior of MCDLG_CHECKACTIVE (see above).

privateIniFile Name, optionally with path and drive, of the INI file in which to save the axis

settings. If NULL MCDLG_RestoreAxis() will use MCAPI.INI.

Returns
This function returns MCERR_NOERROR if there were no problems, or it returns one of the other MCERR_xxxx error
codes if there was an error. The most common reason for a return value of FALSE is supplying an invalid or non-existent
filename for privateIniFile.

Comments
MCDLG_SaveAxis() encodes the motion controller type and module type into signature that is saved with the axis
settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the axis settings. If you make changes to
your hardware configuration (i.e. change module types or controller type) MCDLG_RestoreAxis() will refuse to restore
those settings.

You may specify the constant MC_ALL_AXES for the axis parameter in order to restore the parameters for all axes
installed on a motion controller with a single call to this function.

Restoring the parameters to an axis while it is moving may result in erratic behavior (such as when you choose to include
the motor position in the restored parameters). The flag MCDLG_CHECKACTIVE forces this function to check each
restored axis to see if it is active before it proceeds. By default MCDLG_CHECKACTIVE will skip the restore of an active
axis, but if you also include the flag MCDLG_PROMPT the user will be prompted for how to proceed. The programming
samples are all built with MCDLG_CHECKACTIVE and MCDLG_PROMPT set.

Note that this function writes a lot of information to the motion controller for each axis saved, and should be used sparingly
over slow interfaces such as the RS232.

If a NULL pointer or a pointer to a zero length string is passed as the privateIniFile argument the default file (MCAPI.INI)
will be used. Most applications should use the default file so that configuration data may be easily shared among

MCAPI Common Motion Dialog Functions

Precision MicroControl

330

applications. Acceptance of a pointer to a zero length string was included to support programming languages that have
difficulty with NULL pointers (e.g. Visual Basic).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_RestoreAxis(hCtlr: HCTRLR; axis: Word; flags: Longint; privateIniFile: PChar): Longint; stdcall;
VB: Function MCDLG_RestoreAxis(ByVal hCtlr As Integer, ByVal axis As Integer, ByVal flags As Long, ByVal privateIniFile

As String) As Long
LabVIEW:

See Also
MCDLG_SaveAxis()

MCDLG_RestoreDigitalIO
MCDLG_RestoreDigitalIO() restores the settings of the all the digital I/O channels between startChannel and
endChannel (inclusive) to their previously saved states.

long int MCDLG_RestoreDigitalIO(
 HCTRLR hCtlr, // handle to a motion controller
 WORD startChannel, // starting channel number to restore
 WORD endChannel, // ending channel number to restore
 LPCSTR privateIniFile // optional INI file to read from
);

Parameters
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
startChannel Number of the first digital I/O channel axis to be restored. If set to zero the first

available channel on the controller will be used.
endChannel Number of the last digital I/O channel axis to be restored. If set to zero the last

available channel on the controller will be used.
privateIniFile Name, optionally with path and drive, of the INI file in which to save the axis

settings. If NULL MCDLG_RestoreDigitalIO() will use MCAPI.INI.

MCAPI Common Motion Dialog Functions

DCX-PCI100 User’s Manual

331

Returns
This function returns MCERR_NOERROR if the settings were restored correctly, or it returns MCERR_RANGE if either
StartChannel or EndChannel is out of range.

Comments
By setting startChannel and endChannel both to zero this function will automatically restore all the digital I/O channels on
a motion controller.

If a NULL pointer or a pointer to a zero length string is passed as the privateIniFile argument, the default file (MCAPI.INI)
will be used. Most applications should use the default file so that configuration data may be easily shared among
applications. Acceptance of a pointer to a zero length string was included to support programming languages that have
difficulty with NULL pointers (e.g. Visual Basic).

i

Under the MCAPI, the DC2-STN controller's input channels are numbered 1 - 8, and the
output channels are numbered 9 - 16 (the MCAPI requires that each channel have a
unique channel number).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_RestoreDigitalIO(hCtlr: HCTRLR; startChannel: Word; endChannel: Word; privateIniFile: PChar

):Longint; stdcall;
VB: Function MCDLG_RestoreDigitalIO(ByVal hCtlr As Integer, ByVal startChannel As Integer, ByVal endChannel As

Integer, ByVal privateIniFile As String) As Long
LabVIEW:

See Also
MCDLG_SaveDigitalIO()

MCDLG_SaveAxis
MCDLG_SaveAxis() saves the settings of the given axis to an initialization file for later use.

MCAPI Common Motion Dialog Functions

Precision MicroControl

332

long int MCDLG_SaveAxis(
 HCTRLR hCtlr, // handle to a motion controller
 WORD axis, // axis number to configure
 long int flags, // configuration flags
 LPCSTR privateIniFile // optional INI file to write to
);

Parameters
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
axis Axis number of axis to be restored.
flags Flags to control the restore operation (multiple flags may be OR'ed together):

Value Description
MCDLG_NOMOTION Do not restore MCMOTIONEX structure settings.
MCDLG_NOFILTER Do not restore MCFILTEREX structure settings.
MCDLG_NOPHASE Do not restore phase setting.
MCDLG_NOPOSITION Do not restore axis position.

privateIniFile Name, optionally with path and drive, of the INI file in which to save the axis

settings. If NULL MCDLG_RestoreAxis() will use MCAPI.INI.

Returns
This function returns MCERR_NOERROR if there were no problems, or it returns one of the other MCERR_xxxx error
codes if there was an error. The most common reason for a return value of FALSE is supplying an invalid or non-existent
filename for privateIniFile.

Comments
MCDLG_SaveAxis() encodes the motion controller type and module type into signature that is saved with the axis
settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the axis settings. If you make changes to
your hardware configuration (i.e. change module types or controller type) MCDLG_RestoreAxis() will refuse to restore
those settings.

You may specify the constant MC_ALL_AXES for the axis parameter in order to save the parameters for all axes installed
on a motion controller with a single call to this function. Setting axis to -1 will cause MCDLG_SaveAxis() to delete all of
the stored axis information for this controller.

Note that this function reads a lot of information from the motion controller for each axis saved, and should be used
sparingly over slow interfaces such as the RS232.

If a NULL pointer or a pointer to a zero length string is passed as the privateIniFile argument the default file (MCAPI.INI)
will be used. Most applications should use the default file so that configuration data may be easily shared among
applications. Acceptance of a pointer to a zero length string was included to support programming languages that have
difficulty with NULL pointers (e.g. Visual Basic).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

MCAPI Common Motion Dialog Functions

DCX-PCI100 User’s Manual

333

Prototypes
Delphi: function MCDLG_SaveAxis(hCtlr: HCTRLR; axis: Word; flags: Longint; privateIniFile: PChar): Longint; stdcall;
VB: Function MCDLG_SaveAxis(ByVal hCtlr As Integer, ByVal axis As Integer, ByVal flags As Long, ByVal privateIniFile

As String) As Long
LabVIEW:

MCDLG_SaveDigitalIO
MCDLG_SaveDigitalIO() saves the settings of the all the digital I/O channels between startChannel and endChannel
(inclusive) to an INI file.

long int MCDLG_SaveDigitalIO(
 HCTRLR hCtlr, // handle to a motion controller
 WORD startChannel, // starting channel number to save
 WORD endChannel, // ending channel number to save
 LPCSTR privateIniFile // optional INI file to write to
);

Parameters
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
startChannel Number of the first digital I/O channel axis to be restored. If set to zero the first

available channel on the controller will be used.
endChannel Number of the last digital I/O channel axis to be restored. If set to zero, the last

available channel on the controller will be used.
privateIniFile Name, optionally with path and drive, of the INI file in which to save the axis

settings. If NULL MCDLG_SaveDigitalIO() will use MCAPI.INI.

Returns
MCERR_NOERROR if the settings were saved correctly or MCERR_RANGE if either startChannel or endChannel is out
of range.

Comments
By setting startChannel and endChannel both to zero this function will automatically save all the digital I/O channels on a
motion controller.

If a NULL pointer or a pointer to a zero length string is passed as the privateIniFile argument the default file (MCAPI.INI)
will be used. Most applications should use the default file so that configuration data may be easily shared among
applications. Acceptance of a pointer to a zero length string was included to support programming languages that have
difficulty with NULL pointers (e.g. Visual Basic).

MCAPI Common Motion Dialog Functions

Precision MicroControl

334

i

Under the MCAPI, the DC2-STN controller's input channels are numbered 1 - 8, and the
output channels are numbered 9 - 16 (the MCAPI requires that each channel have a
unique channel number).

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_SaveDigitalIO(hCtlr: HCTRLR; startChannel: Word; endChannel: Word; privateIniFile: PChar

):Longint; stdcall;
VB: Function MCDLG_SaveDigitalIO(ByVal hCtlr As Integer, ByVal startChannel As Integer, ByVal endChannel As Integer,

ByVal privateIniFile As String) As Long
LabVIEW:

MCDLG_Scaling
MCDLG_Scaling() displays a scaling setup dialog and, if the motion controller supports scaling, allows the user to change
the scaling parameters.

long int MCDLG_Scaling(
 HWND hWnd, // handle to parent window
 HCTRLR hCtlr, // handle to a motion controller
 WORD axis, // axis number to configure
 long int flags, // configuration flags
 LPCSTR title // optional title for the dialog box
);

Parameters
hWnd Handle to parent window. May be NULL.
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
axis Axis number of axis to be scaled.
flags Flags to control scaling:

Value Description

MCAPI Common Motion Dialog Functions

DCX-PCI100 User’s Manual

335

MCDLG_PROMPT If user clicks OK to dismiss dialog display a message warning
that scaling changes will take effect following the next motor
on command.

title An optional title string for the About dialog box. If this pointer is NULL or points

to a zero length string the default title of “About” is used.

Returns
This function returns MCERR_NOERROR if the user pressed OK button to dismiss the dialog box. It returns
MCERR_CANCEL if the user pressed the CANCEL button to dismiss the dialog box, or it returns one of the other
MCERR_xxxx error codes if there was an error creating the dialog box.

Comments
For controllers that don't support scaling the Motion Control API will fill in the MCSCALE data structure with default
values (zero for offsets, one for factors). MCDLG_Scaling() will display these defaults as read-only. For advanced
controllers such as the DCX-AT and the DCX-PCI MCDLG_Scaling() will display the current scale factors and allow the
user to change them.

If a NULL pointer or a pointer to a zero length string is passed as the title argument the default title will be used.
Acceptance of a pointer to a zero length string was included to support programming languages that have difficulty with
NULL pointers (e.g. Visual Basic). To eliminate the title pass a pointer to a string with a single space (i.e. " ").

NOTE: Scaling changes will take effect following the next motor on command (MCEnableAxis()) after
MCDLG_Scaling() completes.

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_Scaling(hWnd: HWnd; hCtlr: HCTRLR; axis: Word; flags: Longint; title: PChar): Longint; stdcall;
VB: Function MCDLG_Scaling(ByVal hWnd As Long, ByVal hCtlr As Integer, ByVal axis As Integer, ByVal flags As Long,

ByVal title As String) As Long
LabVIEW:

MCDLG_SelectController
MCDLG_SelectController() displays a list of installed controllers and allows the user to select a controller from the list.

MCAPI Common Motion Dialog Functions

Precision MicroControl

336

long int MCDLG_SelectController(
 HWND hWnd, // handle to parent window
 short int currentID, // ID of currently selected controller
 long int flags, // configuration flags
 LPCSTR title // optional title for the dialog box
);

Parameters
hWnd Handle to parent window. May be NULL.
currentID ID of the motion controller currently in use. In the selection list, this controller

will be highlighted. Set to -1 to ignore.
flags Currently no flags are defined for MCDLG_ConfigureAxis(), and this field

should be left blank.
title An optional title string for the dialog box. If this pointer is NULL or points to a

zero length string the default title is used.

Returns
This function returns a controller ID if the user selected a controller and pressed the OK button to dismiss the dialog, or it
returns a -1 if the user pressed the CANCEL button to dismiss the dialog. A value of -1 is also returned if there are no
motion controllers currently configured.

Comments
This function displays a list of installed controllers and allows the user to select one from the list. If a valid ID is given for
currentID that controller will be highlighted in the list as the default selection (set currentID to -1 prevent a default
selection). If no motion controllers have been configured for use with the Motion Control Applet in the Motion Control
Panel, a message is displayed indicating that no controllers are configured and -1 is returned to the calling program.

If a NULL pointer or a pointer to a zero length string is passed as the title argument the default title will be used.
Acceptance of a pointer to a zero length string was included to support programming languages that have difficulty with
NULL pointers (e.g. Visual Basic). To eliminate the title pass a pointer to a string with a single space (i.e. " ").

Compatibility
There are no compatibility issues with this function.

Requirements
Header: include mcdlg.h, mccdlg.pas, or mcdlg32.bas
Library: use mcdlg32.lib and mcapi32.lib
Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_SelectController(hWnd: HWnd; currentID: SmallInt; flags: Longint; title: PChar): SmallInt; stdcall;
VB: Function MCDLG_SelectController(ByVal hWnd As Long, ByVal currentID As Integer, ByVal flags As Long, ByVal title

As String) As Integer
LabVIEW:

MCAPI Common Motion Dialog Functions

DCX-PCI100 User’s Manual

337

MCAPI Controller Error Codes

Precision MicroControl

338

Chapter Contents

• MCAPI Error codes

MCAPI Controller Error Codes

The MCAPI defined error messages are listed numerically in the following table. Where possible corrective action is
included in the description column. Please note that many MCAPI function descriptions also include information regarding
errors that are specific to that function.

Chapter

20

Error Codes

Precision MicroControl

340

Error Constant Description

0 MCERR_NOERROR No error has occurred.
1 MCERR_NO_CONTROLLER No controller assigned at this ID. Use MCSETUP to

configure a controller.
2 MCERR_OUT_OF_HANDLES MCAPI driver out of handles. The driver is limited to 32

open handles. Applications that do not call MCClose()
when they exit may leave handles unavailable, forcing a
reboot.

3 MCERR_OPEN_EXCLUSIVE Cannot open - another application has the controller opened
for exclusive use.

4 MCERR_MODE_UNAVAIL Controller already open in different mode. Some controller
types can only be open in one mode (ASCII or binary) at a
time.

5 MCERR_UNSUPPORTED_MODE Controller doesn't support this mode for MCOpen() - i.e.
ASCII or binary.

6 MCERR_INIT_DRIVER Couldn't initialize the device driver.
7 MCERR_NOT_PRESENT Controller hardware not present.
8 MCERR_ALLOC_MEM Memory allocation error. This is an internal memory

allocation problem with the DLL, contact Technical Support
for assistance.

9 MCERR_WINDOWSERROR A windows function returned an error - use GetLastError()
under WIN32 for details

10 - reserved
11 MCERR_NOTSUPPORTED Controller doesn't support this feature.
12 MCERR_OBSOLETE Function is obsolete.
13 MCERR_CONTROLLER Invalid controller handle.
14 MCERR_WINDOW Invalid window handle.
15 MCERR_AXIS_NUMBER Axis number out of range.
16 MCERR_AXIS_TYPE Axis type doesn't support this feature.
17 MCERR_ALL_AXES Cannot use MC_ALL_AXES for this function.
18 MCERR_RANGE Parameter was out of range.
19 MCERR_CONSTANT Constant value inappropriate.
20 MCERR_UNKNOWN_REPLY Unexpected or unknown reply.
21 MCERR_NO_REPLY Controller failed to reply.
22 MCERR_REPLY_SIZE Reply size incorrect.
23 MCERR_REPLY_AXIS Wrong axis for reply.
24 MCERR_REPLY_COMMAND Reply is for different command.
25 MCERR_TIMEOUT Controller failed to respond.
26 MCERR_BLOCK_MODE Block mode error. Caused by calling MCBlockEnd()

without first calling MCBlockBegin() to begin the block.
27 MCERR_COMM_PORT Communications port (RS232) driver reported an error.
28 MCERR_CANCEL User canceled action (such as when an MCDLG dialog box

is dismissed with the CANCEL button.
29 MCERR_NOT_INITIALIZED Feature was not correctly initialized before being enable or

used.

MCAPI Controller Error Codes

DCX-PCI100 User’s Manual

341

MCAPI Constants

Precision MicroControl

342

Chapter Contents

MCAPI Constants

The symbolic constants described in this section provide a safe, descriptive way of accessing the MCAPI features. The
actual numeric value of these constants may change in future versions of the API, however the constant names will remain
fixed. Use of these symbolic values will help to insure that future changes to the API won't break existing code. The
constant values also help to produce more readable code. To find the actual value of any given constant, please refer to the
online Motion Control API Reference or the MCAPI.H header file.

Chapter

21

MCAPI Constants

Precision MicroControl

344

Constant Description
DC2PC100 Value for the ControllerType member of an MCPARAMEX structure, it

indicates that a DC2 PC100 controller is installed.
DC2SERVO Identifies an axis as one of the dedicated servo axes on a DC2PC100

controller.
DC2STEPPER Identifies an axis as one of the optional stepper axes on a DC2PC100

controller.
DC2STN Value for the ControllerType member of an MCPARAMEX structure, it

indicates that a DC2 STN controller is installed.
DCXPC100 Value for the ControllerType member of an MCPARAMEX structure, it

indicates that a DCX series PC100 controller is installed.
DCXAT100 Value for the ControllerType member of an MCPARAMEX structure, it

indicates that a DCX series AT100 controller is installed.
DCXAT200 Value for the ControllerType member of an MCPARAMEX structure, it

indicates that a DCX series AT200 controller is installed.
DCXAT300 Value for the ControllerType member of an MCPARAMEX structure, it

indicates that a DCX series AT300 controller is installed.
DCXPCI100 Value for the ControllerType member of an MCPARAMEX structure, it

indicates that a DCX series PC100 controller is installed.
DCXPCI300 Value for the ControllerType member of an MCPARAMEX structure, it

indicates that a DCX series PCI300 controller is installed.
MC_ABSOLUTE Specifies that a position is in absolute units.
MC_ALL_AXES When used in place of an axis number this constant implies that the

command be performed on all installed axes. This option is not generally
permitted on get type commands, i.e. to get the current position for all
installed axes you should issue an individual MCGetPositionEx() call for
each axis.

MC_BLOCK_CANCEL Argument to MCBlockBegin() function canceling any commands queued
(but not yet executed) as a result of a previous call to MCBlockBegin().

MC_BLOCK_COMPOUND Argument to MCBlockBegin() function specifying this block as a
compound command block. Commands will not be executed until the
MCBlockEnd() command is issued.

MC_BLOCK_CONTR_CCW Argument to MCBlockBegin() function specifying this block as a contour
path counter-clockwise arc (valid only for controllers that support
contouring).

MC_BLOCK_CONTR_CW Argument to MCBlockBegin() function specifying this block as a contour
path clockwise arc (valid only for controllers that support contouring).

MC_BLOCK_CONTR_LIN Argument to MCBlockBegin() function specifying this block as a contour
path linear motion (valid only for controllers that support contouring).

MC_BLOCK_CONTR_USER Argument to MCBlockBegin() function specifying this block as a contour
path user defined motion (valid only for controllers that support
contouring).

MC_BLOCK_MACRO Argument to MCBlockBegin() function specifying this block as a macro
command. All commands up to the MCBlockEnd() will be included in
the macro.

MC_BLOCK_RESETM Argument to MCBlockBegin() function that will cause macro storage to
be cleared.

MCAPI Constants

DCX-PCI100 User’s Manual

345

Constant Description
MC_BLOCK_TASK Argument to MCBlockBegin() function specifying this block as separate

task (valid only for controllers that support multi-tasking).
MC_CAPTURE_ACTUAL Used to select the actual position data from the data capture functions.
MC_CAPTURE_ADVANCED capture flag for CaptureModes member of MCAXISCONFIG
MC_CAPTURE_ERROR Used to select the following error data from the data capture functions.
MC_CAPTURE_OPTIMAL Used to select the optimal position data from the data capture functions.
MC_CAPTURE_TORQUE Used to select the torque data from the data capture functions.
MC_COMPARE_DISABLE Disable position compare mode, also used to disable compare output on

position match.
MC_COMPARE_ENABLE Enable position compare mode.
MC_COMPARE_STATIC Set compare output on position match.
MC_COMPARE_TOGGLE Toggle compare output on position match.
MC_COMPARE_INVERT Set compare output on position match.
MC_COMPARE_ONESHOT Set compare output on position match.
MC_COUNT_CAPTURE Return the current captured position count.
MC_COUNT_COMPARE Return the current compare position count.
MC_COUNT_CONTOUR Return the current contour position count.
MC_COUNT_FILTER Return the current digital filter coefficient count.
MC_COUNT_FILTERMAX Return the maximum digital filter size supported.
MC_CURRENT_FULL Restores a stepper motor current to full power. Commonly used to restore

full power, prior to driving, following a reduced current setting while a
stepper motor was idle. This constant is used to set the value of the
Current member of a MCMOTIONEX structure.

MC_CURRENT_HALF Reduces stepper motor current to half power. Commonly used to reduce
heating when a stepper motor is not driving. This constant is used to set the
value of the Current member of a MCMOTIONEX structure.

MC_DATA_ACTUAL see MC_CAPTURE_ACTUAL.
MC_DATA_ERROR see MC_CAPTURE_ERROR.
MC_DATA_OPTIMAL see MC_CAPTURE_OPTIMAL.
MC_DIO_FIXED Indicates that a digital I/O channel's I/O state (i.e. input or output) is fixed,

and may not be changed with MCConfigureDigitalIO().
MC_DIO_HIGH Configures a digital I/O channel for high true logic level when used as an

argument to MCConfigureDigitalIO().
MC_DIO_INPUT Configures a digital I/O channel for input when used as an argument to

MCConfigureDigitalIO().
MC_DIO_LATCH Configures a digital input channel for input latching when used as an

argument to MCConfigureDigitalIO().
MC_DIO_LATCHABLE Indicates that a digital I/O channel may be configured for latched input

using MCConfigureDigitalIO().
MC_DIO_LOW Configures a digital I/O channel for low true logic level when used as an

argument to MCConfigureDigitalIO().
MC_DIO_OUTPUT Configures a digital I/O channel for output when used as an argument to

MCConfigureDigitalIO().
MC_DIO_STEPPER Indicates that a digital I/O channel is configured for driving a stepper

motor on a DC2-PC or DC2-STN controller

MCAPI Constants

Precision MicroControl

346

Constant Description
MC_DIR_NEGATIVE When operating in velocity mode this constant may be used as argument to

MCDirection() to select the negative travel direction. The physical
relationship of MC_DIR_NEGATIVE to the actual direction of travel (or
rotation) will depend upon your mechanical setup.

MC_DIR_POSITIVE When operating in velocity mode this constant may be used as argument to
MCDirection() to select the positive travel direction. The physical
relationship of MC_DIR_POSITIVE to the actual direction of travel (or
rotation) will depend upon your mechanical setup.

MC_IM_CLOSEDLOOP Selects the normal (open loop) input mode for MC360 Stepper Modules.
MC_IM_OPENLOOP Selects the closed-loop input mode for MC360 Stepper Modules.
MC_INT_FREEZE Selects the wait until move complete mode for the integral term option.
MC_INT_NORMAL Selects the normal (always active) mode for the integral term option.
MC_INT_ZERO Selects the zero and wait until move complete mode for the integral term

option.
MC_LIMIT_ABRUPT Selects abrupt stop mode when a limit is tripped.
MC_LIMIT_BOTH Enables both the positive and negative limits.
MC_LIMIT_INVERT Inverts limit logic mode for hard limits.
MC_LIMIT_MINUS Enables the negative limit for hard and soft limits.
MC_LIMIT_OFF Selects axis off mode when a limit is tripped.
MC_LIMIT_PLUS Enables the positive limit for hard and soft limits.
MC_LIMIT_SMOOTH Selects smooth stop mode when a limit is tripped.
MC_LRN_POSITION When used as an argument to the MCLearnPoint() function, this mode

will cause the actual position of the axis to be stored in point memory.
MC_LRN_TARGET When used as an argument to the MCLearnPoint() function, this mode

will cause the current target position of the axis to be stored in point
memory.

MC_MAX_ID Specifies the maximum allowable value for the ID parameter to the
MCOpen() call, where 0 <= ID <= MC_MAX_ID.

MC_MODE_CONTOUR Selects the contouring mode of operation for an axis when used as an
argument to MCSetOperatingMode().

MC_MODE_GAIN Selects the gain mode of operation for an axis when used as an argument to
MCSetOperatingMode().

MC_MODE_POSITION Selects the position mode of operation for an axis when used as an
argument to MCSetOperatingMode().

MC_MODE_TORQUE Selects the torque mode of operation for an axis when used as an argument
to MCSetOperatingMode().

MC_MODE_UNKNOWN Return value from MCGetOperatingMode() when it is unable to
determine the current operating mode.

MC_MODE_VELOCITY Selects the velocity mode of operation for an axis when used as an
argument to MCSetOperatingMode().

MC_OM_BIPOLAR Selects the bipolar output mode for MC200 Advanced Servo Modules.
MC_OM_CW_CCW Selects the clockwise - counterclockwise output mode for MC260

Advanced Stepper Modules.
MC_OM_PULSE_DIR Selects the pulse and direction output mode for MC260 Advanced Stepper

Modules.
MC_OM_UNIPOLAR Selects the unipolar output mode for MC200 Advanced Servo Modules.

MCAPI Constants

DCX-PCI100 User’s Manual

347

Constant Description
MC_OPEN_ASCII When used as an argument to the MCOpen() function it specifies that a

controller is to be open for ASCII (character) based communication.
MC_OPEN_BINARY When used as an argument to the MCOpen() function it specifies that a

controller is to be open for binary communication.
MC_OPEN_EXCLUSIVE This constant may be combined with either MC_OPEN_ASCII or

MC_OPEN_BINARY for calls to MCOpen() to prevent other
applications from gaining access to the controller while it is open with an
exclusive handle.

MC_PHASE_REV Selects reverse phasing for the servo module output when used as an
argument to MCSetServoOutputPhase().

MC_PHASE_STD Selects standard phasing for the servo module output when used as an
argument to MCSetServoOutputPhase().

MC_PROF_PARABOLIC This constant may be used as the value of the mode argument to the
MCSetProfile() API function. It selects the parabolic profile for
acceleration and deceleration.

MC_PROF_SCURVE This constant may be used as the value of the mode argument to the
MCSetProfile() API function. It selects the S-Curve profile for
acceleration and deceleration.

MC_PROF_TRAPEZOID This constant may be used as the value of the mode argument to the
MCSetProfile() API function. It selects the trapezoidal profile for
acceleration and deceleration.

MC_PROF_UNKNOWN This constant is returned by the MCGetProfile() API function if it is
unable to determine the present profile setting. The most likely cause is
older firmware, contact PMC for information on firmware updates.

MC_RATE_HIGH This constant is used as an argument to the UpdateRate member of an
MCFILTEREX structure. For servo motors and closed-loop steppers,
setting UpdateRate to this value sets the maximum feedback loop update
rate. When used for an open-loop stepper motor, it sets the maximum pulse
rate range. Please refer to your User Manual for product specific
information.

MC_RATE_LOW This constant is used as an argument to the UpdateRate member of an
MCFILTEREX structure. For servo motors and closed-loop steppers,
setting UpdateRate to this value sets the low feedback loop update rate.
When used for an open-loop stepper motor, it sets the low pulse rate range.
Please refer to your User Manual for product specific information.

MC_RATE_MEDIUM This constant is used as an argument to the UpdateRate member of an
MCFILTEREX structure. For servo motors and closed-loop steppers,
setting UpdateRate to this value sets the middle feedback loop update
rate. When used for an open-loop stepper motor, it sets the middle pulse
rate range. Please refer to your User Manual for product specific
information.

MC_RATE_UNKNOWN Returned if MCAPI cannot determine the current rate.
MC_RELATIVE Specifies that a position supplied is relative to the current axis position.
MC_STAT_ACCEL Selects the Accelerating status bit (DC2 PC100 only).
MC_STAT_AMP_ENABLE Selects the Amp Fault Enabled status bit (DCX controllers only).
MC_STAT_AMP_FAULT Selects the Amp Fault status bit (DCX controllers only).
MC_STAT_AT_TARGET Selects the At Target status bit (DC2 PC100 controllers only).
MC_STAT_BREAKPOINT Selects the Breakpoint status bit.

MCAPI Constants

Precision MicroControl

348

Constant Description
MC_STAT_BUSY Selects the Busy status bit (DCX controllers only). When set indicates that

dual port memory is being refreshed.
MC_STAT_CAPTURE Selects the Position Capture status bit (DC2 PC100 controllers only).
MC_STAT_DIR Selects the Direction status bit.
MC_STAT_EDGE_FOUND Selects the Edge Found status bit (DCX PCI controllers only).
MC_STAT_ERROR Selects the Motor Error status bit.
MC_STAT_FOLLOWING Selects the Following Error status bit (DCX controllers only).
MC_STAT_FULL_STEP Selects the Full Step status bit (DCX controllers only).
MC_STAT_HALF_STEP Selects the Half Step status bit (DCX controllers only).
MC_STAT_HOMED Selects the Motor Homed status bit.
MC_STAT_INDEX_FOUND Selects the Index Found status bit (DCX PCI controllers only).
MC_STAT_INP_AMP Selects the Amp Fault Input status bit (DCX controllers only).
MC_STAT_INP_AUX Selects the Auxiliary Encoder Index Input status bit (DCX AT200,

DCX AT300, DCX PCI controllers only).
MC_STAT_INP_HOME Selects the Home Input status bit (DCX controllers only).
MC_STAT_INP_INDEX Selects the Index Input status bit (DCX controllers only).
MC_STAT_INP_MJOG Selects the Minus Jog Input status bit (DCX PC100 / DCX AT100

controllers only).
MC_STAT_INP_MLIM Selects the Minus Limit Input status bit (DCX controllers only).
MC_STAT_INP_PJOG Selects the Plus Jog Input status bit (DCX PC100 / DCX AT100

controllers only).
MC_STAT_INP_PLIM Selects the Plus Limit Input status bit (DCX controllers only).
MC_STAT_INP_USER1 Selects the User #1 Input status bit (DCX AT200, DCX AT300 controllers

only).
MC_STAT_INP_USER2 Selects the User #2 Input status bit (DCX AT200, DCX AT300 controllers

only).
MC_STAT_JOG_ENAB Selects the Jogging Enabled status bit (DCX AT200, DCX AT300

controllers only).
MC_STAT_JOGGING Selects the Motor Jogging status bit (DCX PC100 / DCX AT100

controllers only).
MC_STAT_LMT_ABORT Selects the Abort Limit Mode status bit (DC2 PC100 controllers only).
MC_STAT_LMT_STOP Selects the Stop Limit Mode status bit (DC2 PC100 controllers only).
MC_STAT_LOOK_EDGE Selects the Looking for Edge status bit.
MC_STAT_LOOK_INDEX Selects the Looking for Index status bit.
MC_STAT_MJOG_ENAB Selects the Minus Jog Enable status bit (DCX PC100 / DCX AT100

controllers only).
MC_STAT_MJOG_ON Selects the Minus Jog On status bit (DCX PC100 / DCX AT100

controllers only).
MC_STAT_MLIM_ENAB Selects the Minus Hard Limit Enable status bit.
MC_STAT_MLIM_TRIP Selects the Minus Hard Limit Tripped status bit.
MC_STAT_MODE_ARC Selects the Arc Mode status bit (DC2 PC100 controllers only).
MC_STAT_MODE_CNTR Selects the Contouring Mode status bit (DC2 PC100 controllers only).
MC_STAT_MODE_LIN Selects the Linear Mode status bit (DC2 PC100 controllers only).
MC_STAT_MODE_POS Selects the Position Mode status bit (DC2 PC100 controllers only).

MCAPI Constants

DCX-PCI100 User’s Manual

349

Constant Description
MC_STAT_MODE_SLAVE Selects the Slave Mode status bit (DC2 PC100 controllers only).
MC_STAT_MODE_TRQE Selects the Torque Mode status bit (DC2 PC100 controllers only).
MC_STAT_MODE_VEL Selects the Velocity Mode status bit.
MC_STAT_MSOFT_ENAB Selects the Minus Soft Limit Enable status bit (DCX AT200, DCX AT300,

DCX PCI controllers only).
MC_STAT_MSOFT_TRIP Selects the Minus Soft Limit Tripped status bit (DCX AT200,

DCX AT300, DCX PCI controllers only).
MC_STAT_MTR_ENABLE Selects the Motor On status bit.
MC_STAT_NULL Selects the NULL Stepper Position status bit (DCX PCI300 controllers

only).
MC_STAT_PHASE Selects the Phase Reversed status bit.
MC_STAT_PJOG_ENAB Selects the Plus Jog Enable status bit (DCX PC100 / DCX AT100

controllers only).
MC_STAT_PJOG_ON Selects the Plus Jog On status bit (DCX PC100 / DCX AT100 controllers

only).
MC_STAT_PLIM_ENAB Selects the Plus Hard Limit Enable status bit.
MC_STAT_PLIM_TRIP Selects the Plus Hard Limit Tripped status bit.
MC_STAT_POS_CAPT Selects the Position Captured status bit (DCX PCI300 controllers only).
MC_STAT_PROG_DIR Selects the Programmed Direction status bit (DC2 PC100 controllers only).
MC_STAT_PSOFT_ENAB Selects the Plus Soft Limit Enable status bit (DCX AT200, DCX AT300,

DCX PCI controllers only).
MC_STAT_PSOFT_TRIP Selects the Plus Soft Limit Tripped status bit (DCX AT200, DCX AT300,

DCX PCI controllers only).
MC_STAT_RECORD Selects the Position status bit (DC2 PC100 controllers only).
MC_STAT_STOPPING Selects the Stopping status bit (DC2 PC100 controllers only).
MC_STAT_SYNC Selects the Synchronize status bit (DC2 PC100 controllers only).
MC_STAT_TRAJ Selects the Trajectory Complete status bit.
MC_STEP_FULL Selects stepper motor full step operation.
MC_STEP_HALF Selects stepper motor half step operation.
MC_TYPE_DOUBLE Used with register get/set functions to select a double precision floating

point data type.
MC_TYPE_FLOAT Used with pmccmdex() and register get/set functions to select a single

precision floating point data type.
MC_TYPE_LONG Used with register get/set functions to select a long integer (32-bit) data

type.
MC_TYPE_NONE Used with pmccmdex() to specify no argument.
MC_TYPE_REG Used with pmccmdex() to select a register based argument.
MC_TYPE_SERVO Indicates the axis is a servo motor – used with the MCAXISCONFIG

structure.
MC_TYPE_STEPPER Indicates the axis is a stepper motor – used with the MCAXISCONFIG

structure.
MC_TYPE_STRING Used with pmccmdex() and register get/set functions to select a string

data type.
MC100 Identifies a DC Servo axis with analog signal output.

MCAPI Constants

Precision MicroControl

350

Constant Description
MC110 Identifies a DC Servo axis with motor output.
MC150 Identifies a stepper motor axis.
MC160 Identifies a stepper motor with encoder axis.
MC200 Identifies an Advanced Servo axis with analog signal output.
MC210 Identifies an Advanced Servo axis with PWM motor output.
MC260 Identifies an Advanced Stepper axis.
MC300 Identifies a DSP-Based Servo axis with analog signal output.
MC302 Identifies a DSP-Based Dual Servo axes with dual analog signal outputs.
MC320 Identifies a DSP-Based Brushless-AC Servo axis with analog signal

output.
MC360 Identifies a DSP-Based Stepper axis.

MC362 Identifies a DSP-Based Dual Stepper axes.
MC400 Identifies this axis as providing additional digital I/O channels (16).
MC500 Identifies this axis as providing additional analog channels.
MCERR_ALL_AXES Error code indicating you may not use the constant MC_ALL_AXES with

this function.
MCERR_ALLOC_MEM There was a memory allocation error during a call to MCOpen(). Try

closing other Windows programs to free memory.
MCERR_AXIS_NUMBER Error code indicating that the specified axis number is out of range.
MCERR_AXIS_TYPE Error code indicating that the function does not apply to the axis specified.
MCERR_COMM_PORT Error code indicating and invalid constant value was given as the argument

to a function.
MCERR_CONSTANT Error code indicating and invalid constant value was given as the argument

to a function.
MCERR_CONTROLLER Error code indicating the controller handle is invalid.
MCERR_INIT_DRIVER MCOpen() was unable to initialize the device driver for this controller.
MCERR_MODE_UNAVAIL The requested open mode for MCOpen() was unavailable. This can occur

when a non-multitasking controller is already open in a mode that is
different from the requested mode.

MCERR_NO_CONTROLLER Returned by MCOpen() when no controller has been configured for this
ID number.

MCERR_NO_REPLY Error code indicating a controller failed to reply.
MCERR_NOERROR Error code return value indicating that no errors have occurred.
MCERR_NOT_FOUND Restore operation could not find data.
MCERR_NOT_INITIALIZED An attempt was made to use a controller feature before that feature had

been initialized.
MCERR_NOT_PRESENT The controller hardware was not found during a call to MCOpen(). Check

the MCAPI settings with the setup program.
MCERR_NOTSUPPORTED Error code indicating function is not supported by this controller. The

MCAPI will handle this condition by ignoring requests to set this
parameter and by returning a fixed default value for the parameter. You
may, therefore, safely ignore this error.

MCERR_OBSOLETE Error code indicating function is obsolete. See manual for updated
function.

MCAPI Constants

DCX-PCI100 User’s Manual

351

Constant Description
MCERR_OPEN_EXCLUSIVE Returned by MCOpen() when it is unable to satisfy a request for an

exclusive handle. You cannot obtain an exclusive handle to a controller if
there are other open handles for the controller at the time of your request.

MCERR_OUT_OF_HANDLES Returned by MCOpen() when the device driver has no more free handles
it can assign to this request.

MCERR_RANGE Error code indicating a parameter was out of range.
MCERR_REPLY_AXIS Error code indicating the wrong axis number replied to a function.
MCERR_REPLY_COMMAND Error code indicating the controller reply does not match the command.
MCERR_REPLY_SIZE Error code indicating the length of a reply was incorrect (too many or too

few bytes).
MCERR_TIMEOUT A timeout occurred while attempting to send a command or read a reply

from the controller.
MCERR_UNKNOWN_REPLY Error code indicating an unknown or unexpected reply was received from a

controller.
MCERR_UNSUPPORTED_MODE Return value from MCOpen() when the requested mode is not supported

for this controller/interface combination.
MCERR_WINDOW Error code indicating a window handle is invalid.
MCERRMASK_AXIS Error mask value for MCErrorNotify() to enable error messages for out

of range axis numbers and invalid usage of MC_ALL_AXES.
MCERRMASK_HANDLE Error mask value for MCErrorNotify() to enable error messages for

invalid controller or window handles.
MCERRMASK_IO Error mask value for MCErrorNotify() to enable error messages for

controller communication errors.
MCERRMASK_PARAMETER Error mask value for MCErrorNotify() to enable error messages for

invalid or out of range parameters to MCAPI functions.
MCERRMASK_STANDARD Collection of most common error mask values for MCErrorNotify()

(includes all errors except MCERRMASK_UNSUPPORTED) .
MCERRMASK_UNSUPPORTED Error mask value for MCErrorNotify() that enables error notification

when a function is called that is not supported by the controller.
MF300 Identifies this axis as an RS-232 communications module. This module is

not normally used with a controller installed in a PC adapter slot.
MF310 Identifies this axis as an IEEE-488 (GPIB) communications module. This

module is not normally used with a controller installed in a PC adapter
slot.

NO_CONTROLLER One setting for the ControllerType member of an MCPARAMEX
structure, it indicates that no controller is installed at this ID.

NO_MODULE Identifies this axis as having no module installed.
NONE One setting for the ControllerType member of a MCPARAMEX

structure, it indicates that no controller is installed at this ID. This is an old
constant - it is recommended that you use NO_CONTROLLER instead of
NONE.

MCAPI Status Word Constants Lookup Table

Precision MicroControl

352

Chapter Contents

DCX-PCI100 User’s Manual

353

MCAPI Status Word Constants Lookup Table

This table is provided for cross-platform comparisons of MCDecodeStatus() constants. Suppose you are using the
MC_STAT_TRAJ status bit on a DC2-PC100 controller and plan to migrate to the more powerful DCX-PCI300 controller.
Locate the constant in the leftmost column, read across the row to the DCX-PCI300 column and you will see that the
MC_STAT_TRAJ constant is also supported for the DCX-PCI300.

You will also notice that the bit positions for MC_STAT_TRAJ on the DC2-PC100 and the DCX-PCI300 are different. If
you had hard-coded this bit in your application, you would be forced to change your program to accommodate a different
controller. By using MCDecodeStatus() and the appropriate constants, no changes are required!

The numbers in the table represent the status word bit position for the specific controller. A dash indicates the constant is
not supported for a particular controller.

Chapter

22

MCAPI Status Word Constants Lookup Table

Precision MicroControl

354

Bit DC2-PC

DC2-STN
DCX-PC100
DCX-AT100

DCX-AT200
DCX-AT300

DCX-PCI100
DCX-PCI300

0 MC_STAT_MTR_ENABLE MC_STAT_BUSY MC_STAT_BUSY MC_STAT_BUSY

1 MC_STAT_ERROR MC_STAT_MTR_ENABLE MC_STAT_MTR_ENABLE MC_STAT_MTR_ENABLE

2 MC_STAT_CAPTURE MC_STAT_MODE_VEL MC_STAT_AT_TARGET MC_STAT_AT_TARGET

3 MC_STAT_BREAKPOINT MC_STAT_TRAJ MC_STAT_TRAJ MC_STAT_TRAJ

4 MC_STAT_TRAJ MC_STAT_DIR MC_STAT_DIR MC_STAT_DIR

5 MC_STAT_STOPPING MC_STAT_PHASE MC_STAT_JOG_ENAB - NONE -

6 - NONE- MC_STAT_HOMED MC_STAT_HOMED MC_STAT_HOMED

7 MC_STAT_DIR MC_STAT_ERROR MC_STAT_ERROR MC_STAT_ERROR

8 MC_STAT_AT_TARGET MC_STAT_LOOK_INDEX MC_STAT_LOOK_INDEX MC_STAT_LOOK_INDEX

9 MC_STAT_PHASE MC_STAT_LOOK_EDGE MC_STAT_LOOK_EDGE MC_STAT_LOOK_EDGE

10 MC_STAT_LOOK_INDEX MC_STAT_FULL_STEP - NONE- MC_STAT_INDEX_FOUND

11 MC_STAT_LOOK_EDGE MC_STAT_HALF_STEP - NONE - MC_STAT_POS_CAPT

12 MC_STAT_HOMED MC_STAT_BREAKPOINT MC_STAT_BREAKPOINT MC_STAT_BREAKPOINT

13 MC_STAT_INP_HOME MC_STAT_JOGGING MC_STAT_FOLLOWING MC_STAT_FOLLOWING

14 MC_STAT_RECORD MC_STAT_AMP_ENABLE MC_STAT_AMP_ENABLE MC_STAT_AMP_ENABLE

15 MC_STAT_SYNC MC_STAT_AMP_FAULT MC_STAT_AMP_FAULT MC_STAT_AMP_FAULT

16 MC_STAT_ACCEL MC_STAT_PLIM_ENAB MC_STAT_PLIM_ENAB MC_STAT_PLIM_ENAB

17 MC_STAT_MODE_POS MC_STAT_PLIM_TRIP MC_STAT_PLIM_TRIP MC_STAT_PLIM_TRIP

18 MC_STAT_MODE_VEL MC_STAT_MLIM_ENAB MC_STAT_MLIM_ENAB MC_STAT_MLIM_ENAB

19 MC_STAT_MODE_TRQE MC_STAT_MLIM_TRIP MC_STAT_MLIM_TRIP MC_STAT_MLIM_TRIP

20 MC_STAT_MODE_ARC MC_STAT_PJOG_ENAB MC_STAT_PSOFT_ENAB MC_STAT_PSOFT_ENAB

21 MC_STAT_MODE_CNTR MC_STAT_PJOG_ON MC_STAT_PSOFT_TRIP MC_STAT_PSOFT_TRIP

22 MC_STAT_MODE_SLAVE MC_STAT_MJOG_ENAB MC_STAT_MSOFT_ENAB MC_STAT_MSOFT_ENAB

23 MC_STAT_MODE_LIN MC_STAT_MJOG_ON MC_STAT_MSOFT_TRIP MC_STAT_MSOFT_TRIP

24 MC_STAT_LMT_ABORT MC_STAT_INP_INDEX MC_STAT_INP_INDEX MC_STAT_INP_INDEX

25 MC_STAT_LMT_STOP MC_STAT_INP_HOME MC_STAT_INP_HOME MC_STAT_INP_HOME

26 MC_STAT_MLIM_TRIP MC_STAT_INP_AMP MC_STAT_INP_AMP MC_STAT_INP_AMP

27 MC_STAT_MLIM_ENAB - NONE - MC_STAT_INP_AUX MC_STAT_INP_AUX

28 MC_STAT_INP_MLIM MC_STAT_INP_PLIM MC_STAT_INP_PLIM MC_STAT_INP_PLIM

29 MC_STAT_PLIM_TRIP MC_STAT_INP_MLIM MC_STAT_INP_MLIM STAT_INP_MLIM

30 MC_STAT_PLIM_ENAB MC_STAT_INP_PJOG MC_STAT_INP_USER1 MC_STAT_INP_NULL

31 MC_STAT_INP_PLIM MC_STAT_INP_MJOG MC_STAT_INP_USER2 - NONE -

MCAPI Status Word Constants Lookup Table

DCX-PCI100 User’s Manual

355

Motion Dialog Windows Classes

Precision MicroControl

356

Chapter Contents

DCX-PCI100 User’s Manual

357

Motion Dialog Windows Classes

The motion dialog window classes supplement the motion dialog functions to provide the programmer simple and effective
tools to build attractive graphical user interfaces.

MCDLG_LEDCLASS
#include "mcdlg.h"

Creates a window with a small graphical LED and text label to the right of it. The LED window class is based on
the checkbox style windows BUTTON class. To change the color of the LED send it a BM_SETCHECK message

with a WPARAM of BST_CHECKED for the on color (default green), BST_UNCHECKED for the off color (default dark
gray), or BST_INDETERMINATE for the error color (default red).

LED CLASS Styles

The LED class responds to the standard window styles (WS_xxx) and button styles (BS_xxx) applicable to checkbox
windows. Use BS_LEFTTEXT to locate the text to the left of the LED graphic.

LED CLASS Messages

LEDM_GETCHECKCOLOR

Returns the current color of the "Checked" (on) state for the LED as a COLORREF.

 wParam = (WPARAM) 0; // unused, must be 0
 lParam = (LPARAM) 0; // unused, must be 0

LEDM_GETUNCHECKCOLOR

Returns the current color of the "Unchecked" (off) state for the LED as a COLORREF.

 wParam = (WPARAM) 0; // unused, must be 0
 lParam = (LPARAM) 0; // unused, must be 0

Chapter

23

Motion Dialog Windows Classes

Precision MicroControl

358

LEDM_GETINDETRMCOLOR

Returns the current color of the "Indeterminate" state for the LED as a COLORREF.

 wParam = (WPARAM) 0; // unused, must be 0
 lParam = (LPARAM) 0; // unused, must be 0

LEDM_SETCHECKCOLOR

Sets the color of the "Checked" (on) state for the LED. By default this color is bright green - RGB(0, 255, 0).

 wParam = (WPARAM) 0; // TRUE to force an immediate redraw
 lParam = (LPARAM) rgbColor; // COLORREF color value

LEDM_SETUNCHECKCOLOR

Sets the color of the "Unchecked" (off) state for the LED.

 wParam = (WPARAM) 0; // TRUE to force an immediate redraw
 lParam = (LPARAM) rgbColor; // COLORREF color value

LEDM_SETINDETRMCOLOR

Sets the color of the "Indeterminate" state for the LED. By default this color is bright red - RGB(255, 0, 0).

 wParam = (WPARAM) 0; // TRUE to force an immediate redraw
 lParam = (LPARAM) rgbColor; // COLORREF color value

MCDLG_READOUTCLASS

#include "mcdlg.h"

Creates a single line "readout" window, similar to a text box. By default the text is green on a black
background, and the window font is scaled to the window size to make it easy to create large readouts.

The READOUT window class is based on the Windows STATIC class. To change the displayed text of the READOUT the
standard WM_SETTEXT message may be sent to the window.

READOUT CLASS Styles

The READOUT class responds to the standard window styles (WS_xxx) and static styles (SS_xxx) applicable to static
windows. Use RDTS_LEFT, RDTS_CENTER, or RDTS_RIGHT to set the justification of the text within the window.

When you declare a READOUT in a dialog box template using the CONTROL statement the dialog box manager will set
the READOUT font to the default dialog box font. This can lead to undesirable behavior (i.e. the wrong size font). The
READOUT class normally responds to the WM_SETFONT message (which is what the dialog box manager sends to mess
things up), however if you specify the RDTS_DIALOGBOX style when creating the READOUT window it will ignore
WM_SETFONT messages. See the CWDEMO sample program for an example.

READOUT CLASS Messages

RDTM_GETTEXTCOLOR

Motion Dialog Windows Classes

DCX-PCI100 User’s Manual

359

Returns the current color of the readout text (default green) as a COLORREF.

 wParam = (WPARAM) 0; // unused, must be 0
 lParam = (LPARAM) 0; // unused, must be 0

RDTM_GETBKCOLOR

Returns the current color of the readout background (default black) as a COLORREF.

 wParam = (WPARAM) 0; // unused, must be 0
 lParam = (LPARAM) 0; // unused, must be 0

RDTM_SETTEXTCOLOR

Sets the color of the readout text.

 wParam = (WPARAM) 0; // TRUE to force an immediate redraw
 lParam = (LPARAM) rgbColor; // COLORREF color value

RDTM_SETBKCOLOR

Sets the color of the readout background.

 wParam = (WPARAM) 0; // TRUE to force an immediate redraw
 lParam = (LPARAM) rgbColor; // COLORREF color value

DCX Specifications

Precision MicroControl

360

Chapter Contents

• Motherboard: DCX-PCI100

• DCX-MC100 - +/- 10 Volt Analog Servo Motor Control Module

• DCX-MC110 - Direct Motor Drive Servo Control Module

• DCX-MC400 - 16 channel Digital I/O Module

• DCX-MC5X0 - Analog I/O Module

DCX-PCI100 User’s Manual

361

DCX Specifications

Motherboard: DCX-PCI100
Function 8 Axis Motion Controller
Installation Intel PC compatible computer
Configuration 8 User Installed Modules

Main Processor QED 5231 200MHz MIPS RISC
Processor Clock 192 MHz
Memory 512k x 8 bit Flash Memory
 1Meg X 32 Synchronous Dynamic Ram
Processor Fault Detection Watchdog Circuit with Reset Relay
Status LED's Power, Reset, Run, (8) Motor Error
Standard Communication Interface PCI Bus

4 Kilobytes dual ported memory in Memory Address Space
‘Plug and Play’ dynamic addressing

Undedicated Digital I/O Channels 16 TTL (0 – 5 VDC), 1ma max. sink/source, 4.7K ohm pull up

to +5V
2 groups (8 inputs, 8 outputs)

Required Supply Voltages +5,+12 and -12 vdc
Form Factor Full Size PCI card (4.2" x 12.28")
Operating Temperature range 0 degrees C to 60 degrees C
Weight 10 oz + 1.2 oz per module (approx.)

Chapter

24

DCX Specifications

Precision MicroControl

362

DCX-MC100 - +/- 10 Volt Analog Servo Motor Control Module
Function Closed Loop Servo Controller
Installation DCX-PCI100 Motion Control Motherboard

Operating Modes Position, Velocity
Filter Algorithm PID
Filter Update Rate 2.932 KHz
Trajectory Generator Trapezoidal with common Acceleration / Deceleration
Position Feedback Incremental Encoder with Index
Position and Velocity Resolution 30 bit
Output Analog Signal (+/- 10 vdc @ 10 ma, 12 bit)

Encoder and Index Inputs Differential or single ended, -7 to +7 vdc max.
Encoder Count Rate 750,000 Quadrature Counts/Sec.
Encoder Supply Voltage +5 or +12 vdc, user selectable

Axis Inputs Limit+, Limit-, Coarse Home, Amplifier Fault (TTL level, low

active)
Axis Outputs Amplifier Inhibit (TTL compatible)

Operating Temperature range 0 degrees C to 60 degrees C

DCX Specifications

DCX-PCI100 User’s Manual

363

DCX-MC110 – Direct Drive Servo Control Module
Function Closed Loop Servo Controller
Installation DCX-PCI100 Motion Control Motherboard

Operating Modes Position, Velocity
Filter Algorithm PID
Filter Update Rate 2.932 KHz
Trajectory Generator Trapezoidal with common Acceleration / Deceleration
Position Feedback Incremental Encoder with Index
Position and Velocity Resolution 30 bit
Output 0 - +12 volt @ 0.5A

Encoder and Index Inputs Differential or single ended, -7 to +7 vdc max.
Encoder Count Rate 750,000 Quadrature Counts/Sec.
Encoder Supply Voltage +5 or +12 vdc, user selectable

Axis Inputs Limit+, Limit-, Coarse Home, Amplifier Fault (TTL level, low

active
Axis Outputs Amplifier Inhibit (TTL compatible)

Operating Temperature range 0 degrees C to 60 degrees C

DCX Specifications

Precision MicroControl

364

DCX-MC400 - 16 channel Digital I/O Module
Function 16 Channel Digital I/O module
Installation DCX-PCI100 Motion Control Motherboard

Channels 16, individually programmable as inputs or outputs
Output low voltage (min) 0.0 volt
Output high voltage (min) 2.4 volt
Current sink 1 ma max.
Current source 1 ma max.
Input Low voltage -0.3V min. to 0.8V max.
Input High voltage 2.0V min. to 5.3V max.
Input termination 4.7K ohm per channel
Relay rack interface DCX-BF022

Operating Temperature range 0 degrees C to 60 degrees C

DCX-MC5X0 - Analog I/O Module
Function DCX-MC500 – 4 A/D channels, 4 D/A channels

DCX-MC510 – 4 A/D channels
DCX-MC520 – 4 D/A channels

Installation DCX-PCI100 Motion Control Motherboard

Input resolution 12 bit
Input voltage range 0.0V to +5.0V

Output resolution 12 bit
Output voltage range 0.0V to +5.0V (@ 5ma), -10V to +10V (@ 5ma)
Output Offset Adjustment 20 turn trim pot (+/- 10V outputs only)
Output Full Scale Adjustment single turn trim pot (+/- 10V outputs only)

Operating Temperature range 0 degrees C to 60 degrees C

DCX Specifications

DCX-PCI100 User’s Manual

365

DCX-MC500 Electrical Specifications
Parameter Min. Max Unit
Input Resolution 12 Bits
Input Conversion Rate 10 KHz
Input Zero Error
 Using Internal Reference
 Using External Reference

+/- 3

+/- 1/2

LSB
LSB

Input Full-Scale Error
 Using Internal Reference
 Using External Reference

+/- 15
+/- 1/2

LSB
LSB

Input Zero Temp. Coefficient 0.5 ppm/C
Input Differential Nonlinearity +/- 1 LSB
Input Total Unadjusted Error
 Using Internal Reference
 Using External Reference

+/- 15
+/- 1

Input Voltage Range
 Using Internal Reference
 Using External Reference

0.0
0.0

5.0
Vref

Input Capacitance 8
Input Leakage Current 100
External Reference Voltage 4.0 6.0

Parameter Min. Max Unit
Output Resolution 12 Bits
Output Zero Code Error * LSB
Output Full Scale Error * LSB
Output Nonlinearity * LSB
Output Total Unadjusted Error * LSB
Output Voltage Range 0.0

-10.0
5.0

+10.0
V
V

* These values are for 0 to +5.0 volt outputs

Connectors, Jumpers, and Schematics

Precision MicroControl

366

Chapter Contents

• DCX-PCI100 Motion Control Motherboard

• DCX-MC100 +/- 10V Servo Motor Control Module

• DCX-MC110 Motor Drive Servo Control Module

• DCX-MC400 Digital I/O Module

• DCX-MC500/MC510/MC520 Analog I/O Module

• DCX-BF022 Relay Rack Interface

• DCX-BF100 Servo Module Interconnect Board

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

367

Connectors, Jumpers, and Schematics

DCX-PCI100 Motion Control Motherboard

Status LED Indicators
LED # Color Description

D1 Green +5V logic supply
D2 Yellow DCX Reset active
D3 Green Run (processor fault or watchdog tripped if off)
L1 Red Module #1 motor error (exceeded max. following error or limit tripped)
L2 Red Module #2 motor error (exceeded max. following error or limit tripped)
L3 Red Module #3 motor error (exceeded max. following error or limit tripped)
L4 Red Module #4 motor error (exceeded max. following error or limit tripped)
L5 Red Module #5 motor error (exceeded max. following error or limit tripped)
L6 Red Module #6 motor error (exceeded max. following error or limit tripped)
L7 Red Module #7 motor error (exceeded max. following error or limit tripped)
L8 Red Module #8 motor error (exceeded max. following error or limit tripped)

(Refer to diagram at the end of this appendix)

Chapter

25

Connectors, Jumpers, and Schematics

Precision MicroControl

368

General Purpose I/O (Digital I/O and Analog inputs) Connector J5
Pin # Description
1 +5 VDC
2 RESET RELAY CONTACT #1 *
3 DIGITAL OUTPUT CHANNEL 16
4 RESET RELAY CONTACT #2 *
5 DIGITAL OUTPUT, CHANNEL 15
6 DIGITAL OUTPUT, CHANNEL 14
7 DIGITAL OUTPUT, CHANNEL 13
8 DIGITAL OUTPUT, CHANNEL 12
9 DIGITAL OUTPUT, CHANNEL 11
10 DIGITAL OUTPUT, CHANNEL 10
11 DIGITAL OUTPUT, CHANNEL 09
12 DIGITAL INPUT, CHANNEL 08
13 DIGITAL INPUT, CHANNEL 07
14 DIGITAL INPUT, CHANNEL 06
15 DIGITAL INPUT, CHANNEL 05
16 DIGITAL INPUT, CHANNEL 04
17 DIGITAL INPUT, CHANNEL 03
18 DIGITAL INPUT, CHANNEL 02
19 DIGITAL INPUT, CHANNEL 01
20 NO CONNECT
21 +12 VDC
22 NO CONNECT
23 NO CONNECT
24 GROUND
25 -12 VDC
26 GROUND
Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

 * - Reset Relay contacts (normally open). The relay is energized (contacts 1 and 2 connected) when
the DCX-PCI100 is held in reset.

J31 – +12 volt supply input select
Pins Description
Open +12 volt supply provided via connector J33
2 to 3 Consult factory

J33 - +12 volt Motor Supply connector
Pin # Description
1 +12 volt input (identified by square pad on bottom side of PCB)
2 No connect
3 Ground
4 No Connect
Mating Connector: PMC P/N = 71.060.A (Disk Drive Power Cable Splitter)
 Newark Electronics P/N = 83F7055 (GC Electronics P/N 45-0104)

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

369

3

QED

J31

#1#3#5#7

#8 #6 #4 #2

J33

DCX-PCI100 Motion Control Motherboard

Connectors, Jumpers, and Schematics

Precision MicroControl

370

DCX-MC100 +/- 10V Servo Motor Control Module
SIGNAL DESCRIPTIONS:

Analog Command Return
connection point: J3 - pin 1
signal type: ground
notes:
explanation: Provides the signal ground for the modules Analog Command Signal output. This return
path is common to the ground plane of the DCX motherboard, but is connected in such a way as to
reduce digital noise. Typical servo amplifiers will have a connection for the analog command return
where this signal should be connected.

Analog Command Output
connection point: J3 - pin 2
signal type: +/- 10V analog, 12 bit
notes: connects to servo amplifier motor command input
explanation: This module output signal is used to control the servo amplifier's output. When
connected to the command input of a velocity mode amplifier, the voltage level on this signal should
cause the amplifier to drive the servo at a proportional velocity. For current mode amplifiers, the
voltage level should cause a proportional current to be supplied to the servo. The module provides an
analog signal that is in the range -10 to +10 volts, with 0 volts being the null output level. Positive
voltages indicate a desired velocity or current in one direction. Negative voltages indicate velocity or
current in the opposite direction. The maximum drive current of this signal is +/-10 milliamps.

Coarse Home Input
connection point: J3 - pin 9
signal type: TTL input
notes: 4.7K pull up resistor is connected to the +5V logic supply
explanation: This module input is used to determine the proper zero position of the servo. In servo
systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of
the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may
occur many times within the motion range of the servo. In these cases, a Coarse Home switch
connected to this module input can be used to qualify which index pulse is the true zero position of the
servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion
commands to position the servo within this region prior to searching for the index pulse, a unique zero
position for the servo can be determined.

Amplifier Fault Input
connection point: J3 - pin 10
signal type: TTL input
notes: 4.7K pull up resistor is connected to the +5V logic supply
explanation: - This module input is designed to be connected to the servo amplifiers Fault or Error
output signal. The state of this signal will appear as a status bit in the servo's status word. Using the
Fault oN command, this signal can be enabled to shut the axis off if the input goes active low. In this
condition, no further servo motion will occur until the fail signal is deactivated and the Motor oN
command is issued. The Fault oFf command can be used to disable this signal.

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

371

Amplifier Inhibit
connection point: J3 - pin 11
signal type: TTL output
notes: 2ma sink/source
explanation: - This module output signal should be connected to the enable input of the servo
amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level.
When the Motor oN command is issued to the DCX, this signal will go to its' active low level. Anytime
there is an error on the respective servo axis, including exceeding the following error, a limit
switch input activated or the Amplifier Fault input activated, the Amplifier Inhibit signal will be
activated. This signal can also be deactivated by the Motor oFf command.

Limit Positive and Limit Negative Inputs
connection point: J3 - pin 14 (Limit Positive), J3 - pin 15 (Limit Negative)
signal type: TTL input
notes: 4.7K pull up resistor is connected to the +5V logic supply
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping that can
be configured by the Limit Mode command. The limit switch inputs can be enabled and disabled with
the Limits oN and Limits oFf commands respectively. See the description of Motion Limits in the
Motion Control chapter.

Primary Encoder Inputs (Phase A+, Phase -, Phase B+, Phase B-, Index+, Index-)
connection point: see pin-out table
signal type: TTL or Differential driver output (-7V to +7V)
notes:
explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer
to the two sides of differential inputs. The default shipping configuration is for single ended encoders.
When a differential encoder is used the signal trace (on the back side of the module) between Jp2
and Jp3 must be cut.

Encoder Power Output
connection point: J3 pin 17
signal type: +5 VDC PC power supply output or +12 VDC PC power supply output
notes:
explanation: This module pin provides a convenient supply voltage connection for the encoders. The
module is shipped configured for +5 volt encoder supply. To configure the module for a +12 volt
encoder, cut the signal on the back side of the module between JP4 pins 2 & 3.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access
to the DCX supply voltages.

Connectors, Jumpers, and Schematics

Precision MicroControl

372

DCX-MC100 Module connectors

J3 connector pin-out (Motor command, encoders, and axis I/O)
Pin # Description
1 Analog Command return (analog ground)
2 Analog Command output (output, +/-10 V)
3 +12 VDC
4 -12 VDC
5 Ground
6 +5 VDC
7 Reserved
8 Reserved
9 Coarse Home (input, active low, with 4.7K ohm pull-up to +5V)
10 Amplifier Fault (input, active low, with 4.7K ohm pull-up to +5V)
11 Amplifier Inhibit (output, active low, TTL level)**
12 Reserved
13 Reserved
14 Limit Positive (input, active low, with 4.7K ohm pull-up to +5V)
15 Limit Negative (input, active low, with 4.7K ohm pull-up to +5V)
16 Encoder Phase B+ (input)*
17 Encoder Power (+5VDC or +12VDC, see jumper JP3)
18 Ground
19 Encoder Phase B- (input)
20 Encoder Phase A- (input)
21 Ground
22 Encoder Power
23 Encoder Phase A+ (input)*
24 Encoder Power
25 Encoder Index- (input, active low)
26 Ground

 * Use A+ and B+ for single-ended ENCODER INPUTS
 ** These signals are not suitable for directly driving optically isolated inputs.

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

1
2

25
26

DCX MODULE CONNECTOR PIN NUMBERING
(TOP SIDE VIEW)

D
C

X-M
C

100

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

373

DCX-MC100 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP2 & JP3 – Encoder type (Single ended versus differential)
Pins Description
1 to 2 Single ended encoder A, B (pcb trace)
 Differential encoder A+, A-, B+, B- (cut JP2 and JP3 pcb trace)

JP4 – Encoder Power Select (+5VDC or +12 VDC)
Pins Description
1 to 2 +12 VDC encoder supply on J3 pin 17 (and cut pcb trace from JP4-2 to JP4-3)
2 to 3 +5 VDC encoder supply on J3 pin 17 (pcb trace)

D
C

SPAL R
.B

JP2

JP3

JP4

DCX-MC100 Module Output Offset Potentiometers
This multi-turn trimming potentiometer can be used to add an offset to the module's analog output.
The range of this adjustment is approximately +/-1.0 volts.

Connectors, Jumpers, and Schematics

Precision MicroControl

374

DCX-MC110 Motor Drive Servo Control Module
SIGNAL DESCRIPTIONS:

Motor Drive Outputs
connection point: J3 - pin 1 (Motor Drive +), J3 – pin 6 (Motor Drive -)
signal type: 8 bit Analog, 0 to +12 volts @ 0.5A
notes:
explanation: These module outputs provide the direct motor drive for a DC servo motor. The
resolution of the motor drive outputs are eight bits. Rotational direction is determined by connecting
the Motor Drive signals (Motor - and Motor +) to the appropriate terminals on the DC servo motor.

Positive Supply Input
connection point: J3 - pin 7
signal type: Optional power supply input
notes:
explanation: Consult factory for details

Negative Supply Input
connection point: J3 - pin 8
signal type: Optional power supply input
notes:
explanation: Consult factory for details

Coarse Home Input
connection point: J3 - pin 9
signal type: TTL input
notes: 4.7K pull up resistor is connected to the +5V logic supply
explanation: This module input is used to determine the proper zero position of the servo. In servo
systems that use rotary encoders with index outputs, an index pulse is generated once per rotation of
the encoder. While this signal occurs at a very repeatable angular position on the encoder, it may
occur many times within the motion range of the servo. In these cases, a Coarse Home switch
connected to this module input can be used to qualify which index pulse is the true zero position of the
servo. By setting this switch to be activated near the end of travel of the servo, and using DCX motion
commands to position the servo within this region prior to searching for the index pulse, a unique zero
position for the servo can be determined.

Amplifier Fault Input
connection point: J3 - pin 10
signal type: TTL input
notes: 4.7K pull up resistor is connected to the +5V logic supply
explanation: - This module input is designed to be connected to the servo amplifiers Fault or Error
output signal. The state of this signal will appear as a status bit in the servo's status word. Using the
Fault oN command, this signal can be enabled to shut the axis off if the input goes active low. In this
condition, no further servo motion will occur until the fail signal is deactivated and the Motor oN
command is issued. The Fault oFf command can be used to disable this signal.

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

375

Amplifier Inhibit
connection point: J3 - pin 11
signal type: TTL output
notes: 2ma sink/source
explanation: - This module output signal should be connected to the enable input of the servo
amplifier. When the DCX is turned on or reset, this signal will immediately go to its' inactive high level.
When the Motor oN command is issued to the DCX, this signal will go to its' active low level. Anytime
there is an error on the respective servo axis, including exceeding the following error, a limit
switch input activated or the Amplifier Fault input activated, the Amplifier Inhibit signal will be
activated. This signal can also be deactivated by the Motor oFf command.

Limit Positive and Limit Negative Inputs
connection point: J3 - pin 14 (Limit Positive), J3 - pin 15 (Limit Negative)
signal type: TTL input
notes: 4.7K pull up resistor is connected to the +5V logic supply
explanation: The limit switch inputs are used to cause the DCX to stop a servo's motion when it
reaches the end of travel. If the servo is in position mode, the axis will only be stopped if it is moving
in the direction of an activated limit switch. In all other modes, the servo will be stopped regardless of
the direction it is moving if either limit switch is activated. There are three modes of stopping that can
be configured by the Limit Mode command. The limit switch inputs can be enabled and disabled with
the Limits oN and Limits oFf commands respectively. See the description of Motion Limits in the
Motion Control chapter.

Primary Encoder Inputs (Phase A+, Phase -, Phase B+, Phase B-, Index+, Index-)
connection point: see pin-out table
signal type: TTL or Differential driver output (-7V to +7V)
notes:
explanation: These input signals should be connected to an incremental quadrature encoder for
supplying position feedback information for the servo controller. The plus (+) and minus (-) signs refer
to the two sides of differential inputs. The default shipping configuration is for single ended encoders.
When a differential encoder is used the signal trace (on the back side of the module) between Jp2
and Jp3 must be cut.

Encoder Power Output
connection point: J3 pin 17
signal type: +5 VDC PC power supply output or +12 VDC PC power supply output
notes:
explanation: This module pin provides a convenient supply voltage connection for the encoders. The
module is shipped configured for +5 volt encoder supply. To configure the module for a +12 volt
encoder, cut the signal on the back side of the module between JP4 pins 2 & 3.

SUPPLY CONNECTIONS (+5, +12, -12, GROUND) - These module pins provide access
to the DCX supply voltages.

Connectors, Jumpers, and Schematics

Precision MicroControl

376

DCX-MC110 Module connectors

J3 connector pin-out (Motor command, encoders, and axis I/O)
Pin # Description
1 Motor Drive + (output, 500ma max.)
2 Encoder Power (+5VDC or +12VDC, see jumper JP4)
3 Encoder Phase A+ (input)*
4 Encoder Phase B+ (input)*
5 Ground
6 Motor Drive - (output, 500ma max.)
7 Positive Supply (input, optional, consult factory) ***
8 Negative Supply (input, optional, consult factory) ***
9 Coarse Home (input, active low, with 4.7K ohm pull-up to +5V)
10 Amplifier Fault (input, active low, with 4.7K ohm pull-up to +5V)
11 Amplifier Inhibit (output, active low, TTL level)**
12 Reserved
13 Reserved
14 Limit Positive (input, active low, with 4.7K ohm pull-up to +5V)
15 Limit Negative (input, active low, with 4.7K ohm pull-up to +5V)
16 Encoder Phase B+ (input)*
17 Encoder Power (+5VDC or +12VDC, see jumper JP4)
18 Ground
19 Encoder Phase B- (input)
20 Encoder Phase A- (input)
21 Ground
22 Encoder Power (+5VDC or +12VDC, see jumper JP4)
23 Encoder Phase A+ (input)*
24 Encoder Power (+5VDC or +12VDC, see jumper JP4)
25 Encoder Index- (input, active low)
26 Ground

 * Use A+ and B+ for single-ended Encoder inputs
 ** These signals are not suitable for directly driving optically isolated inputs.
*** For use when the computers +12VDC supply is not to be used as the motor drive supply

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

1
2

25
26

DCX MODULE CONNECTOR PIN NUMBERING
(TOP SIDE VIEW)

D
C

X-M
C

100B

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

377

DCX-MC110 Module Configuration Jumpers - configuration in bold type
denotes default factory shipping configuration

JP2 & JP3 – Encoder type (Single ended versus differential)
Pins Description
1 to 2 Single ended encoder A, B (pcb trace)
 Differential encoder A+, A-, B+, B- (cut JP2 and JP3 pcb trace)

JP4 – Encoder Power Select (+5VDC or +12 VDC)
Pins Description
1 to 2 +12 VDC encoder supply on J3 pin 17 (and cut pcb trace from JP4-2 to JP4-3)
2 to 3 +5 VDC encoder supply on J3 pin 17 (pcb trace)

D
C

SPAL R
.B

JP2

JP3

JP4

JP5 – Encoder Phase Select (consult factory)
JP7 – Voltage / Current Mode Select (consult factory)
JP8 – Current Sense Resistor Defeat (consult factory)
JP9 – Positive Supply Select (consult factory)
JP10 – Negative Supply Select (consult factory)

Connectors, Jumpers, and Schematics

Precision MicroControl

378

DCX-MC400 Digital I/O Module
DCX-MC400 Electrical Specifications
Parameter Min. Max Unit
Digital Input – High voltage 2.0 5.3 V
Digital Input – Low voltage -0.3 0.8 V
Digital Output – High voltage 2.4 V (current source 0.25ma)
Digital Output – Low voltage 0.4 V (current source 2.0ma)
Input leakage +/- 10.0 uA

J3 connector pin-out
Pin # Description
1 Digital I/O channel #1
2 Digital I/O channel #2
3 Digital I/O channel #3
4 Digital I/O channel #4
5 Digital I/O channel #5
6 Digital I/O channel #6
7 Digital I/O channel #7
8 Digital I/O channel #8
9 Digital I/O channel #9
10 Digital I/O channel #10
11 Digital I/O channel #11
12 Digital I/O channel #12
13 Digital I/O channel #13
14 Digital I/O channel #14
15 Digital I/O channel #15
16 Digital I/O channel #16
17 Reserved
18 Reserved
19 Reserved
20 +5 VDC
21 Ground
22 Reserved
23 Reserved
24 Reserved
25 Reserved
26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

379

DCX-MC400 Module layout

1

226

25 1

226

25

Connectors, Jumpers, and Schematics

Precision MicroControl

380

DCX-MC500/510/520 Analog I/O Module
J3 connector pin-out
Pin # Description
1 Channel 1 Input (0 to +5 volts)
2 Channel 1 Output (-10 to +10 volts)
3 Channel 2 Input (0 to +5 volts)
4 Channel 2 Output (-10 to +10 volts)
5 Channel 3 Input (0 to +5 volts)
6 Channel 3 Output (-10 to +10 volts)
7 Channel 4 Input (0 to +5 volts)
8 Channel 4 Output (-10 to +10 volts)
9 Reserved
10 Channel 1 Output (0 to +5 volts)
11 Reserved
12 Channel 2 Output (0 to +5 volts)
13 Reserved
14 Channel 3 Output (0 to +5 volts)
15 Reserved
16 Channel 4 Output (0 to +5 volts)
17 Analog Ground
18 External A/D reference input (see jumper JP1)
19 +12 VDC
20 -12 VDC
21 No connect
22 No connect
23 +5 VDC
24 +5 VDC
25 Digital Ground
26 Digital Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

DCX-MC500/510/520 Module Configuration Jumpers - configuration in bold
type denotes default factory shipping configuration

JP1 – A/D reference select (external reference or on board +5 VDC reference)
Pins Description
1 to 2 Use external reference (supplied by user on J3 pin 18)
2 to 3 Use the on board +5 VDC reference

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

381

DCX-MC500 Module layout

JP1

1

226

25

1
POT1

POT2

POT3

POT4
POT5
POT6

POT7

POT8

Connectors, Jumpers, and Schematics

Precision MicroControl

382

DCX-BF022 Relay Rack Interface

J1 connector pin-out - The signals are arranged to interface the DCX-MC400 directly to an OPTO
22 relay rack.
Pin # Description
1 Digital I/O channel #1
2 Digital I/O channel #2
3 Digital I/O channel #3
4 Digital I/O channel #4
5 Digital I/O channel #5
6 Digital I/O channel #6
7 Digital I/O channel #7
8 Digital I/O channel #8
9 Digital I/O channel #9
10 Digital I/O channel #10
11 Digital I/O channel #11
12 Digital I/O channel #12
13 Digital I/O channel #13
14 Digital I/O channel #14
15 Digital I/O channel #15
16 Digital I/O channel #16
17 No connect
18 No connect
19 No connect
20 +5 VDC
21 Ground
22 No connect
23 No connect
24 No connect
25 No connect
26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

383

J2 connector pin-out - The signals are arranged to interface the DCX-AT200 General Purpose I/O
(connector J3) directly to an OPTO 22 relay rack.
Pin # Description
1 +5 VDC
2 No connect
3 Digital I/O channel #16
4 No connect
5 Digital I/O channel #15
6 Digital I/O channel #14
7 Digital I/O channel #13
8 Digital I/O channel #12
9 Digital I/O channel #11
10 Digital I/O channel #10
11 Digital I/O channel #9
12 Digital I/O channel #8
13 Digital I/O channel #7
14 Digital I/O channel #6
15 Digital I/O channel #5
16 Digital I/O channel #4
17 Digital I/O channel #3
18 Digital I/O channel #2
19 Digital I/O channel #1
20 No connect
21 No connect
22 No connect
23 No connect
24 Ground
25 No connect
26 Ground

Mating Connector:26-pin dual-row IDC female, Circuit Assembly P/N 26IDS2-C-SPT-SR or equivalent

Connectors, Jumpers, and Schematics

Precision MicroControl

384

DCX-BF022 Configuration Jumpers - configuration in bold type denotes
default factory shipping configuration

JP1 – JP16 Configure Digital channel as Input or Output
Pins Description
1 to 2 Configure channel as Output
2 to 3 Configure channel as an Input

JP17 – Select Relay Rack supply source
Pins Description
1 to 2 DCX provides +5 VDC Relay Rack supply
2 to 3 Relay Rack has separate +5 VDC supply

DCX-BF022 Interface layout

0.35"2.50"0.25" 0.0"

0.0"
0.10"

2.50"

0.75"

J1 TO DCX-MC400

J2 TO DCX-PC100

JP1
JP2
JP3
JP4
JP5
JP6
JP7
JP8
JP9

JP10
JP11
JP12
JP13
JP14
JP15
JP16

JP17

0.60"

2.90"

0.25"

0.25"

0.0"

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

385

Connectors, Jumpers, and Schematics

Precision MicroControl

386

DCX-BF100 Servo Module Interconnect Board

Connectors, Jumpers, and Schematics

DCX-BF100 to DCX-MC100 Connections:

Connector J1
Pin Description
1 Analog Ground
2 Analog Command output
3 +12 VDC
4 -12 VDC
5 Ground
6 +5 VDC
7 No connect
8 No connect
9 Coarse Home
10 Amplifier Fault
11 Amplifier Inhibit
12 No connect
13 No connect
14 Limit +
15 Limit -
16 Encoder Phase B+
17 Encoder Power
18 Ground
19 Encoder Phase A-
20 Encoder Phase B-
21 Ground
22 Encoder Power
23 Encoder Phase A+
24 Encoder Power
25 Encoder Index-
26 Ground

DCX-PCI100 User’s Manual

Connector J2
Pin Description
1 Analog Ground
2 +12 VDC
3 Ground
4 Opto Supply
5 Coarse Home
6 Amplifier Enable
7 No connect
8 Limit -
9 Encoder Power
10 Encoder Phase A-
11 Ground
12 Encoder Phase A+
13 Encoder Index-
14 Analog Command output
15 -12 VDC
16 +5 VDC
17 Encoder Index+
18 Amplifier Fault
19 No connect
20 Limit +
21 Encoder Phase B+
22 Ground
23 Encoder Phase B-
24 Encoder Power
25 Encoder Power

Terminal strip TS1
Pin Description
1 Shield
2 Analog Ground
3 Analog Command output
4 +5 VDC
5 +5 VDC
6 Amplifier Enable
7 Coarse Home
8 Amplifier Fault
9 No connect
10 No connect
11 Limit +
12 Limit -
13 Opto Supply
14 Ground
Terminal strip TS2
Pin Description
1 Shield
2 Encoder Power
3 Encoder Phase B+
4 Encoder Phase A-
5 Encoder Phase A+
6 Encoder Phase B-
7 Encoder Index+
8 Encoder Index-
9 Ground
10 Encoder Power
11 Encoder Power
12 Ground
13 +5 VDC
14 Ground
387

Connectors, Jumpers, and Schematics

DCX-BF100 to DCX-MC110 Connections:

Connector J1
Pin Description
1 Motor Drive +
2 Encoder Power
3 Encoder Phase A+
4 Encoder Phase B+
5 Ground
6 Motor Drive -
7 Positive Supply
8 Negative Supply
9 Coarse Home
10 Amplifier Fault
11 Amplifier Inhibit
12 Reserved
13 Reserved
14 Limit +
15 Limit -
16 Encoder Phase B+
17 Encoder Power
18 Ground
19 Encoder Phase B-
20 Encoder Phase A-
21 Ground
22 Encoder Power
23 Encoder Phase A+
24 Encoder Power
25 Prim. Encoder Index-
26 Ground

388

Connector J2
Pin Description
1 Motor Drive +
2 Encoder Phase A+
3 Ground
4 Opto Supply
5 Coarse Home
6 Amplifier Enable
7 No connect
8 Limit -
9 Encoder Power
10 Encoder Phase B-
11 Ground
12 Encoder Phase A+
13 Prim. Encoder Index-
14 Encoder Power
15 Encoder Phase B+
16 Motor Drive -
17 Encoder Index+
18 Amplifier Fault
19 No connect
20 Limit +
21 Encoder Phase B+
22 Ground
23 Encoder Phase A-
24 Encoder Power
25 Encoder Power

Terminal strip TS1
Pin Description
1 Shield
2 Motor Drive +
3 Encoder Power
4 +5 VDC
5 Motor Drive -
6 Amplifier Enable
7 Coarse Home
8 Amplifier Fault
9 No connect
10 No connect
11 Limit +
12 Limit -
13 Opto Supply
14 Ground
Terminal strip TS2
Pin Description
1 Shield
2 Encoder Power
3 Encoder Phase B+
4 Encoder Phase B-
5 Encoder Phase A+
6 Encoder Phase A-
7 Encoder Index+
8 Encoder Index-
9 Ground
10 Encoder Power
11 Encoder Power
12 Ground
13 +5 VDC
14 Ground

Precision MicroControl

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

389

DCX-BF100 Interface layout

DCX-BF100

0.0"

0.25"

0.25" 0.0" 3.50"0.25"

4.50"

4.75"

Connectors, Jumpers, and Schematics

Precision MicroControl

390

Connectors, Jumpers, and Schematics

DCX-PCI100 User’s Manual

391

DCX MCCL Commands

Precision MicroControl

392

Chapter Contents

• Introduction to MCCL (low level command set)

• MCCL Command Quick Reference Tables

• Building MCCL Macro Sequences

• MCCL Multi-Tasking

• Downloading MCCL Text Files

• Outputting Formatted Messages Strings

• Reading Data from DCX Memory

• DCX User Registers

DCX-PCI100 User’s Manual

393

Command Set Introduction

Introduction to MCCL (low level command set)
The low level platform of all DCX operations is the DCX command set named MCCL (Motion Control
Command Language). These board level commands are equivalent to the instruction set of a micro
controller. These low level commands provide the user access to all DCX operations.

All DCX MCCL commands are made up of two character mnemonic. The characters that make the
mnemonic are selected from the command description so that the command has a direct correlation
to the operation to be performed. For example, the MCCL command that is used to move an axis to
an absolute position is:

 MA (Move Absolute).

Any MCCL command that references an axis is preceded by an axis specifier a (aMA). To issue a
move absolute to axis #1:

 1MA (axis #1 Move Absolute)

Most DCX commands will also include a parameter value following the two character mnemonic. This
parameter is identified as n (aMAn). To move axis #1 to absolute position 10.25:

 1MA10.25 (axis #1 Move Absolute to position 10.25)

Included with PMC’s MCAPI is the Windows based MCCL command interface utility WinControl. This
utility allows the user to communicate directly with the DCX in its native language. Any characters

Chapter

26

DCX MCCL Commands

Precision MicroControl

394

typed by the user on the keyboard will be passed to the DCX input character buffer. The WinControl
file menu allows the user to download MCCL text files.

A typical MCCL command description is shown below:

Move Absolute
MCCL command: aMRn a = Axis number n = integer or real >= 0
compatibility: MC100, MC110
see also: MR, PM
This command generates a motion to an absolute position n. A motor number must be specified and
that motor must be in the ‘on’ state for any motion to occur. If the motor is in the off state, only its
internal target position will be changed. See the description of Point to Point Motion in the Motion
Control chapter.

The MCCL command line shown the command syntax and parameter type and/or range

The compatibility line list the DCX modules that support the command

The see also line list associated MCCL commands

DCX MCCL Commands

DCX-PCI100 User’s Manual

395

MCCL Command Quick Reference Tables

Mode Commands

MCCL Code Description
PM 17h enable Position Mode
VM 18h enable Velocity Mode

Reporting Commands

MCCL Code Description
DO Display recorded optimal position
DR Display recorded actual position
TA 49h Tell Analog to digital converter
TB 5Bh Tell Breakpoint position
TC 4Ah Tell Channel
TD 4Bh Tell Derivative gain
TE Tell command interface Error
TF 4Dh Tell Following error
TG 4Eh Tell proportional Gain
TI 4Fh Tell Integral gain
TL 50h Tell integration Limit
TM 51h Tell stored Macros
TO 59h Tell Optimal
TP 52h Tell Position
TR 57h Tell Register n
TS 53h Tell Status
TT 54h Tell Target
TV 55h Tell Velocity
TZ 5Ah Tell index position
VE 56h tell VErsion

Setup Commands

 MCCL Code Description
DH 23h Define Home
DI 24h DIrection
FF 33h amplifier Fault input ofF
FN 32h amplifier Fault input oN
FR 27h set derivative sampling period
HL D3h set motion High Limit
IL 28h set Integration Limit
LF 36h motion Limits ofF
LL D2h set motion Low Limit
LM 34h Limit Mode
LN 35h motion Limits oN
SA 2Bh Set Acceleration
SD 2Ch Set Derivative gain
SE 19h Stop on Error
SG 2Dh Set prop. Gain of motor
SI 2Eh Set Integral gain
SV 2Fh Set Velocity
UA 9Ch Use as default Axis
UK D7h set User output constant
UO B3h set User Offset
UP 9Dh Use Physical axis
UR B1h set User Rate conversion
US AFh set User Scale
UT B2h set User Time conversion
UZ B0h set User Zero

Motion Commands

MCCL Code Description
AB Ah ABort
FE Bh Find Edge
FI Ch Find Index
GH Dh Go Home
GO Eh GO
HO Fh HOme
LP 70h Learn Position
LT 71h Learn Target
MA 10h Move Absolute
MF 11h Motor ofF
MN 13h Motor oN
MP 14h Move to Point
MR 15h Move to Point
PR Record motion data
ST 16h STop

DCX MCCL Commands

Precision MicroControl

396

Register Commands

MCCL Code Description
AA 85h Accumulator Add
AC 8Ch Accumulator Complement
AD 88h Accumulator Divide
AE 8Fh Accumulator logical Exclusive or
AL 82h Accumulator Load
AM 87h Accumulator Multiply
AN 8Dh Accumulator logical aNd with n,
AO 83h Accumulator logical Or with n
AR 84h copy Accumulator to Register n
AS 86h Accumulator Subtract
AV 8Bh Accumulator eValuate
AX E1h get Aux. indeX position
GA F8h Get Analog value
GD Get module ID
GU 89h Get the default axis
LU 81h Look Up motor table variable
OA F9h Output Analog value
RA 83h copy Register to Accumulator
RB 96h Read Byte into accumulator
RD 93h Read Double into accumulator
RL 98h Read Long into accumulator
RV 92h Read float into accumulator
RW 97h Read Word into accumulator
SL 90h Shift Left accumulator n bits
SR 91h Shift Right accumulator n bits
TR 57h Tell contents of Register n

Miscellaneous Commands

MCCL Code Description
DM 3Ch Decimal Mode
DW FDh Disable Watchdog
FD Format text with Doubles
FT Format Text with Integers
HM 3Dh Hexadecimal Mode
NO 78h No Operation
OD Output text with Doubles
OT Output Text with integers
PC 80h set Prompt Character
RT 2Ah ReseT system

Macro Commands

MCCL Code Description
BK 79h BreaK
ET FBh Escape Task
GT FAh Generate Task
MC 2h Macro Call
MD 3h Macro Definition
MJ 5h Macro Jump
RM 4h Reset Macros
TM 51h Tell Macros

I/O Commands

MCCL Code Description
CF 1Fh Channel ofF
CH 42h Channel High true logic
CI 20h Channel In
CL 43h Channel Low true logic
CN 21h Channel oN
CT 22h Channel ouT
GA Get Analog
OA Output Analog
TA 49h Tell the value of Analog input
TC 4Ah Tell state of digital Channel
WF 67 Wait for channel ofF
WN 68 Wait for channel oN

Sequence Commands

MCCL Code Description
DF 6B Do if channel ofF
DN 6A Do if channel oN
IB A5 If Below do next command
IC A1 If Clear, do next command
IE A2 If Equals do next command
IF 6D If channel ofF do next command
IG A4 If accumulator is Greater do next
IN 6C If channel oN do next command
IP 60 Interrupt on absolute Position
IR 61 Interrupt on Relative position
IS A0 If bit Set do next command
IU A3 If Unequal do next command
JP 6 JumP to command absolute
JR 7 Jump to command Relative
RP 64 RePeat
WA 65 WAit (time)
WE 66 Wait for Edge
WF 67 Wait for channel ofF
WI 5E Wait for Index
WN 68 Wait for channel oN
WP 62 Wait for absolute Position
WR 63 Wait for Relative position
WS 63 Wait for Stop
WT C6 Wait for Target

DCX MCCL Commands

DCX-PCI100 User’s Manual

397

Building MCCL Macro Sequences
A powerful feature of the DCX is the ability to define MCCL (Motion Control Command Language)
command sequences as macros. This simply means defining a mnemonic that will execute a user
defined sequence of commands. For example:

1MR1000,WS0.25,MR-1000,WS0.25

will cause the motor attached to axis 1 to move 1000 counts in the positive direction, wait one quarter
second after it has reached the destination, then move back to the original position followed by a
similar delay. If this sequence were to represent a frequently desired motion for the system, it could
be defined as a macro command. This is done by inserting a Macro Define (MD) command as the first
command in the command string. For example:

MD3,1MR1000,WS0.25,MR-1000,WS0.25

will define macro #3. Whenever it is desired to perform this motion sequence, issue the command
Macro Call (MC3). To command the DCX to display the contents of a macro, issue the Tell Macro
(TMn) command with parameter ‘n’ = the number of the macro to be displayed. To display the
contents of all stored macro’s issue the Tell macro command with parameter ‘n’ = -1.

!

Once a macro operation has begun, the host will not be able to
communicate with the DCX until the macro has terminated. For
information on communicating with the controller while executing
macro’s please refer to the section titled MCCL Multi-Tasking.

The DCX can store up to 1000 user defined macros. Each macro can include as many as 255 bytes.
Depending on the type of command and type of parameter, a command can range from 2 bytes (a
command with no parameter) to 10 bytes (a command with a 64 bit floating point parameter).

All memory on the DCX-PCI100 is volatile, which means that the data in memory will be cleared when
the controller is reset or power to the board is turned off. The Reset Macro (RMn) command is used to
erase macros.

DCX MCCL Commands

Precision MicroControl

398

Since the DCX provides no protection against overflowing the macro storage space, it is suggested
that the user monitor the amount of memory available for macro storage. The Tell Macro (TMn)
command can be used to display the amount of RAM memory available for macros storage at any
give time.

To terminate the execution of any macro that was started from WinControl press the escape key.
To start a macro that runs indefinitely without ‘locking up’ communication with the host, start the
macro’s with the generate a Background task (GT) command instead of the Call macro command
(MC). This will allow the operations called by macro 0 to execute as a background task. Please refer
to the next section Multi-Tasking.

DCX MCCL Commands

DCX-PCI100 User’s Manual

399

MCCL Multi-Tasking
The DCX command interpreter is designed to accept commands from the user and execute them
immediately. With the addition of sequencing commands, the user is able to create sophisticated
command sequences that run continuously, performing repetitive monitoring and control tasks. The
drawback of running a continuous command sequence is that the command interpreter is not able to
accept other commands from the user.

!

Once a macro operation has begun, the host will not be able to
communicate with the DCX until the macro has terminated.

The DCX supports Multi-tasking, which allows the controller to execute continuous monitoring or
control sequences as background tasks while the foreground task communicates with the ‘host’.

With the exception of reporting commands (Tell Position, Tell Status, etc...), any MCCL commands
can be executed in a background task. Prior to executing a command sequence/macro as a
background task, the user should always test the macro by first executing it as a foreground
task. When the user is satisfied with the operation of the macro, it can be run as a background task
by issuing the Generate Task (GTn) command, specifying the macro number as the command
parameter. After the execution of the Generate Task command, the accumulator (register 0) will
contain an identifier for the background task. Within a few milliseconds, the DCX will begin running the
macro as a background task in parallel with the foreground command interpreter. The DCX will be
free to accept new commands from the user.

;Multitasking example – while axis #1 is moving, monitor the state of digital
;input #4. When the input goes active, stop axis #1 and terminate the
;background task

AL0,AR10 ;define user register 10 as input #4 active
 ;flag register
AL0,AR100 ;define user register #100 as background task
 ;ID register

MD100,IN4,MJ101,NO,1JR-3 ;jump to macro 101 when digital input #4
 ;turns on
MD101,1ST,1WS.05,AL1,AR10,ET@100 ;stop axis #1. Terminate background task

GT100,AR@100,1VM,1DI0,1GO ;spawn macro #10 as background task. Store
 ;task ID into register #100. Start axis #1
 ;moving in velocity mode,

i

Note: Immediately after ‘spawning’ the background task (with the GTn
command), the value in the accumulator (task identifier) should be
stored in a user register. This value will be required to terminate
execution of the background task.

DCX MCCL Commands

Precision MicroControl

400

Another way to create a background task is to place the Generate Task command as the first
command in a command line, using a parameter of 0. This instructs the command interpreter to take
all the commands that follow the Generate Task command and cause them to run as a background
task. The commands will run identically to commands placed in a macro and generated as a task.

;Multitasking example – while axis #1 is moving, monitor the state of the
;motor error status bit (bit 7). If error occurs set bit #1 of user
;register 200

GT0,AR@100,LU”STATUS”,1RL@0,IC7,JR-3,NO,AL1,AR200,ET@100
 ;loop on axis #1 status bit 7, if set; set
 ;bit #1 of register 200, terminate task using
 ;Task ID (in register #100)

Within the background task, the commands can move motors, wait for events, or perform operations
on the registers, totally independent of any commands issued in the foreground. However, the user
must be careful that they do not conflict with each other. For example, if a background task issues a
move command to cause a motor to move to absolute position +1000, and the user issues a
command at the same time to move the motor to -1000, it is unpredictable whether the motor will go
to plus or minus 1000.

In order to prevent conflicts over the registers, the background task has its own set of registers 0
through 9 (register 0 is the accumulator). These are private to the background task and are referred to
as its 'local' registers. The balance of the registers, 10 through 255, are shared by the background
task and foreground command interpreter, they are referred to as 'global' registers. If the user wishes
to pass information to or from the background task, this can be done by placing values in the global
register. Note that when a task is created, an identifier for the task is stored in register 0 of both the
parent and child tasks.

The DCX is able to run multiple background tasks, each with their own set of registers, but can only
have one foreground command interpreter. The maximum number of background tasks is 10. Each
background task and the foreground command interpreter get an equal share of the DCX processor's
time. When one or more background tasks are active the DCX Task Handler will begin issuing local
DCX interrupts every 1 milisecond. Each time the task handler interrupt is asserted, the DCX will
switch from executing one task to the next. For example if three background tasks are active, plus the
foreground task (always active), each of the four tasks will receive 1 msec of processor time every 4
msec’s.

DCX CPU Processing
(msec's)

Foreground task

Background task #1

Background task #2

Background task #3

5 6 7 8

Active task

1 2 3 4

DCX MCCL Commands

DCX-PCI100 User’s Manual

401

While a background task executes a Wait command, that task no longer receives any processor time.
For tasks that perform monitoring functions in an endless loop, the command throughput of the DCX
can be improved by executing a Wait command at the end of the loop until the task needs to run
again.

A common way for a background task to be terminated, is when the command sequence of the task
finishes execution. This will occur at the end of the macro or if a BreaK (BK) command is executed.
When a task is terminated, the resources it required are made available to run other background
tasks.

;Multitasking example – this background task will terminate itself if the
;motor error status bit for axis #1 is set. This sequence is similar to the
;previous example except that the task is self terminating, so register #100
is not required.

GT0,LU”STATUS”,1RL@0,IC7,JR-3,NO,AL1,AR200
 ;loop on axis #1 status bit 7, if set; set
 ;bit #1 of register 200, task self terminates
 ;(no commands left to execute)

Alternatively, the Escape Task (ETn) command can be used to force a background task to terminate.
When a task is generated by the GT command, a value known as the Task ID is placed into the
accumulator. This value should immediately be copied into a user register. The parameter to this
command must be the value that was placed in accumulator (register 0) of the parent task, when the
Generate Task command was issued.

;Multitasking example – Terminating a background task with the Escape Task
command.

GT100,AR@150 ;call macro #100 as a background task, copy
 ; task ID into user register 150

ET@150 ;to terminate background task issue escape
 ; task command with parameter n = Task ID

DCX MCCL Commands

Precision MicroControl

402

Downloading MCCL Text Files
Motion Control Command Language (MCCL) command sequences can be downloaded as text files to
the DCX-AT200. If these command sequences are not defined as macro’s (MDn) then the commands
will be executed as they are received by the card. If the command sequences are defined as macro’s
they will be stored in the memory of the DCX-AT200 for execution at a later time.

While most applications will utilize the high level language (C++, VB, Delphi, LabVIEW, etc..) function
calls to program the operation of the machine, downloaded MCCL text files are typically used for initial
system integration, defining homing routines, and programming background tasks.

The graphic below is a screen capture of PMC’s WinControl . This utility provides the user with a
direct interface to the DCX., A MCCL text file (init.at2) containing servo parameters and a homing
routine have been downloaded to the DCX using the File – Open menu options.

Note: Any characters that are preceded by a semicolon are treated as documenting commands.
These documenting character strings are displayed by WinControl but they are ‘stripped’ from the file
and are not be passed to the DCX.

DCX MCCL Commands

DCX-PCI100 User’s Manual

403

Outputting Formatted Message Strings

The DCX supports the outputting of formatted text strings from the ASCII interface using the Output
Text commands. The two commands supported are:

 Output Text with integer values (OT” “)
 Output text with Double values (OD” “)

The syntax of these two commands are patterned after standard ‘C’ function ‘printf’. For specific
‘printf’ description please refer to the Microtech Research Inc. MCC960 compiler documentation. The
message to be displayed should be delimited by double quotes. Please refer to the examples below:

OT”The Saftey gate is open, machine operation has stopped \n”
 ;output simple text message,
 ; \n = line feed

As with typical implementations of ‘C’ print statements, the DCX supports variables. Prior to executing
the output text command, load the accumulator with the data to be included as a variable. In the
following example, the Output Double (OD” “) command is used to report the current position of axis
one as a floating point value. The % character indicates that a variable stored in the accumulator will
be included in the text message. The ‘f’ indicates that the variable is a floating point value. The ‘\r’
calls for a carriage return at the end of the message.

1RD20,OD”The current position of Axis #1 %f \r”
 ;load the accumulator with the
 ;position of axis #1. Output a text
 ;message displaying the position of
 ;axis #1 (floating point value),
 ;carriage return

DCX MCCL Commands

Precision MicroControl

404

Reading Data from DCX Memory

A group of read commands are available for accessing the internal Motor Tables of the DCX. These
commands provide an easy method of moving motor data in and out of the Accumulator (user register
0).

The Look Up (LUs) command is used to load the internal address of a motor table entry into the
accumulator. String parameter s defines the variable name of the target motor table entry. A Read
command (RB, RW, RL, RV, or RD) is then used to load the accumulator with the data from the target
motor table entry. The Read command must include the axis specifier ‘a’. The type of command to
use (byte, double, long, float or word), is determined by the type of data to be accessed and is listed
below.

aRBn Read Byte (8 bit) at memory location n into accumulator (ACC = (n))
aRDn Read Double at memory location n into accumulator (ACC = (n))
aRLn Read Long (32 bit) at memory location n into accumulator (ACC = (n))
aRVn Read float at memory location n into accumulator (ACC = (n))
aRWn Read Word (16 bit) at memory location n into accumulator (ACC = (n))

Examples of using the read commands to access the motor tables are shown below.

To load the 32 bit status of axis 2 into the accumulator, issue the following command sequence:

LU”STATUS”,2RL@0 ;load the motor table address for axis
 ;status into the accumulator. Load the
 ;32 bit status word of axis #2 into the
 ;accumulator

To load the 64 bit current position of axis 3 into the accumulator, issue the following command:

LU”POSITION”,3RD@0 ;load the motor table address for current
 ;position into the accumulator. Load the
 ;accumulator with the 64 bit current
 position of ;axis #3

Motor Table Variables – 32 bit integer (long)
Motor Table
Variable Description

Variable
Name

Module Base Address MODADDR
Motor Status – primary STATUS
Motor Status - auxiliary AUXSTAT
Position - Adjustment
 (index + Offset)

CNTADJ

Position – Current (raw count) POSCOUNT
Position - Index Count IDXCOUNT
Position - Optimal (raw count) CMDCOUNT
Position – Target (raw count) TGTCOUNT

DCX MCCL Commands

DCX-PCI100 User’s Manual

405

Motor Table Variables – 64 bit floating point (double)
Motor Table
Variable Description

Variable
Name

Following Error Setting - maximum MAXERROR
Position - Current POSITION
Position – Target TARGET
Position - Optimal OPTIMAL
Position - Breakpoint BRKPOS
Programmed Acceleration PGMACC
Programmed Velocity PGMVEL
Scaling - User SCALE
Scaling - User Offset OFFSET
Scaling - User Output Constant OUTCONST
Scaling - User Rate Conversion RATE
Scaling - User Zero ZERO
Soft Motion Limit Setting (low) LOLIM
Soft Motion Limit Setting (high) HILIM
Velocity - Current CURVEL

Motor Table Variables – 32 bit floating point (float)
Motor Table
Variable Description

Variable
Name

PID - Proportional Gain setting KPOS
PID - Derivative Gain setting KDER
PID - Integral Gain KINT
PID - Integration Limit ILIM

Motor Table Variables – 16 bit integer (word)
Motor Table Entry Description Offset

(decimal)
Axis Number AXISNUM
Module - Axis MODAXIS
Module – Base address MODADDR
Module - Location MODULE
Module Status MODST
Module - Type MODTYPE
Sampling Frequency SFREQ
Timer - Wait Stop WAITSTOP
Timer - Wait Target WAITTARGET

DCX MCCL Commands

Precision MicroControl

406

DCX User Registers
The DCX contains 256 general purpose global registers that can be used for; storing command
parameters, performing math computations and controlling command execution. The registers are
numbered 0 through 255, with register 0 being the 'accumulator'. The accumulator (register 0) is used
by all commands that manipulate register data.

Each register can hold a 32 bit integer, a 32 bit single precision floating point number, or a 64 bit
double precision floating point number. A register will be loaded with the double precision floating
point number if the Accumulator Load (ALn) command is issued with a parameter containing a
decimal point. Otherwise, the register will be loaded with a 32 bit integer. When executing commands
that perform math operations on the accumulator (AA, AD, AM, ...), the result will have the same
precision as the command parameter or the accumulator (prior to the command), whichever is more
precise. Since the 32 bit integer is considered to be the least precise, multiplying an integer by a
floating point number will always result in a floating point number. If a floating point indirect parameter
is used for a command that does not support floating point parameters (eg. CN, LM, PC,...), the
register contents will be rounded to the nearest integer prior to use.

Typically the user issues commands with 'immediate' parameters (ie: the parameter ‘n’ is a constant).
The user can also issue commands, specifying that the parameter is the contents of a register. This is
done by replacing the command parameter with the register number preceded with an '@' sign. For
example, the command "1MR@10" will cause the DCX to move axis 1 by the number stored in
register 10. The use of a register specifier can be used in any command as the parameter. The DCX
does not support the use of the '@' sign in front of an axis number. The following commands are
available for working with the registers:

MCCL Command Description
AAn Accumulator Add (ACC = ACC + n)
ACn Accumulator Complement, bit wise (ACC = !ACC)
ADn Accumulator Divide (ACC = ACC/n)
AEn Accumulator logical Exclusive or with n, bit wise (ACC = ACC eor n)
ALn Accumulator Load with constant n (ACC = n)
AMn Accumulator Multiply(ACC = ACC x n)
ANn Accumulator logical aNd with n, bit wise (ACC = ACC and n)
AOn Accumulator logical Or with n, bit wise (ACC = ACC or n)
ARn copy Accumulator to Register n (REGn = ACCn)
ASn Accumulator Subtract (ACC = ACC - n)
GAx Get Analog value (ACC = channel x)
IBn If accumulator is Below (>) n, do next command, else skip 2 commands
ICn If bit n of accumulator is Clear, do next command, else skip 2 commands
IEn If accumulator Equals constant n, do next command, else skip 2 commands
IGn If accumulator is Greater than ‘n’, do next command, else skip 2 commands
OAx Output Analog value (channel x = ACC)
ISn If bit n of accumulator is Set, do next command, else skip 2 commands
IUn If accumulator is Unequal to ‘n’, do next command, else skip 2 commands
RAn copy Register n to Accumulator (ACC = REGn)
SLn Shift Left accumulator n bits (ACC = ACC << n)
SRn Shift Right accumulator n bits (ACC = ACC >> n)
TRn.p Tell contents of Register n
TR.p Tell contents of accumulator (register 0)

DCX MCCL Commands

DCX-PCI100 User’s Manual

407

MCCL Setup Commands

Precision MicroControl

408

Chapter Contents

DCX-PCI100 User’s Manual

409

MCCL Setup Commands

DH Define Home
MCCL command: aDHn a = Axis number n = integer or real >= 0
compatibility: MC100, MC110
see also: FI, IA, WI
Defines the current position of a motor to be n. From then on, all positions reported for that motor will
be relative to that point.

DI DIrection
MCCL command: aDIn a = Axis number n = 0, 1
compatibility: MC100, MC110
see also: GO, VM
Sets the move direction of a motor when in velocity mode. A parameter value of 0 results in motion in
the positive direction, a value of 1 causes motion in the negative direction.

FF amplifier Fault oFf
MCCL command: aFF a = Axis number
compatibility: MC100, MC110
see also: FN
Disables the Amplifier Fault input of a servo control module. See description of amplifier Fault input
oN command (FN), for further details.

FN amplifier Fault oN
MCCL command : aFNn a = Axis number n = integer (0, 1, 2, 128, 129, 130)
compatibility: MC100, MC110
see also: FF

Chapter

27

MCCL Setup Commands

Precision MicroControl

410

Enables the Amplifier Fault input of a servo control module. If the input goes active after this
command is executed, the axis will stop and the amplifier fault tripped flag in servo status will be set.
The tripped flag will remain set until the motor is turned back on with the MN command.

Amplifier Fault Mode (aFNn)
Desired action Parameter n =
Turn motor off (disable PID) 0
Stop the motor abruptly (under PID control) 1
Decelerate and stop the motor (under PID control) using the current
deceleration setting.

2

Invert the active level of the Amplifier Fault input (add 128 to 0, 1, or 2) 128

FR set the derivative sampling period
MCCL command: aFRn a = Axis number n = integer >= 0
compatibility: MC100, MC110
see also: SD, SG
Helps tune servo loop to the inertial characteristics of system. High inertial loads normally require a
longer period and low inertial loads a shorter period. The default value is 0 (0.000341 seconds). For a
value of n, the derivative sampling period will be (n +1) * sample period (0.000341). See Tuning the
Servo section in the Motion Control chapter.

HL High motion soft Limit
MCCL command: aHLn a = Axis number n = integer or real
compatibility: MC100, MC110
see also: LF, LL, LM, LN
This command sets the high limit for motion. After this command is issued, and the motion limit is
enabled with the Limit oN (aLNn) command, the command parameter is used as a 'soft' limit for all
motion of the axis. If the desired or true position of the axis is greater than this limit, and the axis is
being commanded to move in the positive direction, the Soft Motion Limit High and the Motor Error
flags in the motor status will be set. The axis will also be turned off, stopped abruptly, or stopped
smoothly, depending upon the mode set by the Limit Mode command. Please refer to the Motion
Limits description in the Motion Control chapter.

IL Integration Limit
MCCL command: aILn a = Axis number n = integer >= 0
compatibility: MC100, MC110
see also: SI, SG
Limits level of power that integral gain can use to reduce the position error. The default units for the
command parameter are (encoder counts) * (sample interval). See the description of Tuning the
Servo section in the Motion Control chapter.

MCCL Setup Commands

DCX-PCI100 User’s Manual

411

LF motion Limits oFf
MCCL command: aLFn a = Axis number n = (see Limit oN table)
compatibility: MC100, MC110
see also: LN, LM
Disables one or more 'hard' limit switch inputs or 'soft' position limits for an axis. The parameter to this
command determines which limits will be disabled. The coding of the parameter is the same as for the
motion Limits oN command (LN). See the description on Motion Limits in the Motion Control
chapter.

LL Low motion soft Limit
MCCL command: aLLn a = Axis number n = integer or real
compatibility: MC100, MC110
see also: LF, LH, LM, LN
This command sets the low limit for motion. After this command is issued, and the motion limit is
enabled with the Limit oN (aLNn) command, the command parameter is used as a 'soft' limit for all
motion of the axis. If the desired or true position of the axis is less than this limit, and the axis is being
commanded to move in the negative direction, the Soft Motion Limit Low and the Motor Error flags in
the motor status will be set. The axis will also be turned off, stopped abruptly, or stopped smoothly,
depending upon the mode set by the Limit Mode command. See the description of Motion Limits in
the Motion Control chapter.

LM Limit Mode
MCCL command: aLMn a = Axis number n = integer (see table below)
compatibility: MC100, MC110
see also: LF, LN
This command is used to select how the DCX will react when a 'hard' limit switch or a 'soft' position
limit is tripped by an axis. The command parameter should be formed by adding a value of 1, 2, or 3
for the hard limit switch mode, to a value of 4, 8, or 12 for the soft position limit mode. In all cases the
Motor Error and one of Limit Tripped flags in the status word will be set when a limit event occurs.
This will prevent the DCX from moving the motor until a Motor oN command is issued. See the
description of Motion Limits in the Motion Control chapter.

Limit Mode (aLMn) command
Desired action Parameter n =
Turn motor off (disable PID) when hard limit sensor ‘goes’ active or soft
motion limit is exceeded

0,0 *

Stop the motor abruptly (under PID control) when hard limit sensor ‘goes’
active or soft motion limit is exceeded

1,4 *

Decelerate and stop the motor (under PID control) when hard limit sensor
‘goes’ active or the soft motion limit is exceeded. Use the current deceleration
setting.

2,8 *

Invert the active level of the hard limit input. Typically used for normally closed
hard limit sensors

128 **

* Values in red are for defining the Limit Mode for hard limits. Values in black are for defining the
mode for soft motion limits. When using both hard and soft limits, parameter n should equal hard limit
parameter n + soft limit parameter n.
** For inverted active level hard limits parameter n = 128 plus desired mode

MCCL Setup Commands

Precision MicroControl

412

1LM130 ;Axis #1 Limit mode = decelerate & stop (n=2)
 ; + invert active level(n=128)

LN Limits oN
MCCL command: aLNn a = Axis number n = (see table below)
compatibility: MC100, MC110
see also: LF, LM
This command is used to enable the 'hard' limit switch inputs and/or the 'soft' position limits of an axis.
If a limit switch input goes active after it has been enabled by this command, and the motor has been
commanded to move in the direction of that switch, the Motor Error and one of the Hard Limit Tripped
Flags will be set in the motor status. At the same time the motor will be turned off or stopped
(depending on the value of parameter n of the Limit Mode command). If a soft motion limit is enabled,
and the respective axis is commanded to move beyond the motion limits set by the High motion Limit
and the Low motion Limit commands, the Motor Error and one of the Soft Limit Tripped Flags will be
set. At the same time the motor will be turned off or stopped (depending on the value of parameter n
of the Limit Mode command). The flags will remain set until the motor is turned back on with the MN
command. Once the motor is turned back on, it can be moved out of the limit region with any of the
standard motion commands. The parameter to this command determines which of the hard and soft
limits will be enabled. See the description of Motion Limits in the Motion Control chapter.

The LN command enables hard coded limit error checking.
Parameter n Hard Limits - Limit oN parameter description

0* Enable both hard limits (+/-) and soft limits (high & low)
1** Enable hard limit + error checking
2** Enable hard limit – error checking
3** Enable hard limit + and hard limit – error checking
4** Enable high soft limit error checking
8** Enable low high soft limit error checking

12** Enable high & low soft limit error checking
* If parameter n = 0 both hard and soft limit error checking will be enabled.
** Values in red are for enabling limit error checking for hard limits. if both hard and soft limits are to
be used the parameter n should equal hard limit parameter n + soft limit parameter n.

1LN0 ;Axis #1 - enable hard and soft limits

2LN7 ;Axis #2 – enable both hard limits (n=3) and
 ;high soft motion limit (n=4)

SA Set Acceleration
MCCL command: aSAn a = Axis number n = integer or real >= 0
compatibility: MC100, MC110
see also: DS, SV
Set the maximum acceleration rate for a given axis. The default units for the command parameter are
encoder counts per second per second.

MCCL Setup Commands

DCX-PCI100 User’s Manual

413

SD Set Derivative gain
MCCL command: aSDn a = Axis number n = integer >= 0 < = 32767
compatibility: MC100, MC110
see also: FR, IL, SI, SG
This command is used to set the derivative gain of a servo's feedback loop. Increasing the derivative
gain has the effect of dampening oscillations. See the description of Tuning the Servo in the Motion
Control chapter.

SE Stop on following Error
MCCL command : aSEn a = Axis number n = integer < 0 > = 32767
compatibility: MC100, MC110
see also:
Used to set the maximum following or position error for a servo (default = 1024). Once this command
is issued and the motor is on, if the servo position error exceeds the specified value the motor error
flag in servo status will be set, and the servo will be turned off. The error flag will remain set until the
motor is turned back on with the MN command. Following error checking cannot be disabled.

SG Set Proportional gain
MCCL command : aSGn a = Axis number n = integer >= 0 <= 32767
compatibility: MC100, MC110
see also: IL, SI, SD
This command is used to set the proportional gain of a servo's feedback loop. Increasing the
proportional gain has the effect of increasing the restoring force holding a servo in position. See the
description of Tuning the Servo in the Motion Control chapter.

SI Set the Integral gain
MCCL command : aSIn a = Axis number n = integer >= 0 < = 32767
compatibility: MC100, MC110
see also: IL, SI, SG
The integral term accumulates the position error for servos and generates an output signal to reduce
the position error to zero. The integral gain determines the magnitude of this term. The default value is
zero. Note that Integration Limit (IL) command must be set to a nonzero value before integral gain will
have any effect. See the description of Tuning the Servo in the Motion Control chapter.

SV Set Velocity
MCCL command : aSVn a = Axis number n = integer or real >= 0
compatibility: MC100, MC110
see also: SA, DS
Set the maximum velocity for a given axis. The default units for the command parameter are encoder
counts per second. ‘On the fly’ velocity changes will not take effect until after re-enabling the axis with
the aGO commandfunction.

MCCL Setup Commands

Precision MicroControl

414

UA set the defaUlt Axis
MCCL command: UAn n = integer > 0, <= 8
compatibility: MC100, MC110
see also:
The DCX-PCI100 defaults to setting the default axis to zero. If the user executes a motion or setup
command with the axis specifier missing, the default axis will be used. In most cases a motion or
setup command issued to axis zero commands that operation to all axes. By defining a non-zero
default axis, the user can execute ‘generic’ macro’s (no axis number specified) to any axis.

This command is used to define a default axis. After issuing this command, any commanded move,
setup, etc. command that utilizes an axis designator (a) will execute the command to the axis
specified by parameter n. To query the controller as to the current default axis use the Get defaUlt
axis (GU) command.

MD10,MR1000 ;Macro 10 will execute a relative move
 ;of 1000 counts to the default axis
 ;(defined by the User Axis command).
 ;Note that the move command does not
 ;include the axis designator a.
UA1,MC10 ;Define axis #1 as the default axis,
 ;call macro ten to move 1000 counts
UA2,MC10 ;Define axis #2 as the default axis,
 ;call macro ten to move 1000 counts

UO User Offset
MCCL command: aUOn a = Axis number n = integer or real
compatibility: MC100, MC110
see also:
This command is used to define a ‘work area zero’ position. Use parameter n to define the distance
from the servo home position, to the ‘work area zero’ position. This offset distance must use the same
usits as currently defined by the User Scaling command. This command does not take effect until
after a Motor oN (aMN) command. See the description of Defining User Units in the Application
Solutions chapter.

UP Use Physical axis addressing
MCCL command: aUPn a = Axis number n = integer > 0, < 8
compatibility: MC100, MC110
see also:
This command is used to reassign the axis number of a DCX motion module. The value a should
equal the new axis designator. The parameter n should equal the current physical location of the
motor module. Prior to reassigning axis numbers all default axis assignments must be cleared by
issuing the UP command no values expressed for a or n. See the description of Physical
Assignment of Axes Numbers in the Application Solutions chapter.

MCCL Setup Commands

DCX-PCI100 User’s Manual

415

UR User Rate
MCCL command: aURn a = Axis number n = integer or real >= 0
compatibility: MC100, MC110
see also:
This command is used to configure an axis for commands in user units. The default setting is 1.0. This
command does not take effect until after a Motor oN (aMN) command. See the description of
Defining User Units in the Application Solutions chapter.

US User Scale
MCCL command : aUSn a = Axis number n = integer or real
compatibility: MC100, MC110
see also:
This command is used to configure an axis for commands in user units. The default setting is 1.0. This
command does not take effect until after a Motor oN (aMN) command. See the description of
Defining User Units in the Application Solutions chapter.

UT User Time
MCCL command: aUTn a = Axis number n = integer or real >= 0
compatibility: MC100, MC110
see also:
This command is used to define the units of time for Wait commands (WA, WS, WT). The default
setting is seconds. This command does not take effect until after a Motor oN (aMN) command. Note –
The UT command only effects the time base in the task or command interface from which it was
issued. See the description of Defining User Units in the Application Solutions chapter.

UZ set the User Zero position
MCCL command: aUZn a = Axis number n = integer or real
compatibility: MC100, MC110
see also:
This command is used to define a part program zero position. This command does not take effect until
after a Motor oN (aMN) command. See the description of Defining User Units in the Application
Solutions chapter.

MCCL Mode Commands

Precision MicroControl

416

Chapter Contents

DCX-PCI100 User’s Manual

417

MCCL Mode Commands

PM Position Mode
MCCL command : aPM a = Axis number
compatibility: MC100, MC110
see also: MA, MR
This command places a servo in the Position Mode of operation. In this mode, it can be commanded
to execute moves to specific positions. The moves will be carried out using a trapezoidal. When in
Position Mode, servos can change the move destination while the move is in progress. Upon start up,
or after a Reset, motors will be placed in the Position Mode. See the description of Point to Point
Motion in the Motion Control chapter.

VM Velocity Mode
MCCL command: aVM a = Axis number
compatibility: MC100, MC110
see also: DI, GO
This command places a motor in the Velocity Mode of operation. In this mode, the motor can be
commanded to move in either direction at a given velocity. The motor will move in that direction until
commanded to stop. In Velocity Mode the user can specify the direction for the motor to move using
the DIrection (DI) command. While a motor is moving, the user can issue new direction or velocity
commands. The acceleration or deceleration rate at which the motor velocity will change is
determined by the Set Acceleration (SA) and Deceleration Set (DS) commands. See the description
of Continuous Velocity Motion in the Motion Control chapter.

Chapter

28

MCCL Motion Commands

Precision MicroControl

418

Chapter Contents

DCX-PCI100 User’s Manual

419

MCCL Motion Commands

AB ABort motion
MCCL command: aAB a = Axis number (0 = Abort motion on all axes)
compatibility: MC100, MC110
see also: ST
This command serves as an emergency stop. For a servo, motion stops abruptly but leaves the
position feedback loop (PID) and the amplifier enabled. The target position of the axis is set equal to
the current position. This command can be issued to a specific axis, or can be issued to all axes
simultaneously by using an axis specifier of 0.

example: 2AB ;causes the motion of axis 2 to be
 ;aborted

FI Find Index
MCCL command: aFIn a = Axis number n = integer or real >= 0
compatibility: MC100, MC110
see also: DH, FE, IA, WI
This command is used to initialize a servo's encoder at a given position. It will remain in effect until the
encoder index pulse goes active. Upon completion of the FI command, after issuing PM and MN, the
position of index will be redefined n. This command will not start or stop any servo motions, it is up to
the user to initiate motion prior to issuing the find index command. Since an index pulse may occur at
numerous points of a servo's travel (once per revolution in rotary encoders), a typical servo
application will require a coarse home signal to "qualify" the index pulse.

MD1,1LM2,1LN3,MJ10 ;call homing macro
MD10,1VM,1DI0,1GO,LU”STATUS”,1RL@0,IS25,MJ11,NO,IS17,MJ12,NO,JR-7
 ;test for sensors (home and +limit)
MD11,1ST,1WS.01,1DI1,1GO,1WE1,1ST,1DI0,1GO,1WE0,1FI0,1 ST,1WS.01,1PM,1MN,1MA0
 ;if home sensor true, initialize on
 ;index
MD12,1WS.1,1MN,1DI1,1GO,1WE0,MJ11 ;move negative until home true

See the description of Homing Axes in the Motion Control chapter.

Chapter

29

MCCL Motion Commands

Precision MicroControl

420

GH Go Home
MCCL command: aGH a = Axis number
compatibility: MC100, MC110
see also: MA, MC, MD
Causes the specified axis or axes to move to absolute position 0. This is equivalent to a Move
Absolute command, where the destination is 0.

GO GO
MCCL command: aGO a = Axis number
compatibility: MC100, MC110
see also: CM, VM
Causes one or all axes to begin motion in velocity mode.

HO HOme
MCCL command: aHO a = Axis number
compatibility: MC100, MC110
see also: MC, MD
This command will cause a user defined macro to be executed. It is up to the user to define the macro
to carry out the appropriate homing sequence for that motor (see Find Edge and Find Index
commands). Issuing 1HO will cause macro 1 to be executed, issuing 2HO will cause macro 2 to be
executed, and so on. Issuing this command with no motor specified will cause macro 9 to be
executed. See the description of Homing Axes in the Motion Control chapter.

LP Learn Position
MCCL command: aLPn a = Axis number n = integer >= 0, <=255
compatibility: MC100, MC110
see also: LT, MP
Used for storing the current position of one or more axes in the DCX's point memory. Positions stored
in the point memory can be used by the Move to Point command to repeat a stored motion pattern.
The command parameter n specifies the entry in the point memory where the position will be stored.

If the LP command is issued with an axis specifier of 0, the positions of all axes on the DCX board will
be stored in the point memory. If the command is issued with a non-zero axis specifier, only the
position of that axis will be stored in the point memory. No other positions in the point memory will be
changed. See the description of Learning/ Teaching Points in the Application Solutions chapter.

LT Learn Target
MCCL command: aLTn a = Axis number n = integer >= 0, <=255
compatibility: MC100, MC110
see also: LP, MP

MCCL Motion Commands

DCX-PCI100 User’s Manual

421

Similar to the LP command, but stores the axes' target position (versus actual position). Motion of an
axis is not required for storing target positions. This makes it possible to download coordinates from a
host computer or CAD system.

Turn off the motor drive outputs with the MF command, then send motion commands prior to the LT
command. Targets stored in the point memory can be used by the Move to Point command to repeat
a stored motion pattern. The command parameter n specifies the entry in the point memory where the
position will be stored. If the LT command is issued with an axis specifier of 0, the targets of all axes
on the DCX board will be stored in the point memory. If the command is issued with a non-zero axis
specifier, only the target of that axis will be stored in the point memory. No other targets in the point
memory will be changed. See the description of Learning/ Teaching Points in the Application
Solutions chapter.

MA Move Absolute
MCCL command : aMAn a = Axis number n = integer or real >= 0
compatibility: MC100, MC110
see also: MR, PM
This command generates a motion to absolute position n. A motor number must be specified and that
motor must be in the ‘on’ state for any motion to occur. If the motor is in the off state, only its' internal
target position will be changed. See the description of Point to Point Motion in the Motion Control
chapter.

MF Motor oFf
MCCL command : aMF a = Axis number
compatibility: MC100, MC110
see also: MN
Issuing this command will place one or all servos in the "off" state. For servos, the Analog Signal will
go to the null level, the servo loop (PID) will terminate, and the Amplifier Enable output will go inactive.
This command can be used to prevent unwanted motion or to allow manual positioning of the servo
motor.

MN Motor oN
MCCL command: aMN a = Axis number
compatibility: MC100, MC110
see also: MF
Use this command to place one or all servo motors in the on state. If an axis is off when this
command is issued, the target and optimal (commanded) positions will be set to the motor's current
position. This can cause a change in the axis' reported position based on new user units. At the same
time, a servo module's Amplifier Enable output signal will go active. This has the effect of causing a
servo to hold its current position. If an axis is already on when this command is issued, the position
values will be set for the current user units, but the commanded encoder or pulse position will not be
changed.

MCCL Motion Commands

Precision MicroControl

422

MP Move to Point
MCCL command: aMPn a = Axis number n = integer >= 0, <=255
compatibility: MC100, MC110
see also: LP, LT
Used for moving one or more axes to a previously stored point. The command parameter n specifies
which entry in the DCX's point memory is to be used as the destination of the move. If the MP
command is issued with an axis specifier of 0, all axes will move to the positions stored in the point
memory for that point. If the command is issued with a non-zero axis specifier, only that axis will move
to the position in the point memory. No other axes will be commanded to move. Points can be stored
in the point memory with the Learn Point (LP) and Learn Target LT) commands. See the description
of Learning/ Teaching Points in the Application Solutions chapter.

MR Move Relative
MCCL command : aMRn a = Axis number n = integer or real
compatibility: MC100, MC110
see also: MA, PM
This command generates a motion of relative distance n. A motor number must be specified and that
motor must be in the ‘on’ state for any motion to occur. If the motor is in the off state, only its' internal
target position will be changed. See the description of Point to Point Motion in the Motion Control
chapter.

PR Record axis data
MCCL command : aPRn a = Axis number n = integer > 0, <=512
compatibility: MC100, MC110
see also:
This command is used to begin the recording of motion data (actual position, optimal position, and
following error) for an axis. See the description of Record and display Motion Data in the
Application Solutions chapter.

ST STop
MCCL command: aST a = Axis number (0 = Stop motion on all axes)
compatibility: MC100, MC110
see also: AB, MF
This command is used to stop one or all motors. It differs from the Abort command in that motors will
decelerate at their preset rate, instead of stopping abruptly. This command can be issued to a specific
axis, or can be issued to all axes simultaneously by using an axis specifier of 0. See the description of
Continuous Velocity Motion in the Motion Control chapter.

MCCL Motion Commands

DCX-PCI100 User’s Manual

423

MCCL Reporting Commands

Precision MicroControl

424

Chapter Contents

DCX-PCI100 User’s Manual

425

MCCL Reporting Commands

The commands in this section are used to display the current values of internal controller data. Some
of these values are 'real' numbers that must be displayed with fractional parts. In order to provide
compatibility with older products that don't support real numbers, and to provide flexibility in the
display format, certain reporting commands accept a parameter that sets the number of digits
displayed to the right of the decimal point. These commands will show a 'p' as a parameter in their
descriptions.

For ASCII command interfaces, p can be replaced with a number between 0 and 1 and the tenths digit
will be interpreted as the number of decimal digits to display to the right of the decimal point. If no
parameter is used with the command, or a parameter of 0 is used, the reply to the command will be
an integer with no decimal point. Example:
 ;If axis 1 position is 123.4567
 1TP; DCX replies 123
 1TP0; DCX replies 123
 1TP.1; DCX replies 123.4
 1TP.3; DCX replies 123.456

For the Binary command interface, the reporting commands that have a 'p' listed as their parameter
will accept an integer value of 0, 1 or 2 in place of p. A value of 0 will generate an integer reply, a
value of 1 will generate a 64 bit floating point reply, and a value of 2 will generate a 32 bit floating
point reply. See the appendix describing the DCX Binary Command Interface for more details on
these reply formats.

DO Display the recorded Optimal position
MCCL command: aDOp a = Axis number p = integer >= 0, < 512
compatibility: MC100, MC110
see also: PR
This command is used to report the captured optimal position of an axis. See the description of
Record and display Motion Data in the Application Solutions chapter.

Chapter

30

MCCL Reporting Commands

Precision MicroControl

426

DR Display Recorded position
MCCL command: aDRp a = Axis number p = integer >= 0, < 512
compatibility: MC100, MC110
see also: PR
This command is used to report the captured actual position of an axis. See the description of
Record and display Motion Data in the Application Solutions chapter.

TA Tell Analog
MCCL command: TAx x = Channel number p = 0, 1, 2, 3, ... (# of MC500/510 modules X 4)
compatibility: MC500, MC510
see also:
Reports the digitized analog input signals to MC500 and MC510 modules. The analog input channels
on any installed MC500/510 modules will be numbered sequentially starting with channel 1. For each
of these channels, the TA command will display a number between 0 and 4096. These numbers are
the ratio of the analog input voltage to the reference input voltage multiplied by 4096. See the
description of Analog Inputs in the DCX General Purpose I/O chapter.

TB Tell Breakpoint
MCCL command: aTBp a = Axis number p = 0, .1, .2, .3, .4, .5
compatibility: MC100, MC110
see also: IP, IR
Reports the position where the breakpoint for a motor is placed. Breakpoints are placed with the IP,
IR, WP and WR commands. The interpretation of the command parameter p is explained at the
beginning of this section.

TC Tell digital Channel
MCCL command: TCx x = Channel number
compatibility: MC400
see also:
Reports the on/off status of each digital I/O line. This data is reported separately for each channel.
The DCX responds by displaying the channel number and a "1" if the channel is "on", or a "0" if the
channel is "off".

TD Tell Derivative gain
MCCL command: aTD a = Axis number
compatibility: MC100, MC110
see also: SD
Reports the derivative gain setting for a servo.

MCCL Reporting Commands

DCX-PCI100 User’s Manual

427

TE Tell command interpreter Error
MCCL command: TE
compatibility: Not applicable
see also:
Reports the last command interpreter error (syntax error, invalid character, etc.). For a listing of error
codes please refer to the MCCL Error Codes chapter.

TF Tell Following error
MCCL command: aTFp a = Axis number p = 0, .1, .2, .3, .4, .5
compatibility: MC100, MC110
see also: SE
Reports the current following error of a servo. This error is the difference between the commanded
position (calculated by the trajectory generator) and the current position.

TG Tell proportional Gain
MCCL command: aTG a = Axis number
compatibility: MC100, MC110
see also: SG
Reports the proportional gain setting for a servo.

TI Tell Integral gain
MCCL command: aTI a = Axis number 5
compatibility: MC100, MC110
see also: set Integral gain
Reports the integral gain setting for a servo.

TL Tell integral Limit setting
MCCL command: aTL a = Axis number
compatibility: MC100, MC110
see also: IL
Reports the integral limit setting for a servo.

TM Tell Macros
MCCL command: TMn n = integer >= -1, <= 1000
compatibility: N/A
see also: MD, RM
Displays the commands which make up any macros which have been defined. If n = -1, all macros will
be displayed. Since macros may be defined in any sequence, the TM command is useful for
confirming the existence and/or contents of macro commands. In addition to the contents of macros,
this command will also show the amount of memory available for macro storage. See the description
of Macro Commands in the Working with MCCL Commands chapter.

MCCL Reporting Commands

Precision MicroControl

428

TO Tell Optimal
MCCL command: aTOp a = Axis number p = 0, .1, .2, .3, .4, .5
compatibility: MC100, MC110
see also:
Reports the desired position for servos. This value will be different than the position reported by the
TP command if a following error is present.

TP Tell Position
MCCL command: aTPp a = Axis number p = 0, .1, .2, .3, .4, .5
compatibility: MC100, MC110
see also: DH, FI
Reports the absolute position of axis a. It may be used to monitor motion during both Motor oN (MN)
and Motor ofF (MF) states. The interpretation of the command parameter p is explained at the
beginning of this section.

TR Tell Register ‘n’
MCCL command: TRn n = integer >= 0, <= 255
compatibility: N/A
see also: AL, AR
Displays the contents of User Register n. When the command parameter is set to 0 (or not specified),
this command reports the contents of User Register zero, which is the accumulator.

MCCL Reporting Commands

DCX-PCI100 User’s Manual

429

TS Tell axis Status
MCCL command : aTSn a = Axis number n= integer
compatibility: MC100, MC110
see also:
Reports the status of an axis. If the command parameter is 0, the response is coded into a single 32
bit value. If the parameter has a value between 1 and 31 inclusive, the state of the respective bit is
displayed as a '0' for reset, and a '1' for set. Using a command parameter greater that 32 results in
formatted status displays. The meaning of each bit is listed below:

Bit number Description
0 Busy (motor data being updated)
1 Motor On
2 At Target
3 Trajectory Complete (Optimal = Target)
4 Direction (0 = positive, 1 = negative)
5 Reserved
6 Motor homed
7 Motor Error (Limit +/- tripped, max. following error exceeded)
8 Looking For Index (FI, WI)
9 Looking For Edge (FE, WE)
10 Index found
11 Position Capture flag
12 Breakpoint Reached (IP, IR, WP, WR)
13 Exceeded Max. Following Error
14 Servo Amplifier Driver Fault Enabled
15 Servo Amplifier Driver Fault Tripped
16 Hard Limit Positive Input Enabled
17 Hard Limit Positive Tripped
18 Hard Limit Negative Input Enabled
19 Hard Limit Negative Tripped
20 Soft Motion Limit High Enabled
21 Soft Motion Limit High Tripped
22 Soft Motion Limit Low Enabled
23 Soft Motion Limit Low Tripped
24 Encoder Index
25 Encoder Coarse home (current state)
26 Servo Amplifier Fault (current state)
27 Reserved
28 Limit Positive Input Active (current state)
29 Limit Negative Input Active (current state)
30 Reserved
31 Reserved

MCCL Reporting Commands

Precision MicroControl

430

example:
 DM ;Place DCX in Decimal Output Mode
 1TS ;report the status of axis #1

 DCX returns: 01 268439566 ;status =
 ;bit 28 set - limit + input active
 ;but limits error checking is not
 ;enabled (bit 16 cleared)
 ;bit 12 set - breakpoint reached
 ;bit 3 set - trajectory complete
 ;bit 2 set - axis At target
 ;bit 1 set – motor on

example: HM ;Place DCX in Hexadecimal Output Mode
 1TS ;report the status of axis #1

 DCX returns: 01 1000100E ;status =
 ;bit 28 set - limit + input active
 ;but limits error checking is not
 ;enabled (bit 16 cleared)
 ;bit 12 set - breakpoint reached
 ;bit 3 set - trajectory complete
 ;bit 2 set - axis At target
 ;bit 1 set – motor on

example: 1TS32

 DCX returns:
 MOTOR STATUS:
 Motor On
 At Target
 Trajectory Complete
 Direction = Positive
 Not Homed
 No Motor Error
 Not Looking For Index
 Not Looking For Edge
 Breakpoint Reached
 Max. Following Error Not Exceeded
 Amplifier Fault Disabled
 Hard Motion Limit Positive Disabled
 Hard Motion Limit Negative Disabled
 Soft Motion Limit High Disabled
 Soft Motion Limit Low Disabled
 Index Input = 1
 Coarse Home Input = 0
 Amplifier Fault Input = 0
 Limit Positive Input = 1
 Limit Negative Input = 0
 User Input 1 = 0
 User Input 2 = 0

MCCL Reporting Commands

DCX-PCI100 User’s Manual

431

Axis Auxiliary Status
Bit number Description
0 Hard Motion Limit Mode = Stop abrupt
1 Hard Motion Limit Mode = Decelerate to a stop
2 Soft Motion Limit Mode = Stop abrupt
3 Soft Motion Limit Mode = Decelerate to a stop
4 Reserved
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved
16 Reserved
17 Reserved
18 Reserved
19 Reserved
20 Reserved
21 Reserved
22 Positive Limit Invert = On
23 Negative Limit Invert = On
24
25
26 Amplifier Fault stop abrupt
27 Amplifier Fault stop smooth
28 Amplifier Fault invert input

To report the state of all Auxiliary Axis Status bits issued the Tell Status command with parameter n =
33:

example: 1TS33

example: 1TS34

 DCX returns:
 Motor status: 100100c
 Auxiliary status: 20
 Position count: 0
 Optimal count: 0
 Index count: 0
 Position: 0.000000
 Target: 0.000000
 Optimal position: 0.000000
 Break position: 0.000000
 Maximum following error: 1024.000000

MCCL Reporting Commands

Precision MicroControl

432

 Motion limits: Low: 0.000000 High: 0.000000
 User Scale: 1.000000
 User Zero: 0.000000
 User Offset: 0.000000
 User Rate Conv.: 1.000000
 User output constant: 1.000000
 Programmed velocity: 10000.000000
 Programmed acceleration: 10000.000000
 Programmed deceleration: 10000.000000
 Minimum velocity: 0.000000
 Current velocity: 0.000000
 Module ADC Input 1: 0.019530 Input2: 0.000000

TT Tell Target
MCCL command: aTTp a = Axis number p = 0, .1, .2, .3, .4, .5
compatibility: MC100, MC110
see also:
Reports target position. This is the absolute position to which the servo was last commanded to move.
It may be specified directly with the Move Absolute (MA) command or indirectly with the Move
Relative (MR) command. The interpretation of parameter p is explained at the beginning of this
section.

TV Tell Velocity
MCCL command : aTVp a = Axis number p = 0, .1, .2, .3, .4, .5
compatibility: MC100, MC110
see also: HS, LS, MS
Reports the current velocity of a servo motor. The value is reported in units of encoder counts per
servo loop update.

TZ Tell index position
MCCL command: aTZp a = Axis number p = 0, .1, .2, .3, .4, .5
compatibility: MC100, MC110
see also:
Reports the position where the index pulse was observed. This position is relative to the encoder's
position when the controller was reset or a Define Home command was issued to the axis.

MCCL Reporting Commands

DCX-PCI100 User’s Manual

433

VE tell firmware VErsion
MCCL command: VE
compatibility: N/A
see also:
Reports the revision level of the firmware running on the DCX. This command also displays the
amount of memory installed on the DCX motion controller motherboard.

example: VE

 DCX returns:
 DCX-PCI100 Motion Controller
 Hardware: 4096K Private RAM, 512K Flash Memory
 System Firmware Ver. PM1 Rev. 1.0a
 Copyright (c) 1994-2001 Precision MicroControl Corporation
 All rights reserved.

MCCL I/O Commands

Precision MicroControl

434

Chapter Contents

DCX-PCI100 User’s Manual

435

MCCL I/O Commands

CF Channel oFf
MCCL command: CFx x = Channel number
compatibility: MC400
see also: CN
Causes channel x to go to "off" state. If the channel has been configured for "high true", the channel
will be at a logic low (less that 0.4 volts DC) after this command is executed. If it has been configured
for "low true", the channel will be at a logic high (greater than 2.4 volts DC).

CH Channel High
MCCL command : CHx x = Channel number or 0
compatibility: MC400
see also: CL
Causes digital I/O channel x to be configured for "high true" logic. This means that the I/O channel will
be at a high logic level (greater than 2.4 volts DC) when the channel is "on”. and at a low logic level
(less than 0.4 volts DC) when the channel is "off". Note that issuing this command will not cause the
I/O channel to change its current state. Issuing this command without specifying a channel will cause
all channels present on the DCX to be configured as "high true". If parameter x = 0 all digital I/O
channels will be configured for high true logic.

CI Channel In
MCCL command: CIx x = Channel number
compatibility: MC400
see also: CT
Used to configure digital I/O channel x as an input. All digital I/O channels on the DCX
default to inputs on power-on or reset. If they are subsequently changed to outputs with the Channel
ouT command, they can be returned to inputs with the Channel In command. The state of a digital I/O
channel can be viewed with the Tell Channel command.

Chapter

31

MCCL I/O Commands

Precision MicroControl

436

CL Channel Low
MCCL command : CLx x = Channel number or 0
compatibility: MC400
see also: CH
Causes digital I/O channel x to be configured for "low true" logic. This means that the I/O channel will
be at a low logic level (less than 0.4 volts DC) when the channel is "on", and at high logic level
(greater than 2.4 volts DC) when the channel is "off". Note that issuing this command will not cause
the I/O channel to change its current state. Issuing this command without specifying a channel will
cause all channels present on the DCX to be configured as "low true". If parameter x = 0 all digital I/O
channels will be configured for low true logic.

CN Channel oN
MCCL command: CNx x = Channel number
compatibility: MC400
see also: CF
Causes channel x to go to "on" state. If the channel has been configured for "high true", the channel
will be at a logic high (greater than 2.4 volts DC) after this command is executed. If it has been
configured for "low true", the channel will be at a logic low (less that 0.4 volts DC).

CT Channel ouT
MCCL command: CTx x = Channel number
compatibility: MC400
see also: CI
Used to configure digital I/O channel x as an output. The DCX will turn the channel "off" before
changing it to an output.

DF Do if channel oFf
MCCL command: DFx x = Channel number
Used for conditional execution of commands. If digital I/O channel x is "off", commands that follow on
the command line or in the macro will be executed. Otherwise the rest of the command line or macro
will be skipped. See the description of Digital I/O in the DCX General Purpose I/O chapter.

DF2,1MR1000 ;If channel 2 is off move 1000

DN Do if channel ‘x’ is oN
MCCL command: DNx x = Channel number
Used for conditional execution of commands. If digital I/O channel x is "on", commands that follow on
the command line or in the macro will be executed. Otherwise the rest of the command line or macro
will be skipped. See the description of Digital I/O in the DCX General Purpose I/O chapter.

DN2,1MR1000 ;If channel 2 is off move 1000

MCCL I/O Commands

DCX-PCI100 User’s Manual

437

GA Get Analog
MCCL command: GAx x = Channel number
compatibility: MC500, MC520
Performs analog to digital conversion on the specified input channel and places the result into the
Accumulator (User Register 0). Analog channels are numbered starting with 1.

IF If channel oFf do next command, else skip 2 commands
MCCL command: IFx x = Channel number
Used for conditional execution of commands. If digital I/O channel x is "off", command execution will
continue with the command following the IF command. Otherwise the two commands following the IF
command will be skipped, and command execution will continue from the third command. See the
description of Digital I/O in the DCX General Purpose I/O chapter.

IF5,MJ10,NO,MJ11 ;If digital input #5 is off jump to
 ;macro 10, otherwise jump to macro 11

IN If channel ’ oN do next command, else skip 2 commands
MCCL command: INx x = Channel number
Used for conditional execution of commands. If digital I/O channel x is "on", command execution will
continue with the command following the IN command. Otherwise the two commands following the IN
command will be skipped, and command execution will continue from the third command. See the
description of Digital I/O in the DCX General Purpose I/O chapter.

IN5,MJ10,NO,MJ11 ;If digital input #5 is on jump to
 ;macro 10, otherwise jump to macro 11

OA Output Analog
MCCL command: OAn n = integer or real
compatibility MC500, MC520
Sets the specified analog output channel to the value stored in the Accumulator (User Register 0).
The analog output channels on any installed MC500 modules are numbered consecutively starting
with channel 1. The contents of the Accumulator should be in the range 0 to 4095.

TA Tell Analog
MCCL command: TAx x = Channel number p = 0, 1, 2, 3, ... (# of MC500/510 modules X 4)
compatibility: MC500, MC510
see also:
Reports the digitized analog input signals to MC500 and MC510 modules. The analog input channels
on any installed MC500/510 modules will be numbered sequentially starting with channel 1. For each
of these channels, the TA command will display a number between 0 and 4096. These numbers are

MCCL I/O Commands

Precision MicroControl

438

the ratio of the analog input voltage to the reference input voltage multiplied by 4096. See the
description of Analog Inputs in the DCX General Purpose I/O chapter.

TC Tell Channel
MCCL command: TCx x = Channel number or 0
compatibility: MC400
see also:
Reports the on/off status of each digital I/O line. This data is reported separately for each channel.
The DCX responds by displaying the channel number and a "1" if the channel is "on", or a "0" if the
channel is "off". If parameter x = 0 the state of all digital I/O channels will reported.

MCCL I/O Commands

DCX-PCI100 User’s Manual

439

MCCL Macro and Multi-tasking Commands

Precision MicroControl

440

Chapter Contents

DCX-PCI100 User’s Manual

441

MCCL Macro and Multi-tasking Commands

BK BreaK
MCCL command: BK
see also: GT, TR
Execution of this command will cause the rest of the command line or macro to be skipped. This
command is used in conjunction with the If oN and If ofF commands to implement conditional
execution.

ET Escape Task
MCCL command: ETn n = integer > = 0
see also: GT, TR
This command is used to terminate a 'background task' that was created with the Generate Task
command. The parameter to this command must be the task identifier that was placed in the
accumulator (user register 0) of the task that issued the Generate Task command. A background task
can use this command to terminate itself, but it must first acquire its identifier from the 'parent' task
through a global register. Note that the task that interprets and executes commands received from the
command interfaces cannot be terminated. See the description of Multi-Tasking in the Command
Set Introduction chapter.

GT Generate Task
MCCL command: GTn n = integer > = 0, < = 1000
see also: ET, MC, MD, TR
This command will cause macro n to be executed as a background task. Alternatively, this command
can precede a sequence of commands. In this case, the commands following the Generate Task
command will be executed as a background task. After this command is issued, an identifier for the
background task will be placed in the accumulator (register 0) of the task that issued the command.
This identifier can be used as the parameter to the Escape Task command to terminate the
background task. See the description of Multi-Tasking in the Command Set Introduction chapter.

Chapter

32

MCCL Macro and Multi-tasking Commands

Precision MicroControl

442

MC Macro Call
MCCL command: MCn n = integer > = 0, < = 1000
see also: ET, MD
This command may be used to execute a previously defined macro command. If there is no macro
defined by the number n, an error message will be displayed. Macro Call Commands can also be
used in compound commands with other commands in the instruction set. In addition, a macro
command can call another macro command, which in turn can call another macro command, and so
on. See the description of Building MCCL Macro Sequences in the Command Set Introduction
chapter.

MD Macro Define
MCCL command: MDn n = integer > = 0, < = 1000
see also: ET, GT, MD, RM
Used to define a new macro. This is done by placing the Macro Define command as the first
command in a sequence of commands. All commands following the Macro Define command will be
included in the macro. See the description of Building MCCL Macro Sequences in the DCX
Operation chapter.

Macros will erased if power to the board is turned off. A macro can be redefined but the memory
space occupied by the previous version of the macro will not be reused until a Reset Macro command
is issued. Thus, if macro n already exists when a Macro Define command for that macro is issued, the
previously defined macro will be replaced by the new macro definition.

MJ Macro Jump
MCCL command: MJn n = integer > = 0, < = 1000
see also: ET, GT, MD
Jumps to a previously defined macro. This command differs from the Macro Call command in that
execution will not return to the command following the MJ command. See the description of Building
MCCL Macro Sequences in the DCX Operation chapter.

NO No Operation
MCCL command: NO
This command does nothing. It can be used to cause short delays in command line executions or as a
filler in sequence commands.

Reset Macros
MCCL command: RM
This command will initialize the memory space used for storage of macro commands. It has the effect
of erasing currently defined macros from memory. It is also the only way in which macro commands
can be removed from memory after they are defined. It is always a good idea to use the Reset Macro
command (RM) before setting up a new set of macro commands. See the description of Building
MCCL Macro Sequences in the Working with MCCL Commands chapter.

Macro and Multi-tasking Commands

DCX-PCI100 User’s Manual

443

TM Tell Macros
MCCL command: TMn n = integer >= -1, <= 1000
see also: MD, RM
Displays the commands which make up any macros which have been defined. If n = -1, all macros will
be displayed. Since macros may be defined in any sequence, the TM command is useful for
confirming the existence and/or contents of macro commands. In addition to the contents of macros,
this command will also show the amount of memory available for macro storage, both in RAM and
FLASH memory. See the description of Building MCCL Macro Sequences in the DCX Operation
chapter.

MCCL Register Commands

Precision MicroControl

444

Chapter Contents

DCX-PCI100 User’s Manual

445

MCCL Register Commands

AA Accumulator Add
MCCL command: AAn n = integer or real
Performs ACC = ACC + n, the addition of the command parameter n to the Accumulator (User
Register 0). If the command parameter is in integer format, the result is stored in the Accumulator as a
32 bit integer. If the command parameter is in real format, the result is stored in the Accumulator
(User Register 0 and 1) as a 64 bit real value.

AC Accumulator Complement, bit wise
MCCL command: AC
Performs ACC = !ACC, the bit wise logical complement of the Accumulator (User Register 0). The
result is stored in the Accumulator as a 32 bit integer.

AD Accumulator Divide
MCCL command: ADn n = integer or real
Performs ACC = ACC/n, the division of the Accumulator (User Register 0) by the command
parameter. If the command parameter is in integer format, the result is stored in the Accumulator as a
32 bit integer. If the command parameter is in real format, the result is stored in the Accumulator
(User Register 0 and 1) as a 64 bit real value. No operation is done if the command parameter is zero.

AE Accumulator logical Exclusive or with ‘n’ , bit wise
MCCL command: AEn n = integer or real
Performs ACC = ACC ^ n, the bit wise logical exclusive or'ing of the Accumulator (User Register 0)
with the command parameter. The result is stored in the Accumulator as a 32 bit integer.

Chapter

33

MCCL Register Commands

Precision MicroControl

446

AL Accumulator load
MCCL command: ALn n = integer or real
Loads the Accumulator (User Register 0) with n . If the command parameter is an integer (no decimal
point or exponent label) the Accumulator will be marked as containing a 32 bit integer, otherwise it will
be marked as containing a 64 bit real value.

AL1234567890 ;Load 1234567890 into the accumulator
AL1234.56789 ;Load 1234.56789 into the accumulator
AL0.123456789e4 ;Load 1234.56789 into the accumulator

AM Accumulator Multiply
MCCL command: AMn n = integer or real
Performs ACC = ACC * n, the multiplication of the Accumulator (User Register 0) by the command
parameter. If the command parameter is in integer format, the result is stored in the Accumulator as a
32 bit integer. If the command parameter is in real format, the result is stored in the Accumulator
(User Register 0 and 1) as a 64 bit real value.

AN Accumulator logical ‘aNd’ the ‘n’ , bit wise
MCCL command: ANn n = integer or real
Performs ACC = ACC & n, the bit wise logical AND of the Accumulator (User Register 0) with the
command parameter. The result is stored in the Accumulator as a 32 bit integer.

AO Accumulator logical ‘Or’ with ‘n’ , bit wise
MCCL command : AOn n = integer or real
Performs ACC = ACC | n, the bit wise logical OR of the Accumulator (User Register 0) with the
command parameter. The result is stored in the Accumulator as a 32 bit integer.

AR copy Accumulator to Register
MCCL command: ARn n = integer or real
Copies the contents of the Accumulator (User Register 0) to the User Register specified by n. The
contents of the Accumulator are unaffected by this command.

AS Accumulator Subtract
MCCL command: ASn n = integer or real
Performs ACC = ACC - n, the subtraction of the command parameter from the Accumulator (User
Register 0). If the command parameter is in integer format, the result is stored in the Accumulator as a
32 bit integer. If the command parameter is in real format, the result is stored in the Accumulator
(User Register 0 and 1) as a 64 bit real value.

MCCL Register Commands

DCX-PCI100 User’s Manual

447

AV Accumulator eValuate
MCCL command: AVn n = integer >= 0, <=25

Performs a unary operation on the contents of the Accumulator (User Register 0), placing the result in
the Accumulator, overwriting the original contents. Parameter n specifies the desired operation. The
table below list the available operations and the respective command parameter to use. The result
that is stored in the Accumulator (1<= n <= 25) will be a 64 bit real in all cases except the Convert to
ASCII operation which returns an integer.

Parameter n = Operation Return type

1 Convert to ASCII (Address placed in ACC) Integer
2 Change Sign Double
3 Absolute Value Double
4 Ceiling Double
5 Floor Double
6 Fraction Double
7 Round Double
8 Square Double
9 Square Root Double

10 Sine Double
11 Cosine Double
12 Tangent Double
13 Arc Sine Double
14 Arc Cosine Double
15 Arc Tangent Double
16 Hyperbolic Sine Double
17 Hyperbolic Cosine Double
18 Hyperbolic Tangent Double
19 Exponent Double
20 Log Double
21 Log10 Double
22 Load Pi Double
23 Load 2 * Pi Double
24 Load Pi/2 Double
25 Convert double register contents to an integer Integer

GA Get Analog
MCCL command: GAx x = Channel number
Performs analog to digital conversion on the specified input channel and places the result into the
Accumulator (User Register 0). Analog channels are numbered starting with 1.

MCCL Register Commands

Precision MicroControl

448

GD Get the module iD
MCCL command: GDx x= integer > 0, <= 8
Loads the accumulator with the type of motor module associated with an axis number

Module Type ID code
MC100 5
MC110 4

GU Get defaUlt axis
MCCL command: GU
 The DCX-PCI100 defaults to setting the default axis to zero. If the user executes a motion or setup
command with the axis specifier missing, the default axis will be used. In most cases a motion or
setup command issued to axis zero commands that operation to all axes. By defining a non-zero
default axis, the user can execute ‘generic’ macro’s (no axis number specified) to any axis.
This Get default axis is used to report the current default axis by placing the current setting into the
accumulator. The default axis is defined by using the setup command set the defaUlt Axis (UAn).

LU Look Up variable
MCCL command: LUs s= string parameter (“variable name”)
Loads the accumulator with the memory location for a motor table data entry. For additional
information including a complete listing of variable names please refer to the description of Reading
Data from DCX Memory in Chapter 20 of this manual.

OA Output Analog
MCCL command: OAx x = integer or real
compatibility MC500, MC520
Sets the analog output of channel x to the value stored in the Accumulator (User Register 0). The
analog output channels on any installed MC500 modules are numbered consecutively starting with
channel 1. The contents of the Accumulator should be in the range 0 to 4095.

RA copy Register to Accumulator
MCCL command: RAn n = integer or real
Copies the contents of the User Register n into the Accumulator (User Register 0). The original
contents of the accumulator is overwritten, while the contents of the source User Register are
unaffected.

MCCL Register Commands

DCX-PCI100 User’s Manual

449

RB Read the Byte at absolute memory location ‘n’ into the
 accumulator
MCCL command: aRBn a = Axis number n = integer
This command will copy the contents of the byte located at absolute memory address n into the
Accumulator (User Register 0). Alternatively, if an axis number is specified with the command, the
contents of a byte located within that axes' motor table will be copied into the accumulator. In this
case the command parameter specifies the offset of the byte from the beginning of that axes motor
table. The Reading DCX Memory section of this chapter lists the offsets of all data in the motor
tables. The upper bits of the Accumulator are cleared when the byte data is copied into it.

RD Read the Double (64 bit real) value at absolute memory
 location ‘n’ into the accumulator
MCCL command: aRDn a = Axis number n = real
This command will copy the contents of the Double (64 bit real) located at absolute memory address n
into the Accumulator (User Register 0). Alternatively, if an axis number is specified with the command,
the contents of a Double located within that axes' motor table will be copied into the accumulator. In
this case the command parameter specifies the offset of the Double from the beginning of that axes
motor table. The Reading DCX Memory section of this chapter lists the offsets of all data in the motor
tables.

RL Read the Long (32 bit integer) value at absolute memory
 location ‘n’ into the accumulator
MCCL command: aRLn a = Axis number n = integer
This command will copy the contents of the Long (32 bit integer) located at absolute memory address
n into the Accumulator (User Register 0). Alternatively, if an axis number is specified with the
command, the contents of a Long located within that axes' motor table will be copied into the
accumulator. In this case the command parameter specifies the offset of the Long from the beginning
of that axes motor table. The Reading DCX Memory section of this chapter lists the offsets of all data
in the motor tables.

RV Read the float (32 bit real) value at absolute memory
 location ‘n’ into the accumulator
MCCL command: aRVn a = Axis number n = real
This command will copy the contents of the Float (32 bit real) located at absolute memory address n
into the Accumulator (User Register 0). Alternatively, if an axis number is specified with the command,
the contents of a Float located within that axes' motor table will be copied into the accumulator. In this
case the command parameter specifies the offset of the Float from the beginning of that axes motor
table. The Reading DCX Memory section of this chapter lists the offsets of all data in the motor
tables.

MCCL Register Commands

Precision MicroControl

450

RW Read the Word (16 bit integer) value at absolute memory
 location ‘n’ into the accumulator
MCCL command: aRWn a = Axis number n = integer
This command will copy the contents of the Word (16 bit integer) located at absolute memory address
n into the Accumulator (User Register 0). Alternatively, if an axis number is specified with the
command, the contents of a Word located within that axes' motor table will be copied into the
accumulator. In this case the command parameter specifies the offset of the Word from the beginning
of that axes motor table. The Reading DCX Memory section of this chapter lists the offsets of all data
in the motor tables.

SL Shift Left accumulator by ‘n’ bits
MCCL command: SLn n = integer > 0, < = 31
Performs ACC = ACC << n, the logical shift of the Accumulator (User Register 0) to the left. The
command parameter specifies the number of bits to shift the accumulator. Zero bits will be shifted in
on the right. The result is stored in the Accumulator as a 32 bit integer.

SR Shift Right accumulator by ‘n’ bits
MCCL command: SRn n = integer > 0, < = 31
Performs ACC = ACC >> n , the logical shift of the Accumulator (User Register 0) to the right. The
command parameter specifies the number of bits to shift the accumulator. Zero bits will be shifted in
on the left. The result is stored in the Accumulator as a 32 bit integer.

TR Tell Register ‘n’
MCCL command: TRn n = integer >= 0, <= 256
compatibility: N/A
see also: AL, AR
Displays the contents of User Register n. When the command parameter is set to 0 (or not specified),
this command reports the contents of User Register zero, which is the accumulator.

MCCL Register Commands

DCX-PCI100 User’s Manual

451

MCCL Sequence (If/Then) Commands

Precision MicroControl

452

Chapter Contents

DCX-PCI100 User’s Manual

453

MCCL Sequence (If/Then) Commands

DF Do if channel oFf
MCCL command: DFx x = Channel number
Used for conditional execution of commands. If digital I/O channel x is "off", commands that follow on
the command line or in the macro will be executed. Otherwise the rest of the command line or macro
will be skipped. See the description of Digital I/O in the DCX General Purpose I/O chapter.

DF2,1MR1000 ;If channel 2 is off move 1000

DN Do if channel ‘x’ is oN
MCCL command: DNx x = Channel number
Used for conditional execution of commands. If digital I/O channel x is "on", commands that follow on
the command line or in the macro will be executed. Otherwise the rest of the command line or macro
will be skipped. See the description of Digital I/O in the DCX General Purpose I/O chapter.

DN2,1MR1000 ;If channel 2 is off move 1000

IB If the accumulator is Below ‘n’, execute the next command,
 else skip 2 commands
MCCL command: IBn n = integer or real
Used for conditional execution of commands. If the contents of the accumulator (User Register 0) is
less than n, command execution will continue with the command following the IB command.
Otherwise the two commands following the IB command will be skipped, and command execution will
continue from the third command. See the description of Digital I/O in the DCX General Purpose
I/O chapter.

IB0,MJ10,NO,MJ11 ;If the accumulator contents is less
 ;than 10 jump to macro 10, otherwise
 ;jump to macro 11

Chapter

34

MCCL Sequence (If/Then) Commands

Precision MicroControl

454

IC If bit ‘n’ of the accumulator is Clear (equal to 0), execute the
 next command, else skip 2 commands
MCCL command: ICn n = integer >= 0, <= 31
Used for conditional execution of commands. If the contents of the accumulator (User Register 0) has
bit n reset, command execution will continue with the command following the IC command. Otherwise
the two commands following the IC command will be skipped, and command execution will continue
from the third command.

IC3,MJ10,NO,MJ11 ;If accumulator bit 3 is cleared jump
 ;to macro 10, otherwise jump to macro
 ;11

IE If the accumulator Equals “n”, execute the next command, else
 skip 2 commands
MCCL command: IEn n = integer or real

Used for conditional execution of commands. If the contents of the accumulator (User Register 0)
equals n, command execution will continue with the command following the IE command. Otherwise
the two commands following the IE command will be skipped, and command execution will continue
from the third command.

IE0,MJ10,NO,MJ11 ;If accumulator contents equals 0 jump
 ;to macro 10, otherwise jump to macro
 ;11

IF If channel oFf do next command, else skip 2 commands
MCCL command: IFx x = Channel number
Used for conditional execution of commands. If digital I/O channel x is "off", command execution will
continue with the command following the IF command. Otherwise the two commands following the IF
command will be skipped, and command execution will continue from the third command. See the
description of Digital I/O in the DCX General Purpose I/O chapter.

IF5,MJ10,NO,MJ11 ;If digital input #5 is off jump to
 ;macro 10, otherwise jump to macro 11

IG If the accumulator is Greater than ‘n’ execute the next
 command, else skip 2 commands
MCCL command: IGn n = integer or real
Used for conditional execution of commands. If the contents of the accumulator (User Register 0) is
greater than n, command execution will continue with the command following the IG command.
Otherwise the two commands following the IG command will be skipped, and command execution will
continue from the third command. See the description of Digital I/O in the DCX General Purpose I/O
chapter.

MCCL Sequence (If/Then) Commands

DCX-PCI100 User’s Manual

455

IG0,MJ10,NO,MJ11 ;If the accumulator contents is
 ;greater than 0 jump to macro 10,
 ;otherwise jump to macro 11

IN If channel ’ oN do next command, else skip 2 commands
MCCL command: INx x = Channel number
Used for conditional execution of commands. If digital I/O channel x is "on", command execution will
continue with the command following the IN command. Otherwise the two commands following the IN
command will be skipped, and command execution will continue from the third command. See the
description of Digital I/O in the DCX General Purpose I/O chapter.

IN5,MJ10,NO,MJ11 ;If digital input #5 is on jump to
 ;macro 10, otherwise jump to macro 11

IP Interrupt (set breakpoint reached flag) on absolute Position
MCCL command: IPn n = integer or real
compatibility: MC100, MC110
This command is used to indicate when an axis has reached a specific position. The position is
specified by parameter n as a relative distance from the axis home position. When the specified
position has been reached, the DCX will set the "breakpoint reached" flag in the motor status for that
axis. The IP command can be issued to an axis before or after it has been commanded to move.

IR Interrupt (set breakpoint reached flag) upon reaching Relative
 position
MCCL command: IRn n = integer or real
compatibility: MC100, MC110
This command is used to indicate when an axis has reached a specific position. The position is
specified by parameter n as a relative distance from the target position established by the last motion
command. When the specified position has been reached, the DCX will set the "breakpoint reached"
flag in the status for that axis. The IR command can be issued to an axis before or after it has been
commanded to move.

IS If bit ‘n’ of the accumulator is Set execute the next command,
 else skip 2 commands
MCCL command: ISn n = integer >= 0, <= 31
Used for conditional execution of commands. If the contents of the accumulator (User Register 0) has
bit n set, command execution will continue with the command following the IS command. Otherwise
the two commands following the IS command will be skipped, and command execution will continue
from the third command.

IS3,MJ10,NO,MJ11 ;If accumulator bit 3 is set jump to
 ;macro 10, otherwise jump to macro 11

MCCL Sequence (If/Then) Commands

Precision MicroControl

456

IU If the accumulator is Unequal to “n” execute the next
 command, else skip 2 commands
MCCL command: IUn n = integer or real
Used for conditional execution of commands. If the contents of the accumulator (User Register 0)
does not equal n, command execution will continue with the command following the IU command.
Otherwise the two commands following the IU command will be skipped, and command execution will
continue from the third command.

IU0,MJ10,NO,MJ11 ;If accumulator contents is unequal to
 ;0 jump to macro 10, otherwise jump to
 ;macro 11

JP JumP to command absolute
MCCL command: JPn n = integer
Jumps to the specified command in the current command string or macro. Commands are numbered
consecutively starting with 0.

IE0,JP5,NO,1MR1000,1WS,1MR2000,1WS ;If accumulator equals 0 jump to
 ;1MR2000

JR Jump to command Relative
MCCL command: JRn n = integer
Jumps forward or backward by n commands in the current command string or macro. Specifying a
positive value will cause a forward jump in the command string or macro. Specifying a negative value
will cause a backward jump. A jump of relative 0 will cause the command to jump to itself.

1MR1000,1WS.005,IE0,JR-3 ;If accumulator equals 0 jump to
 ;1MR1000

RP RePeat
MCCL command: RPn n = integer > = 0, < = 2,147,483,647
This command causes all the commands preceding the RP command to be executed n + 1 times. If n
is not specified or is 0 then the commands are repeated indefinitely. Note - There can be only one RP
command in a command string or macro.

TP,RP999 ;Display the position of axis #1, 1000
 ;times

WA WAit
MCCL command: WAn n = integer or real >= 0
Insert a wait period of n seconds before going on to the next command. If this command was issued
from an ASCII interface, it can be aborted by sending an Escape character.

MCCL Sequence (If/Then) Commands

DCX-PCI100 User’s Manual

457

1TP,WA0.1,RP9 ;Display the position of axis #1, 10
 ;times with a delay of one tenth of a
 ;second between displays

WE Wait for Edge
MCCL command: aWEx x = 0 or 1
compatibility: MC100, MC110
see also: FE
Wait until the coarse home input of a servo is at the specified logic level, and then continue operation.
If x is not specified or is 0, wait for coarse home to go active. If x is 1 wait, for coarse home to go
inactive. If this command was issued from an ASCII interface, it can be aborted by sending an Escape
character.

WF Wait for digital channel oFf
MCCL command: WFx x = Channel number
compatibility: MC400
see also: WN
Wait until digital I/O channel x is "off" before continuing to the next command on the command line or
in the macro. If this command was issued from an ASCII interface, it can be aborted by sending an
Escape character.

WI Wait for encoder Index mark
MCCL command: aWIn a = Axis number n = integer or real >= 0
compatibility: MC100, MC110
see also: FI
Wait until the index pulse has been observed on servo axis a. This command should be used after a
Index Arm command has been issued to the axis, even if it is known that the index pulse has occurred
(this command performs internal operations). To complete the indexing function, a Motor On (aMN)
command should also be issued to axis a to re-initialize the position registers to n. If this command
was issued from an ASCII interface, it can be aborted by sending an Escape character.

WN Wait for digital channel oN
MCCL command: WNx x = Channel number
compatibility: MC400
see also: WF
Wait until digital I/O channel x is "on" before continuing to the next command on the command line or
in the macro. If this command was issued from an ASCII interface, it can be aborted by sending an
Escape character.

MCCL Sequence (If/Then) Commands

Precision MicroControl

458

WP Wait for absolute Position
MCCL command: aWPn n = integer or real
compatibility: MC100, MC110
see also:
This command is used to delay command execution until axis a has reached a specific position. The
position is specified by the command parameter as a relative distance from the home position of the
axis. When the specified position has been reached, the DCX will set the "breakpoint reached" flag in
the status for that axis, and then continue execution of commands following WP. The WP command
will typically be issued to an axis after it has been commanded to move. If this command was issued
from an ASCII interface, it can be aborted by sending an Escape character.

WR Wait for Relative position
MCCL command: aWRn n = integer or real
compatibility: MC100, MC110
see also:
This command is used to delay command execution until axis a has reached a specific position. The
position is specified by the command parameter as a relative distance from the target position
established by the last motion command. When the specified position has been reached, the DCX will
set the "breakpoint reached" flag in the status for that axis, and then continue execution of commands
following WR. The WR command will typically be issued to an axis after it has been commanded to
move. If this command was issued from an ASCII interface, it can be aborted by sending an Escape
character.

WS Wait for Stop
MCCL command: aWSn n = integer or real
compatibility: MC100, MC110
see also: Wait (a period of time), Wait for target reached
Will delay execution of the next command in the sequence until the trajectory generator for axis a (or
all axes if axis specifier a = 0) has completed the current motion. The command parameter n specifies
an additional time period (in seconds) that the controller will wait before continuing execution of the
commands following WS.

3MR1000,WS0.1,MR-1000 ;Perform a forward then backward
 ;motion sequence

comment: If the WS command was not used in the above example, there would be no motion of the
axis. The reason being that the target position would simply be changed twice. The computer would
add 1000 counts to the target position then subtract the same amount. This would take place far
quicker than the axis could begin moving.

MCCL Sequence (If/Then) Commands

DCX-PCI100 User’s Manual

459

WT Wait for Target
MCCL command: aWTn n = integer or real
compatibility: MC100, MC110
see also: WA, WS
This command will delay command execution until axis a (or all axes if axis specifier a = 0) has
reached its target position. Parameter n specifies an additional time period (in seconds) that the
controller will wait before continuing execution of the commands following WT. The conditions for a
servo to have reached its' target, is that it remains within the position DeadBand for the time period
specified by the Delay at Target parameter ‘n’.

3MR1000,WT0.1,MR-1000 ;Perform a forward then backward
 ;motion sequence

comment: If the WT command was not used in the above example, there would be no motion of the
axis. The reason being that the target position would simply be changed twice. The computer would
add 1000 counts to the target position then subtract the same amount. This would take place far
quicker than the axis could begin moving.

MCCL Miscellaneous Commands

Precision MicroControl

460

Chapter Contents

DCX-PCI100 User’s Manual

461

Miscellaneous Commands

DM Decimal Mode
MCCL command: DM
see also: HM
Input and output numbers in decimal format.
comment: The Decimal Mode command must be "executed" by the DCX before commands can be
issued with decimal formatted parameters. The Decimal Mode (DM) and Hexadecimal Mode (HM)
commands cannot be in the same command string.

DW Disable Watchdog
MCCL command: DM
see also:
Disable the processor watchdog circuit.
comment: This command is reserved for factory use only.

FD Output text with Doubles
MCCL command: FDs s = string parameter
see also: FT, OD, OT
This command places a formatted message string and double precision values into DCX memory.
Upon completion of this command the memory address where the formatted message is stored is
available in the accumulator (register 0). For additional information please refer to the description of
Outputting Formatted Message Strings in Chapter 6.

FT Output Text with integers
MCCL command: FDs s = string parameter
see also: FD, OD, OT
This command places a formatted message string and integer values into DCX memory. Upon
completion of this command the memory address where the formatted message is stored is available

Chapter

35

MCCL Miscellaneous Commands

Precision MicroControl

462

in the accumulator (register 0). For additional information please refer to the description of Outputting
Formatted Message Strings in Chapter 6.

HE display the supported MCCL commands
MCCL command: HE
explanation: Reports the valid DCX command mnemonics for the installed software version.

HM Hexadecimal Mode
MCCL command: HM
see also: DM
Input and output numbers in hexadecimal format.
comment: The Hexadecimal Mode command must be executed by the DCX before commands can
be issued with hexadecimal formatted parameters. The Hexadecimal Mode (HM) and Decimal Mode
(DM) and commands cannot be in the same command string. If a command parameter is to be
entered in hexadecimal format, and the number starts with either A, B, C, D, E, or F, it must be
preceded by a '0' (zero).

NO No Operation
MCCL command: NO
This command does nothing. It can be used to cause short delays in command line executions or as a
filler in sequence commands.

OD Output text with Doubles
MCCL command: ODs s = string parameter
see also: FD, FT, OT
This command allows the user to send formatted message strings and double precision values to the
ASCII interface (WinControl). For additional information please refer to the description of Outputting
Formatted Message Strings in Chapter 6.

OT Output Text with integers
MCCL command: OTs s = string parameter
see also: FD, FT, OD
This command allows the user to send formatted message strings and integer values to the ASCII
interface (WinControl). For additional information please refer to the description of Outputting
Formatted Message Strings in Chapter 6.

MCCL Miscellaneous Commands

DCX-PCI100 User’s Manual

463

RT ReseT
MCCL command: aRT a = Axis number (0 resets the entire controller)
compatibility: MC100, MC110 , MC400, MC5X0
see also: Default Settings in the Appendix
Performs a reset of the entire controller or a specific axis. If an axis number is specified when the
command is issued, just that axis will be reset. If no axis is specified, the entire controller and all
installed axes will be reset. When an axis is reset, the default conditions such as acceleration and
velocity will be restored, and the axes will be placed in the "off" state.

MCCL Error Codes

Precision MicroControl

464

Chapter Contents

• MCAPI Error codes

• MCCL Error codes

DCX-PCI100 User’s Manual

465

MCCL Error Codes

Both the MCAPI and the Motion Control Command Language (MCCL) provide error code and
interface status information to the user.

Chapter

36

MCCL Error Codes

Precision MicroControl

466

MCCL Error Codes
When executing MCCL (Motion Control Command Language) command sequences the command
interpreter will report the following error code when appropriate:

Description Error code
No error 0
Unrecognized command 1
Bad command format 2
I/O error 3
Command string to long 4

Command Parameter Error -1
Command Code Invalid -2
Negative Repeat Count -3
Macro Define Command Not First -4
Macro Number Out of Range -5
Macro Doesn't Exist -6
Command Canceled by User -7
 -8
 -9
 -10
No axis specified -14
Axis not assigned -15
Axis already assigned -16
Axis duplicate assigned -17

Many error code reports will not only include the error code but also the offending command. In the
following example the Reset Macro command was issued. This command clears all macro’s from
memory. The next command sequence turns on 3 motors and then calls macro 10. The command
MC10 is a valid command but with no macros in memory error code –6 is displayed.

MCCL Error Codes

DCX-PCI100 User’s Manual

467

Printing a PDF Document

Precision MicroControl

468

Chapter Contents

• Introduction to PDF

• Printing a complete PDF document

• Printing selected pages of a PDF document

• Paper

• Binding

• Pricing

• Obtaining a Word 2000 version of this user manual

DCX-PCI100 User’s Manual

469

Printing a PDF Document

Introduction to PDF
PDF stands for Portable Document Format. It is the defacto standard for transporting electronic
documents. PDF files are based on the PostScript language imaging model. This enables sharp,
color-precise printing on almost all printers.

Printing a complete PDF document
It is not recommended that large PDF documents be printed on personal computer printers. The
‘wear and tear’ incurred by these units, coupled with the difficulties of two sided printing, typically
resulting in degraded performance of the printer and a whole lot of wasted paper. PMC recommends
that PDF document be printer by a full service print shop that uses digital (computer controlled) copy
systems with paper collating/sorting capability.

Printing selected pages of a PDF document
While viewing a PDF document with Adobe Reader (or Adobe Acrobat), any page or range of pages
can be printed by a personal computer printer by:

 Selecting the printer icon on the tool bar
 Selecting Print from the Adobe File menu

Paper
The selection of the paper type to be used for printing a PDF document should be based on the target
market for the document. For a user’s manual with extensive graphics that is printed on both sides of
a page the minimum recommended paper type is 24 pound. A heavier paper stock (26 – 30 pound)
will reduce the ‘bleed through’ inherent with printed graphics. Typically the front and back cover pages
are printed on heavy paper stock (50 to 60 pound).

Binding
Unlike the binding of a book or catalog, a user’s manual distributed in as a PDF file will typically use
‘comb’ or ‘coil’ binding. This service is provided by most full service print shops. Coil binding is

Chapter

37

Printing a PDF Document

Precision MicroControl

470

suitable for documents with no more than 100 pieces of paper (24 pound). Comb binding is
acceptable for documents with as many as 300 pieces of paper (24 pound). Most print shops stock a
wide variety of ‘combs’. The print shop can recommend the appropriate ‘comb’ based on the number
of pages.

Pricing
The final cost for printing and binding a PDF document is based on:

• Quantity per print run
• Number of pages
• Paper type

The price range for printing and binding a PDF document similar to this user manual will be $15 to
$30 (printed in Black & White) in quantities of 1 to 10 pieces.

Obtaining a Word 2000 version of this user manual
This user document was written using Microsoft’s Word 2000. Qualified OEM’s, Distributors, and
Value Added Reps (VAR’s) can obtain a copy of this document for

• Editing
• Customization
• Language translation.

Please contact Precision MicroControl to obtain a Word 2000 version of this document.

DCX-PCI100 User’s Manual

471

Glossary

Accuracy - A measure of the difference between the expected position and actual position of a motion
system.

Actuator - Device which creates mechanical motion by converting energy to mechanical energy.

Axis Phasing - An axis is properly phased when a commanded move in the positive direction causes
the encoder decode circuitry of the controller to increment the reported position of the axis.

Back EMF - The voltage generated when a permanent magnet motor is rotated. This voltage is
proportional to motor speed and is present regardless of whether the motor windings are energized or
de-energized.

Closed Loop - A broadly applied term, relating to any system in which the output is measured and
compared to the input. The output is then adjusted to reach the desired condition. In motion control,
the term typically describes a system utilizing a velocity and/or position transducer to generate
correction signals in relation to desired parameters.

Commutation - The action of applying currents or voltages to the proper motor phases in order to
produce optimum motor torque.

Critical Damping - A system is critically damped when the response to a step change in desired
velocity or position is achieved in the minimum possible time with little or no overshoot.

DAC - The digital-to-analog converter (DAC) is the electrical interface between the motion controller
and the motor amplifier. It converts the digital voltage value computed by the motion controller into an
analog voltage. The more DAC bits, the finer the analog voltage resolution. DACs are available in
three common sizes: 8, 12, and 16 bit. The bit count partitions the total peak-to-peak output voltage
swing into 256, 4096, or 65536 DAC steps, respectively.

Chapter

38

Glossary

Precision MicroControl

472

Dead Band - A range of input signals for which there is no system response.

Driver - Electronics which convert step and direction inputs to high power currents and voltages to
drive a step motor. The step motor driver is analogous to the servo motor amplifier.

Dual Loop Servo – A servo system that combines a velocity mode amplifier/tachometer with a position
loop controller/encoder. It is recommended that the encoder not be directly coupled to the motor. The
linear scale encoder should be mounted on the external mechanics, as closely coupled as possible to
the ‘end effector’

Duty Cycle - For a repetitive cycle, the ratio of on time to total time:

Efficiency - The ratio of power output to power input.

Encoder - A type of feedback device which converts mechanical motion into electrical signals to
indicate actuator position or velocity.

End Effector – The point of focus of a motion system. The tools with which a motion system will work.
Example: The leading edge of the knife is the end effector of a three axis (XYZ) system designed to
cut patterns from vinyl.

Feed Forward - Defines a specific voltage level output from a motion controller, which in turn
commands a velocity mode amplifier to rotate the motor at a specific velocity.

Following Error - The difference between the calculated desired trajectory position and the actual
position.

Friction - A resistance to motion caused by contacting surfaces. Friction can be constant with varying
speed (Coulomb friction) or proportional to speed (viscous friction).

Holding Torque - Sometimes called static torque, holding torque specifies the maximum external
torque that can be applied to a stopped, energized motor without causing the rotor to rotate
continuously.

Inertia - The measure of an object's resistance to a change in its current velocity. Inertia is a function
of the object's mass and shape.

Kd - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘d’ designates derivative gain.

Ki - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘i’ designates integral gain.

Kp - K is a generally accepted variable used to represent gain, an arbitrary multiplier, or a constant.
The lower case ‘p’ designates proportional gain.

Glossary

DCX-PCI100 User’s Manual

473

Limits - Motion system sensors (hard limits) or user programmable range (soft limits) that alert the
motion controller that the physical end of travel is being approached and that motion should stop.

MCAPI - The Motion Control Application Programming Interface - this is the programming interface
used by Windows programmers to control PMC's family of motion control cards.

MCCL - Motion Control Command Language - this is the command language used to program PMC's
family of motion control cards.

Open Loop – A control system in which the control output is not referenced or scaled to an external
feedback.

Position Error - see following error.

Position Move - Unlike a velocity move, a position move includes a predefined stopping position. The
trajectory generator will determine when to begin deceleration in order to ensure the actual stopping
point is at the desired target position.

PWM - Pulse Width Modulation is a method of controlling the average current in a motor’s phase
windings by varying the duty cycle of transistor switches.

Repeatability - The degree to which the positioning accuracy for a given move performed repetitively
can be duplicated.

Resonance - A condition resulting from energizing a motor at a frequency at or close to the motor's
natural frequency.

Resolution - The smallest positioning increment that can be achieved.

Resolver - A type of feedback device which converts mechanical position into an electrical signal. A
resolver is a variable transformer that divides the impressed AC signal into sine and cosine output
signals. The amplitude of these signals represents the absolute position of the resolver shaft.

Slew - That portion of a move made at constant, non-zero velocity.

Step Response - An instantaneous command to a new position. Typically used for tuning a closed
loop system, ramping (velocity, acceleration, and deceleration) is not applied nor calculated for the
move.

Tachometer - A device attached to a moving shaft that generates a voltage signal directly proportional
to rotational speed.

Torque -

Velocity Mode Amplifier – An amplifier that requires a tachometer to provide the feedback used to
close the velocity loop within the amplifier.

Glossary

Precision MicroControl

474

Velocity Move - A move where no final stopping position is given to the motion controller. When a start
command is issued the motor will rotate indefinitely until it is commanded to stop.

Glossary

DCX-PCI100 User’s Manual

475

Appendix

Precision MicroControl

476

Appendix Contents

• Power Supply Requirements

• Default Settings
•
• Troubleshooting Controller Operations

DCX-PCI100 User’s Manual

477

Appendix

Power Supply Requirements

Part Number +5 VDC +12 VDC -12 VDC Unit
DCX-PCI100 0.9 ----- ----- A

DCX-MC100 .25 .01 .01 A

DCX-MC110 .25 .01 - .5 * .01 A

DCX-MC400 .25 ----- ----- A

DCX-MC500 .1 * * A

* Current depends on output loading

Index

Precision MicroControl

478

Default Settings
Description Setting
Programmed Velocity 0
Programmed Acceleration / Deceleration 0

Proportional Gain 0
Derivative Gain 0
Derivative Sampling Frequency 0.000341
Integral Gain 0
Integration Limit 0

Maximum Allowable Following Error 0
Motion Limits disabled
Low Limit of Movement 0
High Limit of Movement 0

Position Count 0
Optimal Count 0
Index Count 0
Auxiliary Status 0
Position 0
Target 0
Optimal Position 0
Breakpoint Position 0
Position Dead band 0

User Scale 1
User Zero 0
User Offset 0
User Rate Conversion 1
User Output Constant 1

Glossary

DCX-PCI100 User’s Manual

479

Troubleshooting Controller Operations
On the following pages you will find troubleshooting flow charts to assist the with diagnosis of motion
control system failures.

The steps described in these flow charts will direct the user to PMC programs (Motion Integrator,
Motor Mover, CWdemo, etc...) and utilities (Servo Tuning, WinControl) that are used to diagnose and
resolve system operation.

Servo motors working
 as expected?

Go to the
Communications

Troubleshooting flow
chart

Is an Error message
displayed upon openning

a motion control program?
No

Go to the Servo
Motor

Troubleshooting flow
charts

Yes

No

Contact PMC technical
support.

General
purpose I/O (digital I/O and/

or analog I/O) working
 as expected?

No

Go to the General
Purpose I/O

Troubleshooting flow
charts

Is the DCX-PCI100
control system operating as

expected?

Yes

No

Axis I/O (Limits,
Home, Index, Amp Enable,

Amp Fault) working as
expected?

Yes

No

Go to the Limits and
Home

Troubleshooting flow
charts

Yes

Index

Precision MicroControl

480

Communications Troubleshooting

Open the
Windows Motion

Control Panel (Control
Panel / Motion Control).

Is the DCX-PCI100
 listed?

The DCX-PCI100 is not
responding as expected to:
Motion Control Panel, Motor

Mover, Servo Tuning, or
WinControl.

Either nothing happens
(lockup) or an error

message is displayed.

Verify
the DCX-PCI100
Drivers version.

Open MCAPI Readme.txt.
(Program FIles/Motion Control/

Motion Control API/
Readme.txt.

 Version >= 3.2.1?

Update the MFX-
PCI1000 drivers

(MCAPI). Uninstall the
old MCAPI, then
install the current

MCAPI. Refer to the
user's manual.

Does the
status of the

 MFX-PCI1000 = OK?

Yes

Contact PMC
 technical support.

Go to the Controller
Initialization

Troubleshooting
flowchart.

No

Yes

No No

Yes

Glossary

DCX-PCI100 User’s Manual

481

Controller Initialization Troubleshooting

Do all
of the 8 red

 Motor Error LED's
turn on within 1 second?

The MFX-PCI has
properly completed

initialization. Open the
Motion Control Panel
(Control Panel/Motion

Control) and verify that the
MFX-PCI1000 is present

and Status = OK.

Turn on the
PC power.

No

After an
 additional second do

2 to 3 of the red Motor Error
LED's turn
 back on?

By the
time that Windows

has completed loading has
the Green 'Run' LED turned
on and all of the red Motor

Error LED's turned
 off?

Yes

The MFX-PCI has
failed to load and/or

launch its motion
control code.

No

The DCX-PCI100 has
failed to initialize, contact
PMC technical support.

Remove all DCX
modules from the

DCX-PCI100. Repeat
the Power On

Initialization test.

No

Remove all DCX
modules from the

DCX-PCI100. Repeat
the Power On

Initialization test.

The DCX-PCI100 has
failed to initialize, contact
PMC technical support.

Shutdown the PC
and remove the MFX-
PCI1000. Follow the
MCAPI installation

procedures.

Are PMC's
Windows Drivers (MCAPI

3.4.1 or higher)
 installed?

Yes

Contact PMC technical
support..

Yes

Yes

No

Index

Precision MicroControl

482

Servo Motion troubleshooting

Are all error
LED's off?

Yes

Resolve the error
condition (limit+/-,

following error,
amp fault, ...)

Is the
motor on?

Yes

No

The servo control system
has failed.

Contact PMC technical
support

A servo motor does not
move when commanded

No

Turn the
motor on

MCEnable
Axis()

No

The encoder
may have

failed, refer to
the encoder

checkout

Does
the motor resist

rotation?

Yes

No

Yes

Did
the encoder
checkout?

Tune the
servo using
the Servo

Tuning utility

Is the
motion OK?

Replace the
encoderNo

Glossary

DCX-PCI100 User’s Manual

483

Limits and Home Troubleshooting

Limit
 input wired

correctly

Connect
voltmeter to the

Limit input pin. Activate
Limit sensor. Voltage

drops below 0.7
 volts?

Yes

The DCX-PCI100 is
recognizing the state of
the Limt sensor. Make

sure that Limts are
enabled {MCSetLimits()}.

If problem persists contact
PMC technical support.

Refer to the
User's

Manual for
wiring

examples

Problem
 with a Limit

input?

Yes

No

With sensor
active, does the Motion
Integrator Test Panel
indicate that the Limit

sensor is active?

Yes

Yes

Home
 input wired

correctly

Connect
voltmeter to the

Home input pin. Activate
Limit sensor. Voltage

drops below 0.7
 volts?

Yes

Refer to the
DCX User's
Manual for

wiring
examples

No

With sensor
active, does the Motion
Integrator Test Panel

indicate that the Home
sensor is active?

Yes

The DCX-PCI100 is
recognizing the Home
and/or Index sensor.

 Contact PMC technical
support.

Issue
move command

toward home sensor,
followed by Find Index

and Stop. Did the
 motor stop?

Yes

DCX-PCI100 Limit
inputs are low active

TTL.
No

The DCX-PCI100
sensor input circuit

has failed.

Contact PMC
technical support

The DCX-PCI100 does not
handle Limits and/or Home

inputs as expected

DCX-PCI100 Home
inputs are low active

TTL.
No

DCX-PCI100 sensor
input circuit has

failed.

Contact PMC
technical support

No

Contact PMC
technical supportNo

No

No

Yes

Index

Precision MicroControl

484

Glossary

DCX-PCI100 User’s Manual

485

Index

Precision MicroControl

486

Index

DCX-PCI100 User’s Manual

487

Index

A

AB..184
Abort move ..419
AC..140
Acceleration........ 143, 145, 146, 148, 170, 228, 251

disable..52
set ..412
setting ..50, 84

AccelGain 144, 145, 163, 242
Accumulator

copy from register ..448
copy to register ..446
if below...453
if bit n clear ..454
if bit n set..455
if equal ...454
if greater...454
if unequal ...456
load ..446
load with byte...449
load with double...449
load with long...449
load with word..450
shift left...450
shift right ..450

Active level
limit switches..89

Addressing the controller...................................9, 59
Addressing the DCX-PCI100.................................19
AF ..202
AG ...164

AH ... 158
AL.. 175
AmpFault ... 149, 150
Amplifier fault

disable ... 409
enable.. 409

Analog I/O
configuring... 123
testing.. 123

Analog I/O test panels .. 53
Analog input

load in accumulator ... 447
reporting 124, 426, 437, 447

Analog output
calibration .. 125
description ... 122
max. loading.. 122
setting.. 125, 437, 448

AnalogInput ... 149, 278
AnalogOutput .. 149, 278
API

components... 18
installation ... 16

Application program samples 46, 47, 48, 49, 50
Application programming

C++.. 46
Delphi .. 48
LabVIEW ... 49
Visual Basic... 47

AR ... 175
AT ... 231
At target

commanding.. 97, 459
description ... 96

Index

Precision MicroControl

488

AZ ..230

B

Background task
generating..441
terminating ...441

BC..196
BD..194
BF ..194
BF022

mounting footprint ..384
BF100

mounting footprint ..389
BN..194
Breakpoint

on absilute position ..455

C

C++ programming ...46
CA..185
Calibration

analog module outputs125
CanChangeProfile149, 150, 256
CanChangeRates.......................................149, 150
CanDoContouring ... 149, 150, 160, 172, 185, 186,

187
CanDoScaling 141, 149, 150, 151, 175, 258
Capture data

actual position..108
following error ..108
optimal position..108

CaptureAndCompare139, 141
CaptureModes ...139, 140
CapturePoints ..139, 141
CB..195
cbSize 139, 141, 142, 144, 146, 149, 151, 231
CD ...189
CF..278
CG ...237
CH ...276
CI ...276
CL ..276
CM...172
CN ...278
Command interpreter error

report..427
Connector

DCX module pin numbering30
DCX-BF022 ...382, 383
DCX-BF100 ...387, 388
DCX-MC100 ..372
DCX-MC110 ..376
DCX-MC400 ..378
DCX-MC5X0 ..380

DCX-PCI100.. 368
Constant .. 147, 151
Contact Precision MicroControl vi, viii
Controller installation .. 19
ControllerType 149, 323, 344, 351
Converting

DCX-PCI100 from DCX-PC100 101
CP ... 295
CPU .. 11
CR... 185
CT ... 276
Current146, 147, 148, 170, 251, 345
Current position

report ... 428
Current sink/source

digital output .. 117, 364

D

DAC output
plotting... 52

DB ... 171
DC2PC100.. 149, 344
DC2SERVO .. 140, 344
DC2STEPPER.. 140, 344
DC2STN.. 149, 344
DCX Architecture .. 11
DCX command (MCCL)

description ... 64, 393
format .. 64
pausing a command / sequence 66
repeating ... 66
single stepping .. 110
terminating a command / sequence.................. 66

DCX controller communications
PCI bus.. 59

DCX module
connector pin numbering................................... 30

DCX modules.. 11
DCX system components

DCX-BF022... 39
DCX-BF100... 13
DCX-MC100, MC110 .. 12
DCX-MC110 .. 12
DCX-MC400 .. 12
DCX-MC5X0.. 12
DCX-PCI100.. 11
power supply cable ... 13

DCXAT100.. 149, 344
DCXAT200.. 149, 344
DCXAT300.. 149, 344
DCX-MC100, MC110

features ... 12
DCX-MC110

features ... 12
DCX-MC400

features ... 12

Index

DCX-PCI100 User’s Manual

489

DCX-MC500
features..12

DCXPC100..149, 344
DCX-PC100

converting to DCX-PCI100101
DCXPCI100...149, 344
DCX-PCI100

communications testing26
installation..19
resetting ...109

DCXPCI300...149, 344
Deadband 145, 146, 147, 148, 170, 222, 251
DeadbandDelay 146, 147, 148, 170, 222, 251
Deceleration 143, 146, 148, 170, 251

disable..52
setting ..50, 84

DecelGain 144, 145, 163, 242
Decimal mode ...461
Default directory

MCAPI..17
Default settings..478
Define home ..409
Delphi programming ..48
Derivative gain

description ...70
report..426
sampling period ...78, 79
set ..413
setting ..78

Derivative sampling period
set ..410

DerivativeGain ...144
DerSamplePeriod ..144
Device drivers..10
DG ...164
DH ...173
DI ...171, 190
Digital I/O

conf. as high true ...435
conf. as input ...435
conf. as low true...436
conf. as output ...436
configuring ...118
description ...117
next command if channel off... 436, 437, 453, 454
next command if channel on... 436, 437, 453, 455
output, max current..................................117, 364
PCI100, pin out ..368
report..426
testing ..118
turn off..120
turn off output...435
turn on..120
turn on output...436
wait for off ..457, 458
wait for on ..457

Digital I/O test panels ..53
DigitalIO..149, 281, 283

Digitial I/O
report input state ... 438

Direction.. 146
set.. 409
setting.. 86

Divisor .. 142
DO... 234
Download

text file ... 402
DQ... 234
DR... 234
Driver fault

disable ... 409
DS ... 161
DT ... 171
Dual ported memory

data tables... 477
description ... 477

E

EA ... 186
EL.. 191
EM... 149
EnableAmpFault................146, 147, 148, 170, 251
Encoder

checkout .. 71
descritpion ... 70
reversed phased ... 78
rollover... 105

Encoder index
capture .. 419
report position.. 432

Encoder Index
checkout .. 91
description ... 70

EncoderScaling... 144, 145
ER ... 186
Error codes

MCCL .. 466
reporting .. 427

Error LED's.. 367
E-stop

enable.. 103
examples ... 103
hard wired.. 103

ET ... 288

F

Fail safe operation
watchdog circuit... 114

FC ... 171
FE ... 203
FF.. 171
FI 205

Index

Precision MicroControl

490

Find encoder index..419
Firmware

update..55
Version...54

Firmware (operating code) update106
Firmware verson

report..433
FL ..162
Flash Wizard

update firmware ...106
FN..171
Following error

default setting ..72
defined ...413
description ...72
disable..72, 413
plotting ...52
set ..413, 427

FollowingError ...144, 253
Formatted messages...403
FR..164, 171
Friction

effects upon system...79

G

Gain...144, 145
GC ...237
GF..240
GH ...207
GM...172
GO...205, 206
GT..295

H

HardLimitMode ..146, 147
HC ...171
Hexidecimal mode...462
HighRate...139, 141
HighStepMax..139, 141
HighStepMin...139, 141
HL ..167
Home sensor

checkout...91
Homing an axis

encoder index ..92, 94
home sensor ..93
limit sensor...95
servo ..91

HS..171

I

IA 208

ID .. 149
IL 164
IM .. 168, 250
Inertia

effects upon system .. 78
Installation

DCX modules .. 29
DCX-BF022... 39
DCX-MC100, MC110 31, 35
DCX-MC400.. 39
DCX-MC5X0.. 40
DCX-PCI100.. 19
MCAPI ... 16
MCAPI over a previous installation 17
Software .. 16
testing the DCX-PCI100.................................... 26
verify DCX-PCI100 communication................... 22
verify 'plug & play'.. 21
Windows 2000.. 20
Windows 98.. 20
Windows Me... 20

Integral gain
description ... 70
report ... 427
set.. 413
setting.. 79

Integral limit
set.. 410

IntegralGain ... 144
IntegralOption ... 144
IntegrationLimit... 144
ISA bus

converting from.. 101

J

JA.. 165
JB.. 165
JF .. 200
JG ... 165
JN.. 200
JO ... 165
Jogging

description ... 87
Joystick controlled motion..................................... 87
Jumpering

DCX-BF022... 384
DCX-MC100.. 373
DCX-MC100, MC110 31, 35
DCX-MC110.. 377
DCX-PCI100.. 368

JV.. 165

L

LA.. 159

Index

DCX-PCI100 User’s Manual

491

LabVIEW programming ...49
LB ..159
LC ..156
LD ..159
LE ..159
Learning points..107, 420
LED's

error ...367
LF ..167
Limits

active level ...89
checkout...88
disable..88, 411
enable ..88, 412
hard (switch / sensor) ..88
homing an axis...95
inverting active level88, 89
mode..411
normally closed switch.................................88, 89
programmable..88
set high soft limit ..410
set low soft limit ...411

LL...167
LM..167, 171
LN ..167
loading DCX data

user register...406
Loading motor status...404
Logical operations

and...446
complement ...445
evaluate ...447
or 445, 446

LowRate..139, 141
LowStepMax ..139, 141
LowStepMin ...139, 141
LP ..209
LR ..159
LS ..171
LT ..209

M

MA ...210
Macro command

as background task..399
defining ..397, 442
described ...397
jump to absolute command..............................456
jump to relative ..456
memory size ..397
reporting...398
resetting (deleting)397, 442
starting ...442
volatile..397

Macro command reporting427, 443
Manual positioning ..87

Math operations
add .. 445
divide ... 445
multiply .. 446
subtract.. 446

MaximumAxes... 149
MaximumModules..................................... 149, 246
MC .. 289
MC_ABSOLUTE 185, 186, 344
MC_ALL_AXES .130, 158, 161, 167, 168, 173, 175,

176, 183, 192, 205, 206, 209, 210, 211, 212, 213,
228, 229, 230, 232, 235, 236, 237, 238, 239, 242,
243, 244, 245, 247, 249, 250, 251, 252, 253, 255,
256, 258, 260, 261, 262, 263, 264, 265, 266, 267,
270, 329, 332, 340, 344, 350, 351

MC_BLOCK_CANCEL 294, 295, 344
MC_BLOCK_COMPOUND................. 293, 295, 344
MC_BLOCK_CONTR_CCW....................... 294, 344
MC_BLOCK_CONTR_CW 294, 344
MC_BLOCK_CONTR_LIN.......................... 294, 344
MC_BLOCK_CONTR_USER 294, 344
MC_BLOCK_MACRO......................... 293, 295, 344
MC_BLOCK_RESETM 293, 294, 344
MC_BLOCK_TASK............................. 293, 295, 345
MC_CAPTURE_ACTUAL................... 141, 233, 345
MC_CAPTURE_ADVANCED............................. 345
MC_CAPTURE_ERROR 141, 233, 345
MC_CAPTURE_OPTIMAL 141, 233, 345
MC_CAPTURE_TORQUE.................. 141, 233, 345
MC_COMPARE_DISABLE......................... 196, 345
MC_COMPARE_ENABLE.......................... 196, 345
MC_COMPARE_INVERT................................... 345
MC_COMPARE_ONESHOT 345
MC_COMPARE_STATIC 345
MC_COMPARE_TOGGLE................................. 345
MC_COUNT_CAPTURE 237, 345
MC_COUNT_COMPARE 237, 345
MC_COUNT_CONTOUR 237, 345
MC_COUNT_FILTER 237, 345
MC_COUNT_FILTERMAX 237, 345
MC_CURRENT_FULL................................ 147, 345
MC_CURRENT_HALF 147, 345
MC_DATA_ACTUAL... 345
MC_DATA_ERROR.. 345
MC_DATA_OPTIMAL... 345
MC_DIO_FIXED ... 281, 345
MC_DIO_HIGH................................... 276, 281, 345
MC_DIO_INPUT 275, 276, 280, 345
MC_DIO_LATCH 276, 281, 345
MC_DIO_LATCHABLE............................... 281, 345
MC_DIO_LOW.................................... 276, 281, 345
MC_DIO_OUTPUT 276, 280, 345
MC_DIO_STEPPER 281, 345
MC_DIR_NEGATIVE.......................... 147, 190, 346
MC_DIR_POSITIVE............................ 147, 190, 346
MC_IM_CLOSEDLOOP 168, 250, 346
MC_IM_OPENLOOP 168, 250, 346
MC_INT_FREEZE 144, 346

Index

Precision MicroControl

492

MC_INT_NORMAL......................................144, 346
MC_INT_ZERO ...144, 346
MC_LIMIT_ABRUPT.................. 147, 166, 248, 346
MC_LIMIT_BOTH................................166, 248, 346
MC_LIMIT_HIGH...147
MC_LIMIT_INVERT 147, 166, 248, 346
MC_LIMIT_LOW ...147
MC_LIMIT_MINUS166, 248, 346
MC_LIMIT_OFF166, 248, 346
MC_LIMIT_PLUS166, 248, 346
MC_LIMIT_SMOOTH................. 147, 166, 248, 346
MC_LRN_POSITION208, 346
MC_LRN_TARGET.....................................208, 346
MC_MAX_ID..327, 346
MC_MODE_CONTOUR............. 171, 172, 252, 346
MC_MODE_GAIN171, 252, 346
MC_MODE_POSITION.......................171, 252, 346
MC_MODE_TORQUE.........................171, 252, 346
MC_MODE_UNKNOWN.............................252, 346
MC_MODE_VELOCITY171, 252, 346
MC_OM_BIPOLAR169, 346
MC_OM_CW_CCW169, 346
MC_OM_PULSE_DIR.................................169, 346
MC_OM_UNIPOLAR...................................169, 346
MC_OPEN_ASCII 299, 300, 301, 308, 310, 311,

313, 315, 347
MC_OPEN_BINARY299, 301, 347
MC_OPEN_EXCLUSIVE 299, 300, 301, 347
MC_PHASE_REV176, 259, 347
MC_PHASE_STD176, 259, 347
MC_PROF_PARABOLIC255, 347
MC_PROF_SCURVE..................................256, 347
MC_PROF_TRAPEZOID256, 347
MC_PROF_UNKNOWN..............................256, 347
MC_RATE_HIGH ..144, 347
MC_RATE_LOW ...144, 347
MC_RATE_MEDIUM...................................144, 347
MC_RATE_UNKNOWN144, 145, 347
MC_RELATIVE185, 186, 347
MC_STAT_ACCEL......................................347, 354
MC_STAT_AMP_ENABLE..........................347, 354
MC_STAT_AMP_FAULT347, 354
MC_STAT_AT_TARGET222, 347, 354
MC_STAT_BREAKPOINT347, 354
MC_STAT_BUSY..348, 354
MC_STAT_CAPTURE348, 354
MC_STAT_DIR ...348, 354
MC_STAT_EDGE_FOUND.........................268, 348
MC_STAT_ERROR.....................................348, 354
MC_STAT_FOLLOWING............................348, 354
MC_STAT_FULL_STEP348, 354
MC_STAT_HALF_STEP.............................348, 354
MC_STAT_HOMED348, 354
MC_STAT_INDEX_FOUND................269, 348, 354
MC_STAT_INP_AMP..................................348, 354
MC_STAT_INP_AUX202, 348, 354
MC_STAT_INP_HOME.............. 203, 217, 348, 354
MC_STAT_INP_INDEX...............................348, 354

MC_STAT_INP_MJOG............................... 348, 354
MC_STAT_INP_MLIM 348, 354
MC_STAT_INP_NULL.. 354
MC_STAT_INP_PJOG 348, 354
MC_STAT_INP_PLIM................................. 348, 354
MC_STAT_INP_USER1 348, 354
MC_STAT_INP_USER2 348, 354
MC_STAT_JOG_ENAB.............................. 348, 354
MC_STAT_JOGGING 348, 354
MC_STAT_LMT_ABORT 348, 354
MC_STAT_LMT_STOP 348, 354
MC_STAT_LOOK_EDGE........................... 348, 354
MC_STAT_LOOK_INDEX 348, 354
MC_STAT_MJOG_ENAB........................... 348, 354
MC_STAT_MJOG_ON 348, 354
MC_STAT_MLIM_ENAB 348, 354
MC_STAT_MLIM_TRIP.............................. 348, 354
MC_STAT_MODE_ARC............................. 348, 354
MC_STAT_MODE_CNTR 348, 354
MC_STAT_MODE_LIN............................... 348, 354
MC_STAT_MODE_POS............................. 348, 354
MC_STAT_MODE_SLAVE......................... 349, 354
MC_STAT_MODE_TRQE 349, 354
MC_STAT_MODE_VEL 349, 354
MC_STAT_MSOFT_ENAB......................... 349, 354
MC_STAT_MSOFT_TRIP 349, 354
MC_STAT_MTR_ENABLE 349, 354
MC_STAT_NULL.. 349
MC_STAT_PHASE..................................... 349, 354
MC_STAT_PJOG_ENAB 349, 354
MC_STAT_PJOG_ON................................ 349, 354
MC_STAT_PLIM_ENAB............................. 349, 354
MC_STAT_PLIM_TRIP 349, 354
MC_STAT_POS_CAPT.............................. 349, 354
MC_STAT_PROG_DIR 349
MC_STAT_PSOFT_ENAB 349, 354
MC_STAT_PSOFT_TRIP........................... 349, 354
MC_STAT_RECORD 349, 354
MC_STAT_STOPPING 349, 354
MC_STAT_SYNC 349, 354
MC_STAT_TRAJ .. 349, 354
MC_STEP_FULL .. 147, 349
MC_STEP_HALF.. 147, 349
MC_TYPE_DOUBLE ..149, 174, 257, 307, 316, 349
MC_TYPE_FLOAT 307, 349
MC_TYPE_LONG.......149, 174, 257, 307, 316, 349
MC_TYPE_NONE....................................... 307, 349
MC_TYPE_REG ... 307, 349
MC_TYPE_SERVO 140, 349
MC_TYPE_STEPPER 140, 349
MC_TYPE_STRING ... 349
MC100 .. 140, 349
MC110 .. 140, 350
MC150 .. 140, 350
MC160 .. 140, 350
MC200 .. 140, 346, 350
MC210 .. 140, 350
MC260 .. 140, 346, 350

Index

DCX-PCI100 User’s Manual

493

MC300...140, 350
MC302...140, 350
MC320...140, 350
MC360...140, 350
MC362...140, 350
MC400...140, 283, 350
MC500.. 140, 278, 282, 350
MC520...282
MCAbort() 131, 134, 183, 184, 193, 213, 214
MCAPI

components ...18
default directory ...17
installation..16
installing over a previous installation17
uninstall..18
Version...54
Windows NT setup...24

MCAPI DLL..271, 281, 298
MCAPI Quick Reference Card133
MCArcCenter() 134, 184, 185, 186, 187, 294
MCArcEndAngle().............................134, 185, 187
MCArcRadius() 134, 185, 186, 187
MCAXISCONFIG 139, 150, 231, 232, 328, 345, 349
MCBlockBegin()...... 134, 185, 186, 187, 188, 189,

202, 204, 205, 208, 287, 288, 289, 290, 293, 294,
295, 296, 306, 307, 309, 311, 340, 344, 345

MCBlockEnd() . 134, 287, 288, 289, 290, 293, 294,
295, 296, 306, 307, 309, 311, 340, 344

MCCancelTask() 133, 287, 288, 295, 296
MCCaptureData() 134, 187, 188, 233, 234
MCCL command

abort move...419
acceleration ...412
accumulator add ..445
accumulator and ..446
accumulator complement.................................445
accumulator copy...446
accumulator divide...445
accumulator evaluate.......................................447
accumulator load ...446
accumulator logical or......................................445
accumulator multiply ..446
accumulator or ...446
accumulator subtract446
amplifier fault, disable409
amplifier fault, enable.......................................409
analog output value437, 448
axis status..429
break..441
channel as high active435
channel as input...435
channel as low active.......................................436
channel as output ..436
decimal mode ..461
default axis...414
define home ...409
derivative gain..413
derivative sampling period...............................410

direction... 409
disable watchdog .. 461
driver fault, disable .. 409
escape background task 441
Find encoder index) .. 419
following error, allowable................................. 413
generate background task............................... 441
go .. 420
go home .. 420
hexidecimal mode ... 462
high motion limit .. 410
home ... 420
if below .. 453
if bit n clear .. 454
if bit n set ... 455
if equal... 454
if greater .. 454
if input off................................. 436, 437, 453, 454
if input on................................. 436, 437, 453, 455
if unequal... 456
integral gain... 413
integral limit ... 410
jump to command, absolute 456
jump to command, relative 456
learn current position....................................... 420
learn target position... 420
limit enable .. 412
limit mode .. 411
limits disable.. 411
look up variable 404, 448
low motion limit.. 411
macro call .. 442
macro define.. 442
macro jump.. 442
macro reset ... 442
motor off .. 421
motor on .. 421
move absolute ... 421
move relative ... 422
move to point... 422
no operation .. 442, 462
output text.. 461, 462
position mode.. 417
proportional gain.. 413
read byte ... 449
read double ... 449
read long ... 449
read word .. 450
record axis data... 422
register copy.. 448
repeat .. 456
report actual position....................................... 428
report analog input 426, 437
report analog input value......................... 437, 447
report breakpoint ... 426
report command interpreter error 427
report default axis.. 448
report derivative gain....................................... 426

Index

Precision MicroControl

494

report digital input state426, 438
report firmware version433
report following error..427
report index position ..432
report integral gain...427
report macro ..427, 443
report module type...448
report optimal position428
report proportional gain....................................427
report recorded actual position426
report recorded optimal position425
report register value.................................428, 450
report target ...432
report velocity ..432
reset controller ...463
set breakpoint on absolute position455
set breakpoint on relative position455
shift left...450
shift right ..450
status ...429
Stop..422
turn off digital output ..435
turn on digital output ..436
user units ...414, 415
velocity mode...417
velocity, max. ...413
wait, absolute position458
wait, at target ...459
wait, digital input ..457
wait, home edge ..457
wait, index..457
wait, relative position458
wait, time..456
wait, trajectory complete458

MCCL mnemonic
AA ..445
AB ..419
AC..445
AD..445
AE ..445
AL...446
AM..446
AN..446
AO..446
AR..446
AS ..446
AV ..447
BK ..441
CF ..435
CH..435
CI ...435
CL ..436
CN..436
CT ..436
DF ..436, 453
DH..409
DI ...409
DM ...461

DN ... 436, 453
DO ... 425
DR ... 426
DW .. 461
ET.. 441
FD.. 461
FF .. 409
FI 419
FN.. 409
FR.. 410
FT .. 461
GA ... 437, 447
GD ... 448
GH ... 420
GO... 420
GT ... 441
GU ... 448
HE ... 462
HL.. 410
HM... 462
HO ... 420
IB 453
IC... 454
IE 454
IF 437, 454
IG... 454
IL 410
IN... 437, 455
IP 455
IR... 455
IS 455
IU... 456
JP .. 456
JR .. 456
LF .. 411
LL .. 411
LM ... 411
LN.. 412
LP .. 420
LT .. 420
LU.. 448
MA ... 421
MC... 442
MD... 442
MF ... 421
MJ.. 442
MN... 421
MP ... 422
MR... 422
NO ... 442, 462
OA ... 437, 448
OD ... 462
OT ... 462
PM ... 417
PR ... 422
RA ... 448
RB ... 449
RD ... 449

Index

DCX-PCI100 User’s Manual

495

RL ..449
RM ...442
RP..456
RT ..463
RV..449
RW...450
SA ..412
SD..413
SE ..413
SG..413
SI 413
SL...450
SR..450
ST ..422
SV ..413
TA ..426, 437
TB ..426
TC ..426, 438
TD ..426
TE ..427
TF...427
TG..427
TI 427
TL...427
TM..427, 443
TO..428
TP ..428
TR ..428, 450
TS ..429
TT...432
TV ..432
TZ...432
UA..414
UO..414
UP..414
UR..415
US..415
UT ..415
UZ ..415
VE ..433
VM..417
WA ...456
WE ...457
WF ...457
WI...457
WN...457
WP ...458
WR...458
WS ...458
WT ...459

MCCL.H...306
MCClose()......................... 134, 296, 301, 302, 340
MCCOMMUTATION142, 159
MCConfigDigitalIO() ...281
MCConfigureCompare().......... 133, 155, 156, 196
MCConfigureDigitalIO().. 133, 275, 276, 277, 278,

281, 282, 284, 345
MCCONTOUR.... 142, 143, 150, 160, 234, 235, 236

MCContourDistance() 134, 189
MCDecodeStatus() ..135, 202, 203, 217, 222, 225,

260, 261, 268, 269, 270, 353
MCDirection() 134, 190, 346
MCDLG_AboutBox() 136, 319, 320
MCDLG_CHECKACTIVE 322, 329
MCDLG_CommandFileExt().................... 136, 320
MCDLG_ConfigureAxis().136, 321, 325, 328, 336
MCDLG_ControllerDesc() 323
MCDLG_ControllerDescEx() 136, 323
MCDLG_ControllerInfo() 136, 323, 324
MCDLG_DESCONLY 323, 328
MCDLG_DownloadFile() 136, 325
MCDLG_Initialize() 136, 326
MCDLG_ListControllers()........................ 136, 327
MCDLG_ModuleDesc() 328
MCDLG_ModuleDescEx()........................ 136, 327
MCDLG_NAMEONLY................................. 323, 328
MCDLG_NOFILTER 329, 332
MCDLG_NOMOTION 329, 332
MCDLG_NOPOSITION 329, 332
MCDLG_PROMPT.............................. 322, 329, 335
MCDLG_RestoreAxis() 136, 328, 329, 332
MCDLG_RestoreDigitalIO() 136, 330
MCDLG_SaveAxis()136, 329, 330, 331, 332
MCDLG_SaveDigitalIO() 136, 331, 333
MCDLG_Scaling()............................. 136, 334, 335
MCDLG_SelectController() 136, 335
MCEdgeArm() ...134, 191, 203, 204, 216, 217, 269
MCEnableAxis().......129, 134, 155, 168, 184, 191,

192, 203, 204, 207, 208, 214, 216, 218, 335
MCEnableBacklash() 134, 193
MCEnableCapture() 134, 195
MCEnableCompare() 134, 156, 196
MCEnableDigitalFilter() ...134, 162, 197, 240, 268
MCEnableDigitalIO() 133, 277, 278, 280, 282, 284
MCEnableGearing().................................. 134, 198
MCEnableJog().................134, 146, 166, 199, 247
MCEnableSync()....................................... 134, 200
MCERR_ALL_AXES................................... 340, 350
MCERR_ALLOC_MEM 299, 340, 350
MCERR_AXIS_NUMBER........................... 340, 350
MCERR_AXIS_TYPE 340, 350
MCERR_CANCEL .. 340
MCERR_COMM_PORT 340, 350
MCERR_CONSTANT......................... 299, 340, 350
MCERR_CONTROLLER 300, 340, 350
MCERR_INIT_DRIVER 299, 340, 350
MCERR_MODE_UNAVAIL 300, 340, 350
MCERR_NO_CONTROLLER............. 300, 340, 350
MCERR_NO_REPLY 340, 350
MCERR_NOERROR .156, 162, 164, 166, 174, 177,

178, 185, 186, 187, 188, 189, 191, 194, 195, 196,
197, 202, 203, 204, 205, 207, 209, 212, 216, 218,
228, 229, 230, 231, 232, 234, 237, 238, 239, 240,
243, 244, 245, 246, 248, 256, 257, 259, 262, 264,
265, 281, 287, 289, 294, 295, 296, 297, 301, 302,

Index

Precision MicroControl

496

307, 316, 319, 324, 325, 326, 329, 331, 332, 340,
350

MCERR_NOT_FOUND.......................................350
MCERR_NOT_INITIALIZED340, 350
MCERR_NOT_PRESENT...................300, 340, 350
MCERR_NOTSUPPORTED340, 350
MCERR_OBSOLETE..................................340, 350
MCERR_OPEN_EXCLUSIVE.............300, 340, 351
MCERR_OUT_OF_HANDLES............300, 340, 351
MCERR_RANGE300, 340, 351
MCERR_REPLY_AXIS340, 351
MCERR_REPLY_COMMAND340, 351
MCERR_REPLY_SIZE340, 351
MCERR_TIMEOUT.....................................340, 351
MCERR_UNKNOWN_REPLY340, 351
MCERR_UNSUPPORTED_MODE.....300, 340, 351
MCERR_WINDOW340, 351
MCERRMASK_AXIS...351
MCERRMASK_HANDLE351
MCERRMASK_IO ...351
MCERRMASK_PARAMETER.............................351
MCERRMASK_STANDARD227, 351
MCERRMASK_UNSUPPORTED351
MCErrorNotify() 135, 226, 240, 241, 271, 272,

301, 351
MCFILTEREX ... 143, 144, 150, 163, 164, 241, 242,

253, 329, 332, 347
MCFindAuxEncIdx() 134, 201, 205, 208, 218, 230
MCFindEdge() . 130, 134, 192, 193, 202, 203, 205,

217, 218
MCFindIndex() 130, 134, 192, 193, 202, 204, 208,

217, 218
MCGetAccelerationEx()135, 157, 228
MCGetAnalog() 133, 278, 282, 283
MCGetAuxEncIdxEx() 135, 202, 229, 231, 245
MCGetAuxEncPosEx() 135, 158, 202, 230
MCGetAxisConfiguration() 135, 141, 142, 188,

231, 234, 328
MCGetBreakpointEx()135, 232
MCGetCaptureData() 135, 188, 195, 233
MCGetConfigurationEx() 134, 151, 174, 176, 188,

246, 256, 257, 258, 259, 297, 323
MCGetContourConfig() .. 135, 143, 160, 234, 236,

264
MCGetContouringCount()................135, 235, 237
MCGetCount() . 135, 156, 162, 195, 196, 197, 198,

236, 237, 239, 240, 268
MCGetDecelerationEx()135, 161, 238
MCGetDigitalFilter(). 135, 162, 197, 198, 239, 268
MCGetDigitalIO()...... 133, 277, 279, 280, 283, 284
MCGetDigitalIOConfig() .. 133, 277, 278, 280, 281
MCGetError().................... 135, 227, 240, 271, 272
MCGetFilterConfig() ...241
MCGetFilterConfigEx()... 135, 145, 163, 164, 241,

254
MCGetFollowingError()............................135, 242
MCGetGain()............................. 135, 165, 243, 244
MCGetIndexEx()..135, 244

MCGetInstalledModules()........................ 135, 246
MCGetJogConfig()135, 146, 166, 200, 247
MCGetLimits() 135, 167, 248
MCGetModuleInputMode() 135, 168, 249
MCGetMotionConfigEx() 135, 147, 148, 167, 170,

171, 222, 228, 229, 238, 239, 244, 248, 249, 250,
251, 263, 265

MCGetOperatingMode() 135, 252
MCGetOptimalEx() 135, 243, 253
MCGetPositionEx()135, 173, 243, 254, 344
MCGetProfile().......................... 135, 255, 256, 347
MCGetRegister()...............135, 174, 175, 256, 257
MCGetScale()............................ 135, 152, 176, 258
MCGetServoOutputPhase() 135, 169, 177, 259
MCGetStatus() 135, 225, 226, 260
MCGetTargetEx()...................................... 135, 261
MCGetTorque()......................... 135, 178, 262, 263
MCGetVectorVelocity() 135, 179, 264
MCGetVelocityEx()........................... 135, 180, 265
MCGetVersion().. 134, 298
MCGoEx().. 134, 201, 205
MCGoHome() 134, 206, 294
MCIndexArm() .130, 134, 192, 193, 204, 205, 207,

218, 270
MCIsAtTarget() 135, 221, 266, 271
MCIsDigitalFilter()135, 162, 197, 198, 240, 267
MCIsEdgeFound() ...135, 191, 192, 203, 204, 216,

217, 268
MCIsIndexFound().................... 135, 204, 218, 269
MCIsStopped()..135, 184, 214, 221, 266, 267, 270
MCJOG ... 145, 165, 247
MCLearnPoint() 134, 149, 208, 210, 211, 212, 346
MCMacroCall().......................... 133, 288, 294, 295
MCMOTIONEX ..146, 148, 150, 170, 171, 222, 228,

251, 252, 263, 329, 332, 345
MCMoveAbsolute() .134, 206, 207, 210, 211, 261,

262, 294
MCMoveRelative()134, 210, 211, 261, 262, 294
MCMoveToPoint() 134, 209, 212
MCOpen().129, 134, 155, 157, 158, 159, 160, 161,

162, 163, 164, 165, 166, 168, 169, 170, 171, 173,
174, 175, 176, 177, 178, 179, 183, 185, 186, 187,
188, 189, 190, 191, 192, 194, 195, 196, 197, 198,
199, 200, 201, 203, 204, 205, 206, 207, 208, 210,
211, 212, 213, 214, 215, 216, 217, 219, 220, 221,
222, 225, 226, 228, 229, 230, 231, 232, 233, 235,
236, 238, 239, 240, 241, 242, 244, 245, 246, 247,
248, 249, 251, 252, 253, 254, 255, 257, 258, 259,
260, 261, 263, 264, 265, 266, 267, 268, 269, 270,
275, 277, 278, 279, 280, 282, 283, 287, 288, 289,
293, 295, 296, 297, 299, 300, 301, 302, 305, 306,
308, 309, 310, 311, 312, 313, 314, 315, 316, 324,
325, 329, 330, 332, 333, 334, 340, 346, 347, 350,
351

MCPARAM ... 150
MCPARAMEX ...141, 148, 149, 151, 160, 172, 174,

175, 176, 185, 186, 187, 246, 256, 257, 258, 278,
279, 281, 282, 283, 284, 297, 298, 323, 344, 351

Index

DCX-PCI100 User’s Manual

497

MCReopen() ..134, 301
MCRepeat()..133, 289, 295
MCReset()..134, 212, 213
MCSCALE.................. 147, 150, 151, 175, 258, 259
MCSetAcceleration()133, 157, 229
MCSetAnalog()..133, 279
MCSetAuxEncPos(). 133, 158, 202, 229, 230, 231
MCSetCommutation().......................133, 142, 159
MCSetContourConfig() .. 133, 143, 160, 179, 235,

236
MCSetDeceleration()133, 161, 239
MCSetDigitalFilter() . 133, 162, 197, 198, 240, 268
MCSetFilterConfig()..163
MCSetFilterConfigEx() 133, 145, 163, 242, 254
MCSetGain()133, 164, 244
MCSetJogConfig() 133, 146, 165, 199, 200
MCSetLimits()133, 166, 249
MCSetModuleInputMode()133, 167, 250
MCSetModuleOutputMode()133, 169
MCSetMotionConfigEx() 133, 145, 147, 148, 157,

161, 164, 165, 167, 170, 177, 178, 179, 180, 222,
249, 251, 252, 263, 266

MCSetOperatingMode() . 133, 171, 184, 185, 186,
187, 190, 206, 214, 253, 294, 346

MCSetPosition()...... 133, 172, 206, 207, 210, 211,
245, 254, 255

MCSetProfile()...................................133, 256, 347
MCSetRegister() 133, 173, 174, 257, 258
MCSetScale() .. 130, 133, 152, 175, 192, 193, 215,

255, 259
MCSetServoOutputPhase() 133, 176, 260, 347
MCSetTimeoutEx()134, 302, 310
MCSetTorque()..................................133, 177, 263
MCSetVectorVelocity().... 133, 178, 179, 264, 294
MCSetVelocity()133, 179, 266
MCStop() 131, 134, 184, 193, 206, 213, 214
MCTranslateErrorEx() 135, 227, 241, 271
MCWait() 134, 215, 219, 220, 221
MCWaitForDigitalIO()133, 275, 283
MCWaitForEdge() ... 134, 191, 192, 204, 205, 216,

217, 269
MCWaitForIndex()... 134, 204, 205, 208, 217, 218,

270
MCWaitForPosition()...... 134, 215, 218, 220, 221,

222, 232, 233
MCWaitForRelative() 134, 215, 219, 221, 222,

232, 233
MCWaitForStop() 134, 184, 214, 215, 219, 220,

221, 222
MCWaitForTarget() .. 134, 215, 219, 220, 221, 222
MD...295
MediumRate ...139, 141
MediumStepMax ..139, 141
MediumStepMin ...139, 141
MF ...131, 193
MF300 ...140, 351
MF310 ...140, 351
Minimum PC requirements....................................10

MinVelocity145, 146, 148, 170, 251
MN .. 131, 193
Module

Analog I/O ... 12
Digital I/O... 12
motion control.. 12

ModuleLocation .. 139
Modules .. 11
ModuleType ... 139, 328
Motherboard, motion control................................. 11
Motion complete

at target ... 96
description ... 96
trajectory complete.. 96

Motion control
Constant velocity move 86
Learning / Teaching points.............................. 107
Point to point ... 86
required settings.. 84

Motion Integrator... 155
analog I/O.. 123
analog output calibration 125
description ... 51
digital I/O ... 118
encoder checkout.. 71
encoder index checkout 91
home sensor checkout 91
limit sensor checkout 88
troubleshooting.. 479

Motor control output
DCX-MC100.. 69
DCX-MC110.. 69

Motor off.. 421
Motor on.. 421
Motor status .. 429

loading... 404
Motor table data

look up... 404, 448
MotorType.. 139, 140
Mounting footprint

BF022.. 384
BF100.. 389

Move
abort .. 419
absolute... 421
go (velocity mode)... 420
go home .. 420
homing routine... 420
relative... 422
stop.. 422
to learned point.. 422

Moving motors
Motor Mover program.. 83
required settings.. 65
Servo motor... 70

MP... 212
MR .. 211
MS... 171

Index

Precision MicroControl

498

Multi-tasking
commands not supported399
CPU utilization ...400
described ...399
example ...399, 400, 401
global data registers ..400
passing data between......................................400
private data registers400
quantity supported ...400
termination ...401
testing ..399

MultiTasking 149, 150, 174, 257
MV ...171

N

NC ...156
NF..197
NO_CONTROLLER ..351
NO_MODULE..351
NONE ..351
Normally closed limit switch88, 89
NS..201
NT, Windows

configuring the MCAPI.......................................24
NumberAxes ..149

O

OA ...283
OC ...156
Offset ..145, 151
OM...169
On the fly changes

Constant velocity motion....................................97
Point to point..97
Trapezoidal velocity profile97

OP ...156
Operating systems ..10, 15
Optimal position

report..428

P

Pausing
MCCL command / sequence66

PC..140
PC requirements

minimums...10
PCI bus

converting to ..101
PDF

described ...469
document printing468, 469
viewing a document ...469

PH ... 177
PhaseA ... 142
PhaseB ... 142
Phasing

output/encoder .. 72, 78
PID digital filter........................See Tuning the servo

algorithm.. 70
'D’ term .. 70
description ... 69
'I' term.. 70
'P' term .. 70
theory of operation .. 69

PID filter
disable ... 421
enable.. 421
report settings.. 426, 427

Pin out
DCX module connector 30
DCX-BF022... 382, 383
DCX-BF100... 387, 388
DCX-MC100.. 372
DCX-MC110.. 376
DCX-MC400.. 378
DCX-MC5X0.. 380
DCX-PCI100 gen. purpose I/O........................ 368

'

'Plug & Play' operation
verify' ... 21

P

Plug and play .. 9, 20, 59
PM... 172
PMC email address.. vi, viii
PMC web address.. vi, viii
pmccmd().................................. 135, 305, 314, 315
pmccmdex()......................135, 305, 306, 316, 349
pmcgetc()..................135, 307, 308, 310, 311, 313
pmcgetram() 135, 308, 312
pmcgets()..........................135, 308, 310, 311, 313
pmcputc().................................. 135, 308, 310, 311
pmcputram() 135, 309, 312
pmcputs()..........135, 288, 289, 308, 310, 311, 313
pmcrdy()....................135, 306, 307, 314, 315, 316
pmcrpy().................................... 135, 306, 314, 316
pmcrpyex()................................ 135, 307, 314, 315
Point to point motion

execution ... 86
PointStorage.. 149
Position

Recording .. 108
Position mode

enable.. 86
set.. 417

Index

DCX-PCI100 User’s Manual

499

PR..188
Precision ..149
PreScale ...142
Printing a PDF document468, 469
Program samples 46, 47, 48, 49, 50
Programming languages

supported...10
Proportional gain

description ...70
report..427
set ..413
setting ..77

Q

QM...172

R

Rate...151, 152
Record

actual position..422
DAC output ..422
following error ..422
optimal position..422
report actual position426
report optimal position425

Recording position data.......................................108
Register

report value..428, 450
RegisterWindowMessage()..............................227
Repeat...142
Repeat MCCL command sequence456
Repeating

command or sequence66
Report

axis 'at target' ...97
captured data...108
motor status ...429

Reporting
firmware version ..22
MCAPI version...22

Reset
relay ...109, 368
the controller ..109, 463

RM...295
Rollover

encoder ..105
RP..290
RR ...187
RT..213

S

SA..157, 171
Sales support ...vi, viii

Scale... 151, 175
Scaling

defining user units ... 111
SD ... 164, 171
SE ... 164
Servo loop

description ... 69
Servo motor control

homing... 91
theory of operation .. 69
tuning the servo... 74

SetMessageQueue() .. 227
SF ... 171
SG... 165, 171
SH ... 171
SI 164, 171
Single stepping a program.................................. 110
sizeof() .. 141, 151, 231
SM... 199
SN ... 201
SoftLimitHigh146, 147, 148, 170, 175, 251
SoftLimitLow146, 147, 148, 170, 175, 251
SoftLimitMode146, 147, 148, 170, 251
SoftLimits .. 149, 150
Software

default directory... 17
Demo programs... 56
Flash Wizard ... 55
installation ... 16
Motion Integrator51, 88, 118, 123, 479
Motor Mover .. 83
New Controller Wizard 24
On-line help ... 56
reporting firmware version................................. 22
reporting software version................................. 22
Servo Tuning utility.. 74
source code... 56
uninstall MCAPI... 18
WinControl................................. 54, 110, 402, 466

Specifications
DCX-MC100.. 69, 362
DCX-MC110.. 69, 363
DCX-MC200.. 363
DCX-MC210.. 363
DCX-MC400.. 364, 378
DCX-MC500.. 364
DCX-MC5X0.. 380
DCX-PCI100.. 361

SQ... 171, 178
SS ... 199
ST ... 214
Status

motor ... 429
report ... 429

Status LED's ... 367
StepSize146, 147, 148, 170, 251
Stop move... 422
SV ... 171, 180

Index

Precision MicroControl

500

T

TA..279
Target position

report..432
TB ..233
TC..280
TD..242
Teaching points ...107
Technical support ...vi, viii
Terminating

background task ..441
command sequence ..441
MCCL command / sequence66

Testing
analog I/O ..123
DCX-PCI100 installation..............................22, 26
digital I/O..118
MCAPI..22, 26

Text file
download ...402

Text message
outputting ...461, 462

TF ..242, 243
TG..242, 244, 252
TI 242
Time ..144, 151, 152
TL ..242
TO..254
Torque 146, 147, 148, 170, 251
TP ..255
TQ..263
TR..258
Trajectory complete

description ...96
Trajectory generator

disable..76
Trapezoidal velocity profile

description ...86
Troubleshooting

encoder checkout ..71
status LED's...367

TS ..261, 269, 270
TT ..262
Tuning the servo

derivative gain..78
derivative sampling period.................................79
description ...74
high inertia systems ...78
initial settings ...77
integral gain ...79
proportional gain ..77
range of slide controls..82
restoring settings ...82
saving settings ...81
Servo tuning utility ...74

TX ..236, 237
TZ ..245

U

UK ... 176
Uninstall

MCAPI ... 18
UO... 176
Update

firmware... 55
firmware (operating code) 106

UpdateRate144, 145, 170, 251, 347
UR... 176
US ... 176
User registers

description ... 406
User units

controller time base... 112
description ... 111
machine zero... 112
part zero .. 112
set.. 414, 415
setting.. 111
trajectory time.. 112
user scale .. 111, 112

UT ... 176
UZ ... 176

V

VA ... 160
VD ... 160
VectorAccel ... 143
VectorDecel ... 143
VectorVelocity ... 143
Velocity ... 146

disable ... 52, 76
report setting ... 432
set too high.. 72
setting.. 50, 84

Velocity mode
enable.. 86
set.. 417

Velocity mode move
execution ... 86
setting the direction ... 86
starting... 86

Velocity profile
Trapezoidal.. 86

Velocity, max.
set.. 413

VelocityGain 144, 145, 163, 242
VelocityOverride ... 143
Version

firmware... 54
firmwareware... 22
MCAPI ... 54
software... 22

VG... 164

Index

DCX-PCI100 User’s Manual

501

Visual Basic programming.....................................47
VM ...172
VO ...160
VV..160, 179

W

WA...215
Wait

absolute position..458
at target..459
digital input...457
for 'at target' ...97
home edge...457
index ..457
relative position..458
time ..456
trajectory complete ..458

Watchdog
disable..461

Watchdog circuit
description ...114

WE...217
WF...284
WI ..218
Windows 2000

Installation ..20
Windows 98

Installation ..20

Windows Me
Installation ... 20

Windows NT
configuring the MCAPI 24

Windows NT setup
MCAPI ... 24

WinMain().. 227
Wiring

axis I/O .. 33, 34, 37, 38
encoder, reversed phased 78
E-stop .. 103
servo amplifier ... 33, 34
servo axis .. 33, 34, 37, 38

WN .. 284
WP .. 219
WR .. 220
WS .. 221
WT .. 222

Y

YF ... 197

Z

Zero .. 151
ZF.. 162

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

	Introduction
	The Modular DCX System

	Software and Controller Installation
	DCX-PCI100 Motion Control System Installation
	Installing the DCX Software (MCAPI)
	Installing the DCX-PCI100 Motion Control Motherboard
	Plug & Play (Windows XP/2000/Me/98) Installation
	Verify Communication with the PC
	Windows NT Installation

	DCX Module Installation
	Installing DCX Motor Control and I/O Modules
	DCX-MC100 – Servo Motor Module Installation
	DCX-MC110 – Servo Motor Module Installation
	DCX-MC400 – Digital I/O Expansion Module Installa
	DCX-MC500 – Analog I/O Expansion Module Installat

	Programming, Software and Utilities
	Controller Interface Types
	Building Application Programs using Motion Control API
	PMC Sample Programs
	Motion Integrator
	PMC Utilities
	MCAPI On-line Help

	Communication Interfaces
	High Speed Binary interface
	ASCII MCCL Interface

	DCX Operation Basics
	Introduction
	Low Level DCX Operations

	Motion Control
	Theory of DCX Motion Control
	DCX Servo Basics
	Tuning the Servo
	Moving Motors with Motor Mover
	Defining the Characteristics of a Move
	Velocity Profile
	Point to Point Motion
	Constant Velocity Motion
	Jogging
	Defining Motion Limits
	Homing Axes
	Motion Complete Indicators
	On the Fly changes
	Save and Restore Axis Configuration

	Application Solutions
	Converting from an ISA bus DCX-PC100 motion controller
	Emergency Stop
	Encoder Rollover
	Flash Memory Firmware Upgrade
	Learning/Teaching Points
	Record Motion Data
	Resetting the DCX
	Single Stepping MCCL Programs
	Defining User Units
	DCX Watchdog

	General Purpose I/O
	DCX Motherboard Digital I/O
	Configuring the DCX Digital I/O
	Using the DCX Digital I/O
	DCX Module Analog I/O
	Using the Analog I/O
	Calibrating the MC500/MC520 +/- 10V Analog Outputs:

	Motion Control API Introduction
	Function Listing Introduction
	Motion Control API Function Quick Reference Tables

	Data Structures
	MCAXISCONFIG
	MCCOMMUTATION
	MCCONTOUR
	MCFILTEREX
	MCJOG
	MCMOTIONEX
	MCPARAMEX
	MCSCALE

	MCAPI Parameter Setup Functions
	MCConfigureCompare
	MCSetAcceleration
	MCSetAuxEncPos
	MCSetCommutation
	MCSetContourConfig
	MCSetDeceleration
	MCSetDigitalFilter
	MCSetFilterConfigEx
	MCSetGain
	MCSetJogConfig
	MCSetLimits
	MCSetModuleInputMode
	MCSetModuleOutputMode
	MCSetMotionConfigEx
	MCSetOperatingMode
	MCSetPosition
	MCSetRegister
	MCSetScale
	MCSetServoOutputPhase
	MCSetTorque
	MCSetVectorVelocity
	MCSetVelocity

	MCAPI Motion Functions
	MCAbort
	MCArcCenter
	MCArcEndAngle
	MCArcRadius
	MCCaptureData
	MCContourDistance
	MCDirection
	MCEdgeArm
	MCEnableAxis
	MCEnableBacklash
	MCEnableCapture
	MCEnableCompare
	MCEnableDigitalFilter
	MCEnableGearing
	MCEnableJog
	MCEnableSync
	MCFindAuxEncIdx
	MCFindEdge
	MCFindIndex
	MCGoEx
	MCGoHome
	MCIndexArm
	MCLearnPoint
	MCMoveAbsolute
	MCMoveRelative
	MCMoveToPoint
	MCReset
	MCStop
	MCWait
	MCWaitForEdge
	MCWaitForIndex
	MCWaitForPosition
	MCWaitForRelative
	MCWaitForStop
	MCWaitForTarget

	MCAPI Reporting Functions
	MCDecodeStatus
	MCErrorNotify
	MCGetAccelerationEx
	MCGetAuxEncIdxEx
	MCGetAuxEncPosEx
	MCGetAxisConfiguration
	MCGetBreakpointEx
	MCGetCaptureData
	MCGetContourConfig
	MCGetContouringCount
	MCGetCount
	MCGetDecelerationEx
	MCGetDigitalFilter
	MCGetError
	MCGetFilterConfigEx
	MCGetFollowingError
	MCGetGain
	MCGetIndexEx
	MCGetInstalledModules
	MCGetJogConfig
	MCGetLimits
	MCGetModuleInputMode
	MCGetMotionConfigEx
	MCGetOperatingMode
	MCGetOptimalEx
	MCGetPositionEx
	MCGetProfile
	MCGetRegister
	MCGetScale
	MCGetServoOutputPhase
	MCGetStatus
	MCGetTargetEx
	MCGetTorque
	MCGetVectorVelocity
	MCGetVelocityEx
	MCIsAtTarget
	MCIsDigitalFilter
	MCIsEdgeFound
	MCIsIndexFound
	MCIsStopped
	MCTranslateErrorEx

	MCAPI I/O Functions
	MCConfigureDigitalIO
	MCEnableDigitalIO
	MCGetAnalog
	MCGetDigitalIO
	MCGetDigitalIOConfig
	MCSetAnalog
	MCWaitForDigitalIO

	Macros and Multi-tasking Functions
	MCCancelTask
	MCMacroCall
	MCRepeat

	MCAPI Driver Functions
	MCBlockBegin
	MCBlockEnd
	MCClose
	MCGetConfigurationEx
	MCGetVersion
	MCOpen
	MCReopen
	MCSetTimeoutEx

	MCAPI OEM Low Level Functions
	pmccmd
	pmccmdex
	pmcgetc
	pmcgetram
	pmcgets
	pmcputc
	pmcputram
	pmcputs
	pmcrdy
	pmcrpy
	pmcrpyex

	MCAPI Common Motion Dialog Functions
	MCDLG_AboutBox
	MCDLG_CommandFileExt
	MCDLG_ConfigureAxis
	MCDLG_ControllerDescEx
	MCDLG_ControllerInfo
	MCDLG_DownloadFile
	MCDLG_Initialize
	MCDLG_ListControllers
	MCDLG_ModuleDescEx
	MCDLG_RestoreAxis
	MCDLG_RestoreDigitalIO
	MCDLG_SaveAxis
	MCDLG_SaveDigitalIO
	MCDLG_Scaling
	MCDLG_SelectController

	MCAPI Controller Error Codes
	MCAPI Constants
	MCAPI Status Word Constants Lookup Table
	Motion Dialog Windows Classes
	MCDLG_LEDCLASS
	MCDLG_READOUTCLASS

	DCX Specifications
	Motherboard: DCX-PCI100
	DCX-MC100 - +/- 10 Volt Analog Servo Motor Control Module
	DCX-MC110 – Direct Drive Servo Control Module
	DCX-MC400 - 16 channel Digital I/O Module
	DCX-MC5X0 - Analog I/O Module

	Connectors, Jumpers, and Schematics
	DCX-PCI100 Motion Control Motherboard
	DCX-MC100 +/- 10V Servo Motor Control Module
	DCX-MC110 Motor Drive Servo Control Module
	DCX-MC400 Digital I/O Module
	DCX-MC500/510/520 Analog I/O Module
	DCX-BF022 Relay Rack Interface
	DCX-BF100 Servo Module Interconnect Board

	Command Set Introduction
	Introduction to MCCL (low level command set)
	MCCL Command Quick Reference Tables
	Building MCCL Macro Sequences
	MCCL Multi-Tasking
	Downloading MCCL Text Files
	Outputting Formatted Message Strings
	Reading Data from DCX Memory
	DCX User Registers

	MCCL Setup Commands
	MCCL Mode Commands
	MCCL Motion Commands
	MCCL Reporting Commands
	MCCL I/O Commands
	MCCL Macro and Multi-tasking Commands
	MCCL Register Commands
	MCCL Sequence (If/Then) Commands
	Miscellaneous Commands
	MCCL Error Codes
	MCCL Error Codes

	Printing a PDF Document
	Glossary
	Appendix
	Power Supply Requirements
	Default Settings
	Troubleshooting Controller Operations

	Index

