DCX-PCI100

Modular Multi-Axis Motion Control System

User's Manual
Revision 1.0c

EPPMC

Fiec e KacipDonhg. Com

Precision MicroControl Corporation
2075-N Corte del Nogal
Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

WWW.pImCcor p.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed to be
free from defects in material and workmanship, for a period of five years from the date of shipment.
Liability is limited to FOB Factory repair, or replacement, of the product. Other products supplied as
part of the system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use or
installation or consequential damage.
(c)Copyright Precision Micro Control Corporation, 1994-2004. All rights reserved.

Information in this document is subject to change without notice.

IBM and IBM-AT are registered trademarks of International Business Machines Corporation.
Intel and is a registered trademark of Intel Corporation.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.
Acrobat and Acrobat Reader are registered trademarks of Adobe Corporation.

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101

Fax: (760)930-0222

World Wide Web: www.pmccorp.com

Email:
Information: info@pmccorp.com
Technical support: support@pmccorp.com
Sales: sales@pmccorp.com

Precision MicroControl

Table of Contents

Table of Contents

T (o o (U T o o DO PP PR 9
THEe MOAUIAE DCX SYSTEIMuiiiiiiiei e e e i ettt e e e e s e e e e e e e et e s e e e e eeeesessasteeaeeeaeesessasseseeeeaeeeessataseeeaeeesannsnreanees 11
Software and Controller INSTAIALIONoiuiiii e e e e sbb e e s anaaeee s 15
DCX-PCI100 Motion Control System INStallationcoeieiiiiiiiiiiiiii e e e e e e e e e e e e eennnes 15
Installing the DCX SOftWAre (MCAPI)uiiieiiieee ettt sttt e st e e sbb e e sabb e e e e snnneee s 16
Installing the DCX-PCI100 Motion Control MOtNErDOAId.............ceiiiiiiiiiiiiiii e 19
Plug & Play (Windows XP/2000/Me/98) INSLAlAtiONc.uuiiiiiiiie it 20
Verify Communication WIth the PC ... e e e e e e e e e e e e e s b e aeeeas 22
WINAOWS NT INSTAIATION ..ottt e e e e e et e et e e e e e s e s st b et e e e e e aannbeeeeeaeaeeeannbeneeeas 24
(D109 QY ToTe [V1 TR IS e= 1 F=1 i o] o FA TP PT TR 29
Installing DCX Motor Control and 1/O MOUIES..............ueeiiiiiiiiiiie e e e e e e s aee s 29
DCX-MC100 — Servo Motor Module INSLallAtioN.cueiiiireiiiiie e bee e e sere e e s 31
DCX-MC110 — Servo Motor Module INSLallAtioN.euiiiiiireiiiiee et bee e e snae e e s eneeas 35
DCX-MC400 — Digital I/O Expansion Module INStallationeeeveieiiiiiiiiiieeee e 39
DCX-MC500 — Analog I/0 Expansion Module INStallationeeivieeiiiiiiiiiieee e 40
Programming, SOftware and ULIITIESccvuiieiiie et e e st e e e e e s s e e e e e e s en b ae e e e e e e e e annrnnneees 43
CONLIOIlEr INTEITACE TYPES . ..teeieiiiiie ettt ekt e e ettt e e e e st et e e e et bt e e e aab bt e e e abe e e e abbe e e e e nnbeeeeennnas 44
Building Application Programs using Motion CONrol APL.............uiiiiiiiiiiie et 45
PMC SAMPIE PIOQIAIMS ...ttt sttt e skt e o4 ettt e 4 e R b et e e ea kb et e e e s b et e e e abb e e s anbb e e e e ennbeeeeenbnas 50
Y [o] Lol g [a1 =Te | =1 (o] OO UPTPPPRUPT 51
PIMC ULIILIES .ottt ittt ettt ettt e et e sttt e e sttt e s e m st e e e e en s bt e e e e ns b e e e e eas bt e e e e nbe e e e nsbeeeeensbaeeeentaeaeennsees 54
MCAPT ON-lINE HEIP <.ttt e e e oottt et e e e e e e et bbbt e e e e e e e e aanbbbeeaeeesanbbbaeeeaaaeeaaannne 56
100 ol aaT0 T Tor=ViTe] TN) (=] o 7= Tt L T PSSR 59
High Speed BiNAry INTEITACEuiiiiiiie et e e e e st e et e e e e s s et bt e e e e e e e e e saastateeeeessasssbaneeaaeessansnes 59
Y O Y (L @ I [1 (=T = Vo RS PR 59
(D 1@ Q@ o 1= - 10T = - T Lo 63
] oo [UTo i o] o SR TUPRRPTI 63
LOW LEVEI DCX OPEIALIONS ...cciuteiiieiiiiet e ittt e ettt ettt ettt e e skt et e e s st bt e e s aab b et e e aas b et e e e bbbt e e e sbbe e e anbb e e e e annbeeeeenreas 64
110} (o] o T @ 1 (o PRSP P 69
Theory Of DCX MOION CONEIONuuiiiiiiiiie ettt e et e e st b e e e st b e e e e abb e e e e sbbeeessabeeeeesnbeeeeeanes 69
DCX SEIVO BASICS ... eieetieiete e ettt ettt et oo oo e bbbttt e e e o4 4o bbbt e et e e e e e e o s bebe e et e e e e e sannbbbeaaeeeaaanbbbeneeaaeeeaaannes 70
TUNING ThE SEIVO ...ttt e oo ettt et e e e e e s s bbb et e e e e e e e e e ab bbbt e e e e e s e annnbaeeeeaeeeseaannbenneeas 74
MOVING MOEOIrS WIth IMOTOI IMOVETeeiiiiiie ittt ettt et e e e e e s e bbbttt et e e e e e sanbbbeeeeaaaeesbbbeeeaaaeeeaaannne 83
Defining the CharacteriStiCS Of @ IMOVE..........uuiiiiiii e e e e e e e s e s e e e e e e e s e srerbaeeeeaeeesaannnes 84
RV (oY1 4V o) 11 = RSP 85
(o T oL (o =T o 1 o1 B8 1Y o) i o o FU PP 86
(70 0153 =T a1 ANV Z =1 (oY1 3V Y/ (0] (T o PR 86
B [T o 1T P 87
(1= T T T 1Y 1 o o T I g 11 SRS 88
HOMING AXES .ttt ettt oo ot b et o4k bttt e 4Rkt oo aa kb et 4442k b et e e 4k b et e oo ab b e e e nb bt e e s annb e e e e ennbne e e e nnns 91
MOLION COMPIETE INAICALOSc.eeeeieiitiee ettt ettt s et e e e bt e e e e e bbbt e e e sbbe e e anbb e e e e ennbeeeeenrnas 96
ON ThE FIY CRANGES. ... ettt et e e e et bt e e e ek bt e e e ek b et e e e bbbt e et b e e e e e bbe e e e e anbneeeennnes 97
Save and Restore AXiS CONIQUIALION.ciii ittt e e e e et e e e e e e e s e aabb et e e e e e s snnbnneeeaaaeaeas 98
PN o] o] o= 1 Te] WS To] (V] i o] o = J OO EPTTP PP 101
Converting from an ISA bus DCX-PC100 motion CONrOlEr..........cc.uviiiiiie e 101
N a1 o T L0] (] o TP TSRO PPPPPPRTN 103
S g et o [T gl = {o] [0 Y= PP UPRR 105
Flash Memory FirmwWare UPGIadeoiocuuiiiiiieeees it ee e e e s s ettt e e e e e e s st e e e e e e s e snnaesaeaeaeeeessnnnneeeeaeeesnnnsnes 106
Learning/TeaChiNg POINTSoi i e e e e e e e e s e s s e e e e e aeesaanenbeneeesaansssteeeeeeeeesannnnes 107
[RL=Tolo] o Y o] 1Te] g T - | = WP 108
RESELIING ThE DCX ...ttt e bt e oottt e e ookt e e ok b et e e ek b et e e ek b e e e e ebbe e e e abbe e e e e anbbeeeeannnes 109
Single StEPPING MCCL PrOQIaAIMS.ciuuiiie ittt ettt ettt ettt e e s sttt e e e st et e e e sabae e e e sbbeeeesatbeeeesabeeeesanbeeeeeanns 110
DEfiNING USEE UNIES ...ttt ettt e e st et e e e e kbt e e e e b bt e e e b b et e et be e e e e bbe e e e e anbneeeennnnes 111
D10 QT = ed s To (o o TSP UOTPUPPPTTN 114

DCX-PCI100 User’'s Manual i

Table of Contents

GENEIAI PUIPOSE /O ...ttt e oo oottt et et e e e e e ek a b bttt e e e e e e e s aaaeeaaeeeeaabnbeeeeaaaeeeaaannes 117
DCX Motherboard DIGItal IO ittt e e e e e e e s ab bt et e e e e e e aanebeeeeaaaeeeaannes 117
Configuring the DCX DIGItAl IO ...ttt e e e et e e e e e e e e e st e e ee e e e e snbnbaeeaaaaeeas 118
WL Lo R i g LT D109 G T 1 = | N L USRS 120
(D10 Q1Y [oTe [U1 10N g F=1 (o o 1 USRS 122
L0 LS g lo L= A g = 1T N L O PRERR 123
Calibrating the MC500/MC520 +/- 10V ANalOg OULPULS:eeiieeeeeiiiiiiieieiee e e s setnieee e e e e e e s s senveeer e e e e e s s snnnnreeeeeeen s 125

Vlo]uTo gl @o]q1i o] BN od BT g (el [8]ox (o] o NPT 129
(W] aTod T o TN I ESS] o TN) To 11 {ox T} o SO PUERS 129
Motion Control APl Function QUIiCk Reference TableS.........cooiiuiiiiiiiie e 133

(D E 1= RS (0 o1 LN] =2 SRR PPPPPPPPPPPPPPPPN 139
MCAXISCONFIGtiiee ettt ettt e e e et e e e st e e e e st ae e e e et be e e e et beeeeeasbeeeeeastaeeeeasteeeasbaeeesastaeaeennsees 139
YTt @(@ 1Y 1Y L 172N I] PRSP 142
Y T @@] A\ 1 161 SRR UPRR 142
Y Lo I =) PR UPSR 143
YT @ SRR PSR 145
IMCIMOTIONEX ...ttt ittt ettt ettt et e e e ettt e e e ettt e e e sabe e e e e aabe e e e e aatbe e e e et be e e e e b bee e e e ambeeeeeanbaeeeeaneeeeasbeeeeeanbaeeeennsees 146
IMCPARAIMEX. ... ettt ettt ettt ettt e ettt e e skttt e e e et be e e e e ssbe e e e e ambee e e e anbae e e e an b bt e e e easbe e e e e s beeeeeabeeeessbeeeesanbaeeeennrees 148
IMMCSCALE ..ottt ettt h et e e ekt e e o1 a ket e e e e R ket e e e aa ket e e e aa kbt e e e aab b et e e e b be e e et b e e e e e nbe e e e e anbee e e e nnrnes 151

MCAPI Parameter SEtUP FUNCHONScooi it e e e e e s s st e e e e e e s s e snsb e e e eeeessssnanneeeaeeesannnes 155
[[o{@do]q)ilo U110] q o] o1 (=T TR PP PP PUPPPO 155
[@3ST=] 7N ot o= 1= = o] o SRR 157
Y LRSS T b= g o] o L PP PPPPPTPPPPPPPPPINE 158
Y [OST=] (o] 491 141U 7= 14T] o PO UPPPUPPPPT 159
(@51 (o] o] (o101 O] o] T TP UOTPUPPPRTRN 160
Y [ORST (B T=Tol=] (=T =1 1 o] o F PSP OUPUPUPPPTTRN 161
@RS 1o = 1 1L =T oSSR 162
@Y= (T (=T O] 1T | PSSR 163
T2 (- T o RSP SRUPRR 164
@3 ST= 8 Lo To [o] oo SO UPRS 165
@AY {411 £ PP PR 166
[@3ST= 117 Lo To (U1 T=T VT 10111 Yo L= SRR 167
MCSEtMOAUIEOULPULMOUE ...ttt e et e e e st b e e e st bt e e e et bt e e e be e e e enbeeeeennnns 169
MCSEIMOLIONCONTIGEX ...etiiieiiiiiie ettt e e e e bt e e e et bt e e e et b e e e e et b et e sbbe e e e e anbe e e e enrnas 170
(OS] (@] oJ=T e 1T g o 1Y (oo [PP TR PP PPPUPPPP 171
Y [OST=] 1 2o] o] o PP OTPUPPPPTR 172
Y [OST= R =T] (=] ST PP UOTPUPPPTTRN 173
[OST=] ESTox= 1 PP OUOTPUPPPPTR 175
MCSEtSEIVOOULPULPRNASE ...ttt e e e e e e e e s st e e e et e e e s e saateseeeeaeesessssraeeeeeeeesannsnes 176
Y L@ ST] o] o [1 PSPPSR 177
@3S Y= Tox (0] V=1 (o ox YO PUSRS 178
@RS Y= [Tox | Y/ SO PES 179

(07N e Y o o) o B T g ot i o T SRR 183
Y1 21 o Yo o PSSP 183
Y (@7 ol O =T o1 = PP PPPPPPRPPPPPPPPIN 184
[TOF N ol =l g To LN g To | [T O PP PU PP PUPPP 185
Y L@ N o = Vo 11 PPNt 187
Y (O @2= T o (0] (=] D L=\ = T PP OO P PP PPPPPPPPUPPPPPPPONt 187
(@ @e] g1 (o]0 D) E] =1 g ol = PP UPTPUPPPRTN 189
YT 1 =Tt o] o PSPPSR 190
L@ o [o = AN 4 o TSRS 191
L1 = g T 1] [AN 1= PRSP 192
o1 = g F= o] (=] = = ol (= T o PP 193
L@ = F=] [T =T o U = SO USES 195
L@ = F=T o] (IO o] 4 g o T (=SOSR 196
MCENADIEDIGITAIFIITEN ...ttt e et e e e st e e e e bt e e e ebb e e e e e anbee e e e anens 197
(o1 = g T o] =T 1= T= g o Lo I T PR OP PP PUPPP 198
1 [01 = g F= o] = Lo o [P OSSP PP PP PUPPRPN 199

i Precision MicroControl

Table of Contents

@ =T F= 1] (S35} o oS TOUOTPUPPPPTRN 200
YT T g To TN T d = o] o b GRS 201
L@ T T o o -SSP 202
YT T oo g T [RSP RRPRR 204
O o] b TP PP P PPPPPPPPPPPRN 205
Y [0 €To] o (o]0 1= PP OPPPPPPPPPPP 206
10 [Vo [N 1 o PP PPP TP PR 207
IMCLEBAINPOINT ...ttt ettt ettt ettt e eeeeeae e s e e e s e s asasesasesssesasssesesabsbaessesesssssesssnsesennnnnsrnres 208
IMCIMOVEADSOIULE ...ttt e e et e e e e e e e ettt et e e e e e s e taeeeeeeeeeee s nststeeeeeeeeeannnseseeeaeeeaannsnbnnenaeeeesnnnnnes 210
MCIMOVEREIALIVE ...ttt et e oo oottt e e e e e e o e hb b be et e e e e e e aaanbbbeee e e e saaannbseeeaaaaeaaannes 211
(@417 o)V o] oo | PSP UOTPUPPRTTN 212
YT == SRS 212
Y1253 (o o RO ER PSR 214
YL@ - 1 SRR PSR 215
@AY= T o T o o = PSR 216
LAV T e o = G PO 217
oA T ol o] (T] o PP PP 218
MCWAILFOIREIALIVE.eee ittt ettt e e et e e e ettt e e ek bt e e e b be e e e e sbeeeessbeeeeeanbaeeeennnees 219
oA 1o £ (o] o O PR PP PP PUPPR 220
oA T o g =T (o[O PO PO PP PP PUPPRN 222
MCAP] REPOIING FUNCHIONS........eeiiiiiiiiii ettt sttt sttt e ekttt e e sabb et e e s bb e e e snbb e e e e sbbreeesnnnneee s 225
(@B T Tolo e L=y o LU PP UOPPUPPPTTN 225
@ =T (o] 4\ (o] 11|V TP OUOTPUPPRPTRN 226
MO GEEACCEIBTALIONEX ... tiieiee ittt e ettt oottt e e e e e o e aa bt e et e e e e e s e bbb beeeeeaeeeaannbbbeeeeasaaaansbeseeaaaeesaannes 228
L@ T U D Tl [0) = PRSP 229
MCGEIAUXENCPOSEX.....cciiiiiiiiiiiiiiiiiieiit ettt e et et e e s e et s e te st s et s st e e e e e e e e e s e e nesnsnnnnes 230
(@ T VAN E @Fo]) o [U] = 11T o USRS 231
MC GEEBIEAKPOINTEXvtieeeeiee e is ittt e e e e e s et e e e e e s s e e e e eeeessaaa e eeeeeeesaaass s aeaeeeeeesannnssbeneeessannnnsnnneeeeeesannnnns 232
Y L@ = (= o L] = I - = PPNt 233
[[o{ e (@fe]01 (o8] £ @Fe] 1 ilo HURRR T PP PP PPPUPPPR 234
[[o{eT= (@fe]q1 (o] W] 1o le [@Fo 1N o PRSP PP PP PUPPP 235
Y L@ 1= (O o 18| o | PP PRPRUPPPPPPPIN 236
(O] (B =Tod =] [T =0 o] = PP OUPPPUPPPPTN 238
MC GEIDIGITAIFIIIET ... ettt et e e oottt e e e e e e e s aab b be et e e e e e e e e nbnbeaaeeesaaannbneeeeeaaeeaaannes 239
Y (O] = 1 =t (o] PRSPPI 240
@ T (1T O] a1 T | = PRSP 241
@ T (o]] 01T/ g To =t o] PRSI 242
[1] (- 1T o PP PSR 243
Lol 1=l { o e = RO PRPTPRR 244
MCGENSIAEAMOUUIEScoeiiiiiie ittt e sttt e e et b e e s et b e e e e e anb e e e e snbbeeeeenbeeeeennbes 246
@ =1 8 LYo [@0 o SO UPRS 247
Y [O{CT= 1 I 111 PP PPPPRPPPPPPPRPPRt 248
MCGEIMOUUIBINPULIMOUE. ...ttt e ettt e e e st bt e e e en b bt e e e et bt e e enbbe e e e e anbe e e e e nnnns 249
MCGEIMOLIONCONTIGEX .. tutteee ettt ettt ettt e e e st bt e e e st bt e e e an b bt e e e et b e e e anbb e e e s e nbeeeeennrns 250
(o1 (@] o1 =il g o 1Y [oTo = PP UPPPUPPPTT 252
Lol 1ot (@] o] 11 g = PSR PSR 253
(O T (o 1] o] o] = PSP OUOTPUPPPRT 254
Lol =) i o) 11 RSP PR 255
@ =T (=T 1] (T (ST PRSRR 256
Lol 1] ST = PSPPSR 258
@ T ST Y T@ 10 11 01U 2 = V] USRS 259
(O 1] 6] r= LU O PT PR PPPPPPPPPPPPR 260
(O T =T o (=1 i PO PPPPPPPPRPTP 261
(O =] o o [P P PP RPPPPPPPRRPTP 262
ol e Y= Tox (o] V=] oo YA PP PP PPPUPPR 264
(O T AV =] 0T 1Y PP OUOTPUPPPRT 265
YL@ 1Y AN i = o = SRR 266
(@S B To T =11 L= PP UOTPUPPPTTRN 267

DCX-PCI100 User’'s Manual iii

Table of Contents

YL@ £ =l [1= 010] o PSRRI 268
(@ RS T o (=3t o1 U o o HO PP UPTPUPPPRT 269
(O ES35] (0] o] o 1= o [P UOTPUPPPRRRN 270
Lo T g TS P (] oy o T b PP TP 271
(07 AN o I T B 0 g Tex 1T LSRR 275
(@ @foTa1ile [UT =T o] - 11 [PSSR 275
L@ = F=] =1 3o 1 = 11 L SO USES 277
L@ =1 7Y =1 o SRR 278
L@ 7= {0 o] = |1 [USRS 279
MCGEIDIGITAIIOCONTIG ..ttt ettt ettt e e e et e e e st b e e e et bt e e e ebb e e e abb e e e e e snbeeeeennrns 280
[TOAST=] 7Y F= 1o o PO OO PP PUPPRN 282
MCWaAILFOIDIGITAIIOeee ettt e e e bt e e e et bt e e e an b bt e e e aabe e e e anbe e e e e snbeeeeeannns 283
Macros and Multi-tasSking FUNCHONS ... ettt ettt e e e e e s e bbbt e e e e e annbbbeeeeaaaeeeaannnes 287
(OO T g ot =l I T PSP UOTPUPPPPTN 287
@117 = Tod (oL@ | TP UOUPUPPPRTRN 288
Y L1 2 L= 0T | OO PUPPPPPPRTN 289
(07 AN e Y= T 0] Tod 1T LSRR 293
(@4 =1 oot 4 = =T o o PRSP 293
10 =1 (ool (=t o RO PRPTPPR 295
YT @ L RO PRP PR 296
MCGEICONTIGUIATIONEX ... eeiiiiiieie ettt e ettt e e et e e e et e e st e e e s anbe e e e e nnnns 297
@ T Y =T €T o TSRS 298
Y (O @ o1 =T o PP PP PPPPPPPPRPTPR 299
Y [0 {0 =T o] 011 o DU TP PPPPPPPPPPPUPPPPRPPON 301
IMCSEETIMEOULEX ...ttt ettt e ettt et e oo oo ha b ettt e e e e e e e bbb be e e e e e e e e sannbbbeeeeeesaaannbseeeaeaaeeaannes 302
MCAPI OEM LOW LEVEI FUNCLIONScciiiiiiiiiiieie ettt ettt e e e e ettt e e e e e e e e sanbbe st e e e e e e s e sbabeeeaaaaeesaanne 305
] T3 o 1o SRR 305
] T od 1 4o = USRS 306
0] 04T o =] (o PP 307
0000 T3 1 = o 308
01000 T £ 310
01010 0T (o 311
810 0107 01U 11 = 1 0 312
610 0107 0T £ 313
1013 (0)Y OO P PP PPPPPPTPPPPRN 314
610 0103 1 0T 314
0100103 1 0171 T 315
MCAPI Common Motion Dialog FUNCLIONS.........ciiiiiiiiiiiei ettt e e e et ee e e e e e s s aaabbeeaaaeeeaaannnes 319
Tt] R AN o L1011 =To) GRS 319
MCDLG_COMMANAFIIEEXL ... ieiiieiee e et e e et e e e e e e e sttt e e e e e e e e e s st e e e e e eeesesaantesaeeeaeesaasstteeseaaeeesannsnes 320
@ T I I O] a7 8T = AN (=SSP 321
@ T I R O gl 10 | (=T 0TS o OSSR 323
@ T I I @0 a1 1 (o | =T ¢ 1Yo SO PPSRS 324
MCDLG_DOWNIOAAFIIE ...ttt ettt e e et e e e ettt e e et bt e e et b et e st e e e e e nnbe e e e e nnrns 325
IMCDLG _INILBIZE ...ttt ettt e e e ekt e e e et bt e e st bt e et b et e e e bt e e e e e anbeeeeeannnes 326
Y [of] R W1 (0] a1 {0] 1= £ F T PO U RO PPPUPPP 327
MCDLG _MOAUIEDESCEX.utiiiiiiieeeiiiiee e sttt e e sttt e e sttt e e e e st e e e e stbeeeeassteeaeaastaeeeesstaeeeaastaeeeaantbeaeeasbeeeesnstaneeannsens 327
MECDLG _RESIOMEAXIS ...oeiiiiiiiiiiiiiii ettt ettt ettt ettt et eeeee e e eaaesasesssasssssesesssesesesesesasesssssstebesssessnnssnenennnnnnnns 328
MCDLG_RESIOrEDIGITAIIOeiiiiiiiee ittt et e e et e e e e sttt e e e satb e e e e astbeeeeansbeeeesbeeeesssraeeeennsees 330
IMICDLG _SAVEAXIS ...cutteteeitiiee e ettt e e s ettt e e e skttt e e e ettt e e e stbeeeeesabeeeeeaabaeeeeasbeeeeaanbbeeeeanbbeeeeansbeeeeansbeeeansbeeeeeanbeeeeennrees 331
MCDLG_SAVEDIGITAIOeeiie ettt et e e s e e e e st e e e s bt e e e e s bt e e e e sbeeeeessbeeeanbbeeeesanbaeeeenntes 333
Y@ T I Yo7 111 Vo USRS 334
@ T I Y= 1= Tox (@) 1] 1= SO PPSESR 335
(o7 N e I OfoT g1 (o [T ol = g (o] G @ o [T PO PP 339
IMCAPT CONSTANTS ...ttt ettt e ettt e e e e e e et e et e e e e e e s bbb e e et e e e e e saaa bbb e e et e e e e e s e e R s b be e e e e e e e s nbnbeneeeeaeesaannnes 343
MCAPI Status Word Constants LOOKUP TabIeocuuiiiiiiiie e 353
MOtION Dialog WINUOWS CIASSES ... uuteiieiiiieee ittt te ettt ettt ettt e et e et e e s be et e e s be et e e sbb et e e sbbs e e e s bbeeeeannbreeesannneeens 357
MCDLG LEDCLASS ...ttt ettt e e e e et e e e st e e e e et b e e e e e tbe e e e et be e e e e astaeeeeastaeeeaantaeaeasbeeeesanraeeeennsees 357

iv Precision MicroControl

Table of Contents

MCDLG _READOUTCLASS ...ttt ittt ettt ettt s et e e e st e e e e sttt e e e ettt e e e et bee e e s asbeee e e sbaeeeessbeeeeeastaeaasbeeeeensees 358
[1@ QS o= Tod o= L1 0] 1SRRI 361
Motherboard: DCX-PCIL00..........uutieiiiiiee ittt ettt e e st e e e sttt e e e st e e e s asbbeeeesabeeeeeantbeeesanbbeeesbbeeeesanraeeeennsees 361
DCX-MC100 - +/- 10 Volt Analog Servo Motor Control MOAUIEccooiiiiiiiiiiie e 362
DCX-MC110 — Direct Drive Servo Control MOAUIEoouiiiiiiiiiee e 363
DCX-MC400 - 16 channel Digital I/O MOAUIE.............cc.uuuiiiiiee e e e e e e e s e s s ee e e e s nnnnnes 364
DCX-MC5XO0 - ANAIOG 1/O MOAUIE........cci ittt e e e e e s e e e e e s e snn b e eeeeeeessnnneeeeaeeeanannes 364
Connectors, Jumpers, and SCREMALICSuuuiiiiiee et e e e s e et re e e e e e s s s ssebereeeaeeessansnreneeaaeeesannsnes 367
DCX-PCI100 Motion Control MOthErDOAIdooi it e e e e e e e e e st reee e e e e nnnnnes 367
DCX-MC100 +/- 10V Servo Motor Control MOGUIEeiiiiiiiiiiie et e e e e e 370
DCX-MC110 Motor Drive Servo Control MOAUIE.............cooiiiiiiiiiiiie et e e e e 374
DCX-MC400 Digital I/O MOUUIE........ciiiie ittt ettt s e e e e e stae e e e sntbe e e e atbeeeeanteeeesasreeeeennraes 378
DCX-MC500/510/520 ANAIOG 1/O MOAUIEcccoiiiiiee ittt e et e e s s e e e e neeas 380
DCX-BF022 Relay RACK INtEITACEcciiii ittt e e e e st e e e e e e st e e e e e e e e e snteeeeeaeeesannnnes 382
DCX-BF100 Servo Module INterconNNECt BOAceeeiiiiiieiiiiiee et e e e sitee e sntae e e e sntae e eneeas 386
%] o aat=Talo IST=]] 1o o [N Tl 1 o] o PSPPSR 393
Introduction to MCCL (Iow level COMMAN SEL)..........uuiiiiiieeieiiiiiii et s s e e e e e e e s s reee e e e s nnnnnes 393
MCCL Command QUICK REfErenCE TaDIESoooiiiiiiiiieeee ettt as e bababaeeseeeees 395
BUIldiNg MCCL MACIO SEQUENCES.etiiiiitiieeeittteeeattte e ettt e e ettt e e ettt e e e st be e e e e aabe e e e e anbe e e e e anbbeeesabbeesanbeeeeaanrns 397
IMCCL MUII-TASKING -ttt e et e e e ek e e e ek b e e e ek b et e e e aae e e e abbe e e e e anbneeeennrns 399
Downloading MCCL TEXE FIlESceeiiiiiie ettt ettt e e st e e s are e e s e nbe e e e enrns 402
Outputting Formatted MESSAGE SIINGScoi ittt e e e e e s e b e e e e e e e e e e aabbeeeeaaeeeanbsaeeeaaaeaeas 403
Reading Data from DCX IMEIMOIYcccciiiiiiiiitiea e ettt et e e e e ettt et e e e e e e s bbb te e e e e e e s e aannbebeeeeaaesaaaanbeeeeaaeeeaaannes 404
D10 QU YT g =T 1] (] £SO UPPPUPPPPTN 406
(@ @f IS Y =Y (U1 o @do) 1 0] 0 =1 o T £ SRR 409
Yo @I 1V oo (=T @] 1 111 T a0 A3 SRR 417
Y (@@ 1Y o] 1o I @] 1 410 0 F- o To LS SRS BPS 419
1 (@@ I = 3=T o To T i1 o T @] 14 1 4= Ut o £ SRR 425
Y (o @ I 7 (@ I @201 1107F= 1 [0 K3 TP 435
MCCL Macro and Multi-tasking COMMENAScooiiiiiiiiiiiiee et e e snnneee s 441
MCCL REQISLEr COMMIANGSuveeiieiiiiee ettt ettt sttt e skttt e s bbbt e e e sk bb e e e e aabe e e e e aabbe e e e sne e e e aanbr e e e s annneeens 445
MCCL Sequence (If/Then) COMMANTScoiiiiiiiii ettt et e s ab b e e e e sbae e e e sabe e e e snnneeens 453
MiSCEIIANEOUS COMMIANGS ...ttt ettt e e e e ettt e e e e e e e e s e bee e e e e e e e e e s aanbbeeeeeaaaeaesnnbebeeeea s s nnbnbaeeaaaaeesaannnes 461
(O @ I = ¢ o g @ o [P PPPPPRNS 465
L@@ I = ¢ o g @ o [PPPPPPPRt 466
T aL T To BT o 1 I T Yo U 41T o | SRR 469
L1 [0 1SET= U PRURR 471
Y o] 0 1= o PSR 477
Power SUPPIY REQUIFEMENTSuiiiiiiiie et e e ee e e e e e s s e e e e e e s s st e e e eeeeesssantesaeeeeeeeessnstneeeeeenesannsnes 477
= = LU= 11 o [O PES 478
Troubleshooting Controller OPEIAtIONS...........ceii i s e e e e e st e e e e e s s s nnrerareeee e s e annreneeees 479
X e 487

DCX-PCI100 User’'s Manual v

Table of Contents

User manual revision history

Revision

1.0Pre

1.0
1.0b

1.0c

Date
10/8/2001
1/18/2002

5/8/2002
8/16/2002

12/16/2003
12/17/2003
12/19/2003

Contact us at:

Preliminary release

Added Amplifier Fault axis shut down options

Release 1.0

Fixed DCX-MC110 J3 connector pin #2 description

Edited DCX-MC110 jumper descriptions

Edited DCX-MC110 graphics (pages 376 & 377)

Edited DCX-MC100 graphic (page 373)

Fixed DCX-MC400 connector pinout (all channels labeled as #1)
Updated ribbon cable connector manufacturer part number
Updated installation instructions for MCAPI 3.4.1 or later
Added Troubleshooting flowcharts to the Appendix

Edited 'Setting Following Error' description (disabled by default)

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101
Fax: (760)930-0222
World Wide Web: www.pmccorp.com
Email:
Information: info@pmccorp.com
Technical support: support@pmccorp.com
Sales: sales@pmccorp.com

Vi

Precision MicroControl

Table of Contents

DCX-PCI100 User’'s Manual Vii

Table of Contents

viii Precision MicroControl

Chapter

1

Introduction

Motion controller - a device that uses a digital processor to coordinate the movement of
mechanical systems.

The DCX-PCI100 is an Intel compatible PC computer based servo motor and I/O controller.

ooooooooooooo)
ooooooooooooo)

W
00TOW-X2a
00TOW-XOQ

o
3 5]
> x
= <
5 3
= S
= 1S)

Figure 1: A DCX-PCI100 Motion Controller configured for 5 axes of servo motor control

In Windows 2000/Me/98 systems the DCX-PCI 100 is a true PCI ‘plug and play’ card. When the PC is
turned on, the DCX-PCI100 is dynamically addressed into the memory map of the PC. The PC
communicates with the motion controller via dual ported memory on the DCX-PCI100. The PC can
issue commands (move a motor, change the velocity, etc.) to the controller, and retrieve data from the
controller (report to position of an axis, report the state of a digital input, etc.) without interrupting the
basic operations of the controller.

But a hardware based motion control card provides only one half of the overall motion control solution.
State of the art motion control systems typically require sophisticated multi-threaded application
programs and eye catching operator interfaces. PMC’s Motion Control Application Programming

DCX-PCI100 User’'s Manual 9

Introduction

Interface (MCAPI) provides the machine designer with device drivers and a powerful function library
for Windows 2000/NT/Me/98 based applications.

. . ;l.
‘ Dhost T A ek O L Pkt] Vo ¥ Bl 1y sl
L

im e ey
- " B S

=] _w= |

Figure 2: PMC's Windows Motion Control Panel

MCEnableAxis(HCTRLR hCtlr, Word xAxis, short int bState);
MCMoveRelative(HCTRLR hCtlr, Word xAxis, double Distance);
MCIsStopped(HCTRLR hCtlr, Word xAxis, double Timeout);

Figure 3: Function Library examples

The MCAPI supports today’s popular programming environments including:

C/C++
Visual Basic
Delphi
LabVIEW

The DCX-PCI100 Motion Controller can be installed in most any Windows PC computer. It executes
motion functions independent of the host, so other than the minimum requirements for the selected
operating environment (2000/NT/ME/98), the DCX-PCI100 does not require or use any additional
PC resources (CPU speed, PC memory, hard disk space, etc...).

All documentation, tutorials, and software (drivers, function library, diagnostics and utilities) are
available on PMC’s MotionCD.

h"\ PC computer

Volume 2.0

D entation

0
Applications
Drivers

PMC's Motion CD

@ Device drivers

@ Integration software tools
@ Sample programs

@ User manuals
Dc;(Motion ® Powerpoint tutorials

Control System

10 Precision MicroControl

Introduction

The Modular DCX System

The modular architecture of the DCX system allows the user to ‘mix and match’ DCX components to
meet the specific requirements of each application. The DCX system controls the motion of as
many as eight servo motors simultaneously. In addition the DCX modular system supports
expandable digital I/O and analog 1/0.

The term DCX refers to a system consisting of from 1 to 9 circuit boards assembled together to form a
motion control assembly. The platform of a DCX system is the DCX-PCI100 "motherboard". It is a ‘full’
size (approximately 4" x 12.25") PCI peripheral card. It communicates with the PC host via the PCI
bus. On board dual ported memory is used to pass motion commands and report data between the
DCX controller and the PC. The on board CPU (192MHz MIPS) allows the DCX to operate
autonomously from the PC, freeing the host to process critical events while the DCX handles all
motion control. But please note - the DCX-PCI100 motherboard is the processing / communication /
synchronizing engine of the DCX system, but on its own it provides no actual motion control.

Figure 4: The DCX-PCI100 Motion Control Motherboard

To complete the DCX Modular Motion Control System, on to the DCX-PCI100 motherboard the user
installs as many as eight, 2 inch square "daughter boards" known as "DCX modules" . DCX motion
control modules provide:

e The motion control command output (DCX-MC100 = +/- 10V for servo amplifier,
DCX-MC110 = 0.5A direct motor drive)

PID filter (servo modules only)

Trajectory Generator providing Trapezoidal Velocity Profiles (common accel / decel)
Monitoring of TTL level axis I/O (+/- Limits, Home, Amp/Driver enable)

Encoder interface and decode

The DCX-PCI100 motherboard currently supports four DCX modules, two for motion control and two
for general purpose 1/0O. A key feature of the DCX system is its ability to sense which DCX modules
are present. This results in easy system configuration; simply install whatever modules the application
calls for. The logic on the motherboard will adjust its' operation accordingly.

DCX-PCI100 User’'s Manual 11

Introduction

DCX Motion Control Modules

DCX-MC100 Servo Motor Control Module (to be used in conjunction with an external
servo amplifier

Supported motor type: DC Brushless, Brush, Hydraulic Servo Valves, Pneumatic Servo Valves

Command output: +/- 10 volt, 12 bit analog for use with servo amplifier

I/0
Inputs, TTL (0 - +5V, low active), Encoder Coarse Home, Limit +, Limit -, and Amplifier Fault
Output TTL (O - +5V, low active, 10ma max.) — Amplifier Inhibit
Feedback: Quadrature Incremental Encoder , 750 KHz maximum frequency,
Differential (A+, A-, B+, B-, Z-) or Single ended (A, B, Z-)

DCX-MC110 Servo Motor Control Module (for direct drive of small brush motors)
Supported motor type: Small DC Brush

Command output: +/- 12 volt, 8 bit, 0.5A max.

110
Inputs, TTL (0 - +5V, low active), Encoder Coarse Home, Limit +, Limit -, and Amplifier Fault
Output TTL (O - +5V, low active, 10ma max.) — Amplifier Inhibit
Feedback: Quadrature Incremental Encoder, 750 KHz maximum frequency,
Differential (A+, A-, B+, B-, Z-) or Single ended (A, B, Z-)

DCX General Purpose I/0O Modules

DCX-MC400 - 16 Channel Digital I/O Expansion module

Each channel is individually programmable as either an input or output
TTL level (0 — 5 volt, 2 ma sink/source)

DCX-MC500 — 4 Channel Analog I/O Expansion module

Inputs — 4 channels, 0 — 5 volts, 12 bit
Outputs — 4 channels, 0 — 5 volts and/or —10 - +10 volts, 12 bit

9
Q
X
<
Q
a
=}
=)

Ordering Options:
MC510 — 4 input channels only
MC520 — 4 output channels only

12 Precision MicroControl

Introduction

DCX Motion Control Breakout Assemblies

DCX-BF100 — Opto isolation and Interconnect assembly for DCX Servo Motor
Control Modules (DCX-MC100, DCX-MC110)

Opto isolated inputs — Enc. Coarse Home, Limit +, Limit -, Amp Fault

Open collector output — Amplifier Enable

Differential receiver for Index +, Index —

External system connections via DB25 or two 14 contact screw terminal strip

LED indicators for:
Amplifier enable
Encoder Coarse Home
Limit +
Limit —

Amplifier Fault

DCX Motion Control Accessories

Disk Drive Power Splitter Cable (P/N 71.060.A) — Connects PC
computer +12 volts to the DCX-PCI100 motion controller

DCX-PCI100 User’'s Manual 13

Controller and Software Installation

Chapter Contents

DCX Motion Control System Installation

Installing the DCX Software (MCAPI)

Installing the DCX-PCI100 Motion Control Motherboard
Plug & Play (Windows XP/2000/Me/98) Installation
Verifying communication with the PC

Windows NT Installation

14

Precision MicroControl

Software and Controller Installation

The DCX-PCI100 is installed in a PCI slot of a PC computer or the passive back plane of an industrial
computer. Power (+5V, +12V, and —-12V), Ground reference, and communication (Address, Data, and
Read/Write control signals) are supplied via the PCI edge connector. The DCX-PCI100 motion
controller supports Windows 2000/NT/ME/98 operating systems, the DCX-PCI100 does not support
Windows 95 or 3.X. .

DCX-PCI100 Motion Control System Installation

The basic steps for a new installation of the DCX-PCI100 motion controller for Windows 'Plug & Play'
based applications are as follows:

The Microsoft convention for 'plug & play' devices is that the drivers

must be installed before the hardware. For 'plug & play' operating
& systems (XP/2000/98) you must install MCAPI (3.4.1 or higher) before

installing the DCX-PCI100 controller and 'booting' the computer.

e Turn on the computer and allow Windows to load completely

¢ Install PMC’s motion control software (MCAPI 3.4.1 or higher) from the MotionCD or from
PMC’s web site www.pmccorp.com

e Exit from Windows and then turn off the computer

e With the computer power turned off, install the DCX-PCI100 motion control motherboard into
an available PCI slot in the computer motherboard

e Turn on the computer, during the loading of Windows (except for NT4) the operating system
should recognize that a new PCI card has been installed and the appropriate drivers will be
selected

e The motion controller is now ready for testing

DCX-PCI100 User’'s Manual 15

Controller and Software Installation

Installing the DCX Software (MCAPI)

Control API software. For the most recent version of the MCAPI please

0 DCX controllers ship with PMC’s MotionCD, which includes the Motion
check the support page of PMC'’s website www.pmccorp.com

Downloading the Most Recent release of the Motion Control API from PMC’s web site

Due to the dated nature of a CD, it is recommended that the user check PMC’s web
(www.pmccorp.com) site for the most recent release of the MCAPI. Go to the support page and
select the link to the Motion Control API page.

suppori@pme

S= 0 boacn G AT @

B, M 7] 4 5 \
¢ . -~]
T b i J ¥ 1 3

P Tty

Selecting the Motion Control API will begin the file download of this self extracting zip file. As shown in
the following graphic, it is recommended that the file be saved to disk.

o haww chanem o deserinad 8 b b locaiee
| c s s fip g oo

sV ke e b e e iy e o

1™ [y g kg Py i e sy

17 et vhar pragrwna o sk

r

m'.||:.—.-|l-mj

The installation of the MCAPI will begin upon launching the downloaded file. Follow the on screen
instructions.

Installation from PMC’s Motion CD

To install the Motion Control API software which includes: device drivers, function library, controller
setup utilities, communication utilities, and program samples, place the PMC Motion CD into the PC
computer CD drive. If the Motion CD does not auto start, browse the CD and select the file
STARTUP.EXE.

16 Precision MicroControl

Controller and Software Installation

installed ‘on top of’ previous installations. Please refer to Removing the

ﬂ Due to Windows Plug and Play issues, the MCAPI should not be
Motion Control API later in this chapter.

The following windows should be displayed:

L. =] <Y Bt L (] =]

P.'.-!E Hutmnﬂﬂ PMC MotionCD

=1, Ere-reirear ¥ e Y arzh ITON Eiflion. grerulviere M

SBofware and Mamniads
P Bus Cantrollirs
Tiulorals

fvew Qiocs anid Tools
184 Bus Conrollers

Bupgeort and U
E = "0 Sansialone Sondroliers
Epafe Thith G0

Step #1 - Select “Software and Manuals” Step #2 - Select “PCI Bus Controllers”

oy P B i o, Pl e

mmﬁ}r PMC MotionCD mﬂﬂﬂfr PMC MofionCD

L Mlay 2311 Dddbon Alay M7 Eoiman
LB ‘-| I-I'FI u'a L= _I II.III.I'
Wzer's Maraisls
DCX-PCINN Controller Sl Bkt
THEgE alny

a2 Gty
DX PE100 Eantrolie TR WIrwe

Itotisn ' LIGinany

¥ i ME O

mﬂ'ﬂﬂf 2 PMC MotionCD

Slereh SO0H Faline: prssslesis H

g Muboe | elnd (7 b alateedd Soumid | =

Wywh e b e et @ P D e for
iy [eirnd A9

L= _I II.III.I'
T bl heriF | ‘v all v ol Vs Cwrrer T

sl . Lo sl el Plm

I iall Bio@on Control &R

N T e s b by g gt L
Fhmmd b ki

Step 5) Install Motion Control API Step #6) Follow the on screen instructions

DCX-PCI100 User’'s Manual

17

Controller and Software Installation

Motion Control APl Components

Upon successful installation of PMC’s Motion Control API, the Motion Control Panel will be available
from the Windows Control Panel and the following components will be available from the Windows
Start menu (Start\Programs\Motion Control\Motion Control API). For additional information on
individual MCAPI components please refer to the Software and Utilities section in the
Programming, Software, and Utilities chapter of this manual.

PMC MCAPI Components

D S RO R

'- Cwlemo . S+ Wimsal Bazic, and Delphi sample programs (mource files
ﬂ WE Demo H— inchaded), Thee somphes prosick: motion, pogition
= Pagral Damg _ feedback, status, and configuration inforsation for L asis.
.'_311 Jogstick Demo Samphks program for soving 2 axes witha "B joystick
WY HCAP! Guide -
MCAPT Om-lng Help
$ Sl L1 comiprehensive on-ling belp dooumends, function references,
& MCDLG Fialessrce and LabUIEW VI library reforence for fhe MCAR
&) Mation W Liraty Help ~ MEART Utiliies
Z-| MCAP! Sehup Software & B confrallker configueation - MEART Setup
B Fosiion Alesdouw
E. ‘win Conbiol barect conirollar communicalion interface - Win Confrol
|3 Flash wWazmd B | e fi mrwars upgrade wi zord

'EI Wit PMC on the 'Web Connect o PWC's web siie

Figure 5: MCAPI components

Removing the Motion Control API

To remove the MCAPI , launch the Add/Remove Programs applet in the Windows Control Panel. After
the Uninstall Shield has removed the MCAPI you will need to restart the computer to remove active
dil's.

r-r—l-m-'-l—-lq-n milbam

i =T -

;‘i‘ m—-l-l = e i el

pupCmaT) et e S ok
A

Figure 6: Windows Add/Remove programs

18 Precision MicroControl

Controller and Software Installation

Installing the DCX-PCI100 Motion Control Motherboard

The DCX-PCI100 is ‘Plug and Play’ (Windows 2000/98/Me) compatible, there are no jumpers or
switches to be configured. The DCX can be installed in any of the PC’s available PCI slots. The DCX
modules and cabling may interfere with a card installed in the slot next to the DCX, so it is

recommended that the slot next to the DCX be left open. Make sure to attach the bracket of the DCX
to the back panel of the PC.

Make sure that the PC computer power is turned off before installing the
0 DCX-PCI100 motion controller.

For new installations, to verify communication between the PC, MCAPI, and the DCX it is
recommended that the DCX-PCI100 motherboard first be installed without any DCX modules.

\ PC computer

0000000000000000000000000000000 0000000000000
[000000000000000000000000000000 0000000000000 ()

DCX Motion
Control System

DCX-PCI100 User’'s Manual 19

Controller and Software Installation

Plug & Play (Windows XP/2000/Me/98) Installation

The following section describes the basic steps for installing the DCX-

PCI1100 motion controller into plug and play PC computers. For step by

step installation procedures please refer to the MCAPI read me file
:\MotionCD\Windows\MCAPN\Current\Readme.txt

After installing the Windows driver (MCAPI 3.4.1 or higher), the DCX-PCI100 motion controller, and
turning on the PC power the 'plug & play' operating system will detect a new PCI device.

Windows XP - The Found New Hardware Wizard will be launched
(indicating that a new PCI device was detected). Proceed with the
installation process by selecting:

Install the software automatically

ﬂ If a windows list box of motion controllers / device drivers is displayed
select the PMC DCX-PCI100 Motion Controller.

Note: Due to the considerable cost and maintenance overhead of
Microsoft device driver qualification the PMC motion controller device
drivers are not digitally signed.

Windows 2000 - Upon detecting a new PCI device Windows 2000 will
automatically select the appropriate DCX-PCI100 device driver. If the
Found New Hardware Wizard is launched then the 'plug & play’
installation has failed and you should contact PMC technical support.

Windows 98 - Upon detecting a new PCI device Windows 98 will
automatically select the appropriate DCX-PCI100 device driver. Note -
Windows 98 does not handle 'plug & play installations as cleanly as XP

ﬂ & 2000. During the loading of the operating system a dialog may be
displayed indicating the path to the MFX-PCI 1000 Series controllers
device driver. Selecting OK will allow the 'plug & play' installation to be
completed.

20 Precision MicroControl

Controller and Software Installation

When the operating system has completed loading, launch the Windows Device Manager. Select
Hardware and then Motion Control. The Device Manager should list the DCX-PCI100 Motion

Controller as an installed device.

System Properties

General Device Manager | Hardware F'ru:ufilesl P'erfu:urmanu:el

% \igw devices by lwpe ™ Wiew devices by connection

2] x]

Cornpliter

2=} COROM

[Disk drives

@ Dizplay adapters
--% Floppy disk. controllers
-5 Hard disk controllers
-8 Keyboard

@ M onitars

Eb Mouze
i+ BI§} MWetwork adapters
g Parts [COM & LPT)

..

G-/ Spstem devices
[#-882 Uriversal Serial Bus controllers

Tlak Macallal Plaiicba.

(]

W PHLC DC=-PCN OO0 Makion Cantraller

Sound, videa and game caontrallers

Froperties | Refreszh | Femove I

| »

| |

Prirat... |

| [Earize |

Figure 7: Use the Windows Device Manger to verify 'plug & play' installation

DCX-PCI100 User’'s Manual

21

Controller and Software Installation

Verify Communication with the PC

The final step of a DCX-PCI100 instillation is to verify communication between the PC and the motion
controller. This can be accomplished via either:

The Motion Control Panel applet
Win Control Terminal Emulator

Motion Control Panel applet

From the Motion Control panel (Start\Settings\Control Panel\Motion Control) you can view the
installed versions of the Motion Control APl and the on-board firmware of the DCX-PCI100 controller.
To report the software and firmware versions select Properties and then Info. The MCAPI will query
the DCX controller for its firmware version. If the Motion Control Panel is unable to acquire this
information the version will be reported as unknown.

Motion Controller Properties EE |

— Matian Cantraller

Contraller Model: dox-poil 00

Firrnware Wersion: prl Revision: 1.0a

— M ation Control AP

MCAP DLL Yersion: 3.4.1.19 [mcapid2.dl]
|nterface DLL Yerzion: 3.4.1.5 [pracbsz. dil]
Config DLL Wersion: 3.4.1.16 [cfgpeil . dlil]

|] 4 I Cancel Sl

Figure 8: Checking firmware and MCAPI version

Win Control Terminal Emulator
From the Windows Start Menu select:

\Programs\Motion Control\Motion Control API\Win Control

If WinControl program opens and reports the firmware version of the MFX-PCI the controller and
MCAPI software have been properly installed and basic communication has been verified.

22 Precision MicroControl

Controller and Software Installation

[winControl - O] x|

File Edit Help
D& 5 Bz e e

ve
DCX-PCI188 Motion Controller

Hardware: 4896K Private RAM, 512K Flash Memory

System Firmware Uer. PH1 Reuv. 1_8a

Copyright (c) 2881-2882 Precision MicroControl Corporation
All rights reserved.

>

Figure 9: Use WinContral to verify controller communication

If an error message is displayed the PC / MCAPI / DCX-PCI100 are not communicating properly and
an error message will be returned and you should contact PMC Technical Support..

WinControl32

& IInable to open controller Far the following reason:

D O - Controller hardware not prezent [code 7]

Figure 10: Failed communication error message

DCX-PCI100 User’'s Manual 23

Controller and Software Installation

Windows NT Installation

There are no jumpers or switches to be configured prior to installing the DCX-PCI100 in a Windows
NT PC. The DCX can be installed in any of the PC’s available PCI slots. The DCX modules and
cabling may interfere with a card installed in the slot next to the DCX, so it is recommended that the
slot next to the DCX be left open . Make sure to attach the bracket of the DCX to the back panel of the

PC.

Make sure that the PC computer power is turned off before installing the
ﬂ DCX-PCI100 motion controller.

For new installations, to verify communication between the PC, MCAPI, and the DCX it is
recommended that the DCX-PCI100 motherboard first be installed without any DCX modules. After
installing the DCX-PCI100, turn on the PC and log on to the Windows NT system as the system
administrator.

To install PMC’s motion control software, the MCAPI, the user must be
& logged on as the system administrator.

For assistance with installing the MCAPI please refer to the section titled Installing the DCX
Software (MCAPI) on page 16.

Windows NT is not a ‘plug & play’ operating system. the user must configure the MCAPI device
driver for the type and quantity of DCX-PCI100 controllers installed in the computer. The next few
pages describe the steps required to configure the MCAPI.

Launch PMC’s New Controller Wizard by selecting the Motion Control icon from the Windows
Control Panel or from the Windows Start menu (Motion Control\Motion Control AP\MCAPI Setup).

= M=
Bw D Be @ fpe e e [1 il b -
bl 1= 1 R R A1

T 50 A0 M

® 0 @

kg

L & & %P

e » 28023 A

di [T

Erpre— 2 e Compmie

Figure 11:For NT systems launch Motion Control from the Windows Control Panel

24 Precision MicroControl

Controller and Software Installation

motion controller installed in the PC. The last step of the New Controller

Q Do not attempt to setup the Motion Control APl without a DCX-PCI100
Wizard verifies communication between the DCX controller and the PC.

T |

Figure 12:PMC's New Controller Wizard

Controller ID

Each PMC motion controller installed in your PC requires an individual Controller ID number. The
MCAPI supports controller ID’s between 0 and 15, supporting applications with as many as 16 DCX
controllers in a single computer. Typically the Controller ID is set to zero (ID=0). If more than one DCX
controller is to be installed usually the DCX-PCI100 upon which the primary axes reside is set to IDO.

fein 1o (D el i W ol e ' B) T
:-tt wrdd ‘-I.ﬂ A T
““;ﬂh‘unﬁ o

Ceime 7 =
& il v b b
T
sk | g | el |

Figure 13: Setting the Controller ID

Controller Type

The MCAPI supports mixing and matching various PMC controllers (DCX-PCI1100, DCX-PC100, and
DC2-PC) within a single PC. A list of PMC controllers that are supported by the MCAPI will be
displayed. Select the DCX-PCI100.

DCX-PCI100 User’'s Manual 25

Controller and Software Installation

e R T

Figure 14: Select Controller Type - DCX-PCI100

Description
Allows the user to enter comments about the controller. An example of a completed General setup of
a DCX-PCI100 follows:

Communications Interface
A list of supported controller interfaces will be displayed. Select the PC-Bus.

Vi i B st e ot il b v
ey iy 1 P sy pomi e

e Tt [— =

B Pl i i b el i P el
prai it FL g m Sy e

Figure 15: Selecting the communication Interface

Testing the Installation
To verify the DCX / MCAPI installation open the WinControl32 utility (Start\Programs\Motion
Control\Motion Control API\Win Control). If WinControl opens and reports the firmware version of the

26 Precision MicroControl

Controller and Software Installation

DCX the system is operating properly. If the PC / MCAPI / DCX are not communicating properly an
error message will be returned.

:_ Vi il ol

Fie Edt Heip

Figure 16: Use WinControl to verify controller / MCAPI / computer communication

WinControl32 E2
& |Inable to open controller for the following reason;

D 0 - Contraller hardware not prezent [code 7]

Figure 17: Controller communication failed error message

If WinControl fails contact PMC Technical Support.

DCX-PCI100 User’'s Manual 27

DCX Module Installation

Chapter Contents

e Installing DCX Motor Control and 1/0O Modules

e DCX-MC100 — Servo Motor (+/- 10V output) Module Installation

e DCX-MC110 - Servo Motor (0.5A direct motor drive) for Module Installation
e DCX-MC400 — Digital I/O Expansion Module Installation

e DCX-MC500 — Analog I/0O Expansion Module Installation

28 Precision MicroControl

DCX Module Installation

Installing DCX Motor Control and 1/0 Modules

DCX Modules can be placed in any open module position on the DCX motherboard. If there are fewer
than eight modules to be installed on the DCX, spread them out as much as possible. This will allow
easier installation and removal of the modules as well as mating cables.

If there are to be motor control modules installed on the DCX, and you want them to be numbered in a
specific order, install them in module positions on the DCX in that order. For example, the module that
is to control motor number 1 could be installed in module position number 1 (refer to the module
numbers on the DCX circuit board). The module controlling motor number 2 could be installed in
position number 2, and so on. Alternatively, the second module could be installed in any other module
position and it will still be assigned number 2 since it is the second motor module on the DCX.

DCX-PCI100 User’'s Manual 29

DCX Module Installation

To install the modules, lay the DCX-PCI100 motherboard on a flat surface, component side up. Place
each DCX module in the desired position, aligning the connectors and mounting holes with their
respective mates on the DCX motherboard. When you are satisfied that the module is properly
aligned, carefully press the module into the DCX. The header pins of the module should seat
completely into the mating connectors on the DCX motherboard. Two nylon mounting screws are
supplied with each DCX module. These should be installed from the backside of the motherboard, into
the standoffs on the modules. Repeat this process for installing modules on the DCX until all modules
are in place.

Next the DCX should be re-installed in the PC chassis and interfacing cables connected. Refer to the
following sections in this chapter for specific jumper and wiring information for the types of modules
that are being used. When cabling has been completed, power can be applied to the system and
initial checkout can begin.

Please note that all DCX modules contain a 26 pin, shrouded, center
polarized header for I/O connections. The pins of this connector are

0 numbered from 1 to 26. The following diagram shows the location of pins
1, 2, 25 and 26. The other 22 pins are numbered and located
respectively.

DCX MODULE CONNECTOR PIN NUMBERING
(TOP SIDE VIEW)

ZZAI0O0 0000000000 0OK
OOOOOOOOOOOOO p) °

O
@)
x
<
@
=
=
o

30 Precision MicroControl

DCX Module Installation

DCX-MC100 — Servo Motor Module Installation

The default shipping configuration for the DCX-MC100 supports:

+/- 10 volt servo command output (12 bit resolution, 10 ma. Max.)

Single ended encoder (phase A, phase B)

Encoder Index Z- (TTL level, low active)

Coarse Home, Limit +, Limit —, and Amplifier Fault inputs (TTL level, low active)
Amplifier Inhibit output (TTL level, low active, 10 ma max.)

+5 VDC encoder power output (100 ma max.)

Servo Command output offset adjustment potentiometer

+12 volt motor drive power supply

The default configuration of the DCX-PCI100 does not use the +12 volt connection on the PCI bus
edge connector. To supply +12 volts to the DCX-PCI100 the user must connect J33 to a PC computer
disk drive power supply connector. Typically a standard disk drive power supply ‘splitter’ cable is used
to connect the +12 volt supply of the PC computer to the DCX controller. Power supply splitter cables
can be purchased from PMC (P/N 71.060.A). For additional information please contact the factory.

If the +12 volt PC computer power supply connection is not provided to the DCX-
& PCI100 J33 connector no servo motion will occur.

Differential Encoder
The DCX-MC100 can be configured to support a differential encoder by cutting the signal traces
between pins 1 and 2 of JP2 and JP3 (back side of module).

O ::iiiiiiii: O
JPg JP4

~

® o0 0

7
JP3

V'd 1vdSOd

(]
o
(]
()
(]
(]
(]
o
(]
()
(]
(]
(]
o
(]

(3
®
(3
®
(3
(J
(3
®
(3
®
(3

DCX-PCI100 User’'s Manual 31

DCX Module Installation

+12 volt encoder power
The DCX-MC100 can be configured to provide a +12 VDC Encoder Power Output by:

1) Cutting the signal trace between pins 2 and 3 of JP4 and
2) Connecting pins 1 and 2 of JP4

Note: The DCX-MC100 provides the Encoder Power output as a convenience, It is
& not required that it be used to power the encoder.

All external connections (Command signal, Limits, encoder, etc...) are made via the 26 pin, dual row
header labeled J1. The diagram below details the pin number of the J3 connector.

DCX-MC100 J3 CONNECTOR PIN NUMBERING
(TOP SIDE VIEW)

ZAI000 000000000 O
OOOOOOOOOOOOO p) \‘

O
O
o
<
O
=
o
O

After installing the DCX-MC100 module into the DCX-PCI100 motion control motherboard the servo
encoder, amplifier, and limit switches can be connected to the module. Wiring diagrams on the next
two pages depict typical installations. The first diagram details direct connection of the MC100 to the
external components (servo amplifier, encoder, and sensors). The second diagram details typical
connections when a DCX-BF100 Opto Isolation and Interconnect Assembly is used.

32 Precision MicroControl

DCX Module Installation

Servo Amplifier

I
DCX-MC100
I/0 Connector J3
2 Command Output (+/- 10V)
1 Analog Ground
11 - Amplifier Inhibit (output)
10 - Amplifier Fault (input)
5 Ground
14 - Limit Positive (input) ® \.7 Servo Motor
Quadrature
15 - Limit Negative (input) o \. Encoder
9 - Coarse Home (input) o \.

— Gnd

Encoder Phase A+

23 7

20 - Encoder Phase A- (Differential only)
| Encoder Phase B+

16

19 - Encoder Phase B- (Differential only)
i Encoder Index -

25

Encoder Power (+5 / +12)
17
26 Ground

DCX-PCI100 User’'s Manual 33

DCX Module Installation

DCX-MC100

J3 conn.

DCX-BF100 - 24
Opto Isolation and
Interconnect Assembly

J1 conn.

26 conductor
ribbon cable

14

15

23
20
16
19

25

Servo Amplifier

—
Command Output (+/- 10V)
Analog Ground
Ground
Opto Isolator supply
~ Power Supply
+24 vdc
+
Encoder Phase A+
Encoder Index +
Encoder Index -
Encoder Power (+5/ +12
Ground Quadrature
Encoder

34

Precision MicroControl

DCX Module Installation

DCX-MC110 — Servo Motor Module Installation

The default shipping configuration for the DCX-MC110 supports:

0 - 12 volt motor drive output (8 bit resolution, 500 ma. Max.)

Single ended encoder (phase A, phase B)

Encoder Index Z- (TTL level, low active)

Coarse Home, Limit +, Limit —, and Amplifier Fault inputs (TTL level, low active)
Amplifier Inhibit output (TTL level, low active, 10 ma max.)

+5 VDC encoder power output (100 ma max.)

Motor Drive output offset adjustment potentiometer

+12 volt motor drive power supply

The PCI bus motherboard edge connector was not designed to provide high current to accessory
cards like the DCX-PCI100. In order to provide sufficient supply voltage / current for DCX-MC110
motor drive modules (0.5 amps per module, maximum of 4.0 amps) a 4 pin connector (J33) matching
the power supply pinout of 5 % / Hard Disk Drives can be found on the DCX-PCI100 motherboard. A
standard disk drive power supply ‘splitter’ cable is used to connect the +12 volt supply of the PC
computer to the DCX controller. Power supply splitter cables can be purchased from PMC (P/N
71.060.A)

If the +12 volt PC computer power supply connection is not provided to the DCX-
& PCI100 J33 connector no servo motion will occur.

Differential Encoder
The DCX-MC110 can be configured to support a differential encoder by cutting the signal traces
between pins 1 and 2 of JP2 and JP3 (back side of module).

O :::::iiiiii: O
P2 P4

~

® o0 0

V'd 1vdSOd

(]
()
(]
o
L]
(]
(]
()
(]
o
L]
(]
(]
()
(]

®
®
(3
(J
(3
®
®
®
(3
(J
(3

DCX-PCI100 User’'s Manual 35

DCX Module Installation

+12 volt encoder power
The DCX-MC110 can be configured to provide a +12 VDC Encoder Power Output by:

3) Cutting the signal trace between pins 2 and 3 of JP4 and
4) Connecting pins 1 and 2 of JP4

Note: The DCX-MC110 provides the Encoder Power output as a convenience, It is
& not required that it be used to power the encoder.

All external connections (Command signal, Limits, encoder, etc...) are made via the 26 pin, dual row
header labeled J1. The diagram below details the pin number of the J3 connector.

DCX-MC110 J3 CONNECTOR PIN NUMBERING
(TOP SIDE VIEW)

ZAI000 000000000 O
OOOOOOOOOOOOO p) \‘

O
O
<
=
O
[N
[ERN
o

After installing the DCX-MC110 module into the DCX-PCI100 motion control motherboard the
encoder, motor, and limit switches can be connected to the module. Wiring diagrams on the next two
pages depict typical installations. The first diagram details direct connection of the MC110 to the
external components (motor amplifier, encoder, and sensors). The second diagram details typical
connections when a DCX-BF100 Opto Isolation and Interconnect Assembly is used.

36 Precision MicroControl

DCX Module Installation

DCX-MC110
I/O Connector J3

Motor Drive + (output)

1 Motor Drive -
6
14 —Limit Positive (input) Servo Motor

Quadrature

f1f

15 4 Limit Negative (input) Encoder
9 - Coarse Home (input)
—_ Gnd
23 Encoder Phase A+
20 - Encoder Phase A- (Differential only)
16 | Encoder Phase B+
19 - Encoder Phase B- (Differential only)
o5 Encoder Index -
17 Encoder Power (+5 / +12)
26 Ground

DCX-PCI100 User’'s Manual 37

DCX Module Installation

DCX-MC110

J3 conn.

DCX-BF100 - 24
Opto Isolation and
Interconnect Assembly

J1 conn.

26 conductor
ribbon cable

14

15

23
20
16
19

25
17

Servo

Opto Isolator supply

Quadrature
Encoder

Encoder Phase A+

- Power Supply

+24 vdc

Encoder Index +

Encoder Index -

Encoder Power (+5/ +12

Ground

38

Precision MicroControl

DCX Module Installation

DCX-MC400 - Digital 1/0O Expansion Module Installation

One or more MC400 digital I/0O modules can be installed on the DCX. There are no jumpers on this
module to be configured. The module's TTL digital I/O signals can be connected directly to the
external circuits if output loading (1ma maximum sink/source)and input voltages are within acceptable
limits. Alternatively, a BFO22 interface board can be used to connect the module's I/O to a relay rack
in order to provide optically isolated inputs and outputs.

The BFO22 interface board provides a convenient means of connecting the MC400's TTL digital 1/0O
channels to a 16 position relay rack available from two manufacturers, Opto22 (P/N PB16H) and
Grayhill (P/N 70RCK16-HL). These relay racks accept up to 16 optically isolated input or output
modules for interfacing with external electrical systems. Using one of these relay racks and a BFO22,
an optically isolated I/O module can be connected to each of the MC400's digital /0 channels.

O 00— a0

As shown above, the BFO22 plugs directly into the relay rack's 50 pin header connector and then
connects to the MC400 via a 26 conductor ribbon cable. Note that the relays are numbered
sequentially starting from 0, while the DCX digital /0O channels are numbered sequentially starting
with 1.

Although the relay rack has screw terminals for connecting a logic supply, it is not necessary to make
this connection. By installing a shorting block on jumper JP17 of the BFO22, the 5 volt supply of the
DCX will be supplied to the relay rack.

For detailed information on configuring the DCX-BF022, please refer to the schematic and jumper
table in the DCX-BF022 Appendix in this user manual.

DCX-PCI100 User’'s Manual 39

DCX Module Installation

DCX-MC500 — Analog I/0 Expansion Module Installation

One or more MC500 analog I/0 modules can be installed in the DCX as described in the first section
of this chapter. There are no jumpers on this module to be configured. The module's 1/O signals can
be connected directly to the user's external circuits as long as output loading is not excessive and
input voltages are maintained within the specified limits (see the MC500 appendix).

A voltage level greater than 5.6 volts will damage DCX-MC500 analog
input channels. The schematic below is recommended to protect an
analog input from damage due to an over voltage condition. This circuit
will limit the maximum voltage applied to the A/D converter to 5.6 VDC.

Analog Input Protection Circuit

10K

To external PN Analog Input

zensar J pot (to connector J3
inz 1, 3, 5, ancior 7
L pins 1,3, 5, J

TMS231 zener diode
LA ar
SALSOL TS (Gen. Semi)

40 Precision MicroControl

DCX Module Installation

DCX-PCI100 User’'s Manual 41

Programming, Software, and Utilities

Chapter Contents

Introduction to the Motion Control Application Programming Interface (MCAPI)

Controller Interface Types

Building Application Programs using MCAPI
C++ programming
Visual Basic Programming
Delphi Programming
LabVIEW programming

PMC Sample Programs

Motion Integrator
System Integration Wizards
Servo Tuning tool
Embeddable OLE servers

PMC Utilities
MCAPI Setup
WinControl
FlashWizard
Joystick Applet
Position Readout

MCAPI On-line Help
MCAPI Users Guide
MCAPI on-line function reference
MCAPI Common Dialog help
LabVIEW Motion VI Library Help

42

Precision MicroControl

Chapter

A

Programming, Software and Utilities

The DCX motion control system integrates seamlessly into high performance, Windows applications.
The Motion Control Application Programming Interface (MCAPI) provides support for all popular
high level languages. Additionally, the board level command set (MCCL) allows the machine designer
to execute local ‘macro’ routines independent of the PC host and its application programs.

PMC’s Motion Control API (MCAPI) is a group of Windows components that, taken together, provide a
consistent, high level, Applications Programming Interface (API) for PMC's motion controllers. The
difficulties of interfacing to new controllers, as well as resolving controller specific details, are handled
by the API, leaving the applications programmer free to concentrate on the application program.

MCCL Visual
ASCII Programming .
Command g(;\\llzroce:\ent ® \/isual Basic E;%hbzvis
Interface Environpments ® L abVIEW . Cg 9
o Delphi O EGlRMI=hY o CHt
e Lab Windows Drivers ® Visual Basic
e Visual C/C++ © OLE Controls ® Pascal
WinControl * LabVIEW VI
A . . .
\ 4+ Motion Control API (function library) \

i

 Low-Level Device Driver (DLL)

Figure 18: MCAPI and DCX-PCI100 architectural diagram

DCX-PCI100 User’'s Manual 43

Programming, Software, and Utilities

The API has been constructed with a layered approach. As new versions of Windows operating
systems and new PMC motion controllers become available API support is provided by simply
replacing one or more of these layers. Because the public API (the part the applications programmer
sees) is above these layers, few or no changes to applications programs will be required to support
new version of the MCAPI.

The API itself is implemented in three parts. The low level device driver provides communications with
the motion controller, in a way that is compatible with the Microsoft Windows operating system. The
MCAPI low level driver passes binary MCCL commands (Motion Control Command Language — the
instruction set of the DCX motion controller) to the DCX. By placing the operating system specific
portions of the API here it will be possible to replace this component in the future to support new
operating systems without breaking application programs, which rely on the upper layers of the API.

Sitting above that, and communicating with the driver is the APl Dynamic Link Library (DLL). The DLL
layer implements the high level motion functions that make up the API. This layer also handles the
differences in operation of the various PMC Motion Controllers, making these differences virtually
transparent to users of the API.

At the highest level are environment specific drivers and support files. These components support
specific features of that particular environment or development system.

Care has been exercised in the construction of the API to ensure it meets with Windows interface
guidelines. Consistency with the Windows guidelines makes the API accessible to any application that
can use standard Windows components - even those that were developed after the Motion Control
API. A Quick Reference Guide and detailed MCAPI Function Library Listing can be found in the
manual.

Controller Interface Types

The DCX controller supports two onboard interfaces, an ASCII (text) based interface and a binary
interface. The binary interface is used for high speed command operation, and the ASCII interface is
used for interactive text based operation (WinControl). The high level sample programs (CWDEMO
and VBDEMO) use the binary interface, PMC WinControl uses the ASCII interface.

Application programs must indicate which interface they intend to use when they open a handle for a
particular controller. A controller may have more than one handle open at a time, but all open handles
for a particular controller must specify the same interface (all must be open with the binary interface or
all must be open with the ASCII interface). The open mode is specified by setting the second
argument of the MCOpen() function to either MC_OPEN_ASCII or MC_OPEN_BINARY.

Note that not all functions are available in the ASCII mode of operation, this mode is intended
primarily for use with the pmcgetc(), pmcgets(), pmcputc(), and pmcputs() character based
functions (these 4 functions are not available in binary mode). This restriction will be eliminated in a
future release of the API.

44 Precision MicroControl

Programming, Software, and Utilities

Building Application Programs using Motion Control API

The Motion Control Application Programming Interface (MCAPI) is designed to allow a programmer to
quickly develop sophisticated application programs using popular development tools. The MCAPI
provides high level function calls for:

e Configuring the controller (servo tuning parameters, velocity and ramping, motion limits, etc.)

e Defining on-board user scaling (encoder units, velocity units, dwell time units, user and part
Zero)

Commanding motion (Point to Point, Constant velocity)

Reporting controller data (motor status, position, following error, current settings)
Monitoring Digital and Analog 1/O

Driver functions (open controller handle, close controller handle, set timeout)

A complete description of all MCAPI functions can be found in later in this manual.

Included with the installation of the MCAPI is the Sources ‘folder’. In this folder are complete program
sample source files for C++, VisualBasic, and Delphi.

| Be Ed Mew Go Fyoies Heb Ea
.0+ W ¥ ImoB | = X O F O EH
Back. LUip Cut Coop Paste Undo Dislst= Propetiss Yiews
Adress |_I L:"Fingram Filssilation CortinhMobon Contdl AP ousces: j |
o | | | | |
Twlemo Jop Paulema WD e WE Demod2 ‘winCH
Sources
8 = & = & =

Select an kem to view ks -
deseription. ! CH3d CHid M capl bas i g def Meapi b Hioapi b

2 & A & g &
Mcapipsr MospidZ ba: moapidldsf | mecapd?bb Medh WD bas
2 A A A A
A LTHg ched MLIHg |y M ol b MLDIgpss MLDIKEE bae MU chal

s @

MODLEA2 W Userlppe dat

2680 Z| My Compter i

DCX-PCI100 User’'s Manual 45

Programming, Software, and Utilities

C/C++ Programming

Included with each of the C program samples (CWDemo. Joystick demo, and WinControl) is a read
me file (readme.txt) that describes how to build the sample program. The following text was reprinted
from the readme.txt file for the CWDemo program sample.

Contents

- How to build the sample
- LIB file issues
- Contacting technical support

How to build the sample

To build the samples you will need to create a new project or make file within your C/C++ development
tool. Include the following files in your project:

CwDemo.c

CWDemo.def

CwDemao.rc

For 16-bit development you will also need:
.\mcapi.lib
.Amcdlg.lib
.\ctl3d.lib

For 32-bit development you will also need:
.\mcapi32.lib
.A\mcdlg32.lib

If your compiler does not define the _WIN32 constant for 32-bit projects you will need to define it at
the top of the source file (before the header files are included).

LIB File Issues

Library (LIB) files are included with MCAPI for all the DLLs that comprise the user portion of the API
(MCAPI.DLL, MCAPI32.DLL, MCDLG.DLL, and MCDLG32.DLL). These LIB files make it easy to resolve
references to functions in the DLL using static linking (typical of C/C++). Unfortunately,

under WIN32 the format of the LIB files varies from compiler vendor to compiler vendor. If you cannot use
the included LIB files with your compiler you will need to add an IMPORTS section to your projects DEF
file. We have included skeleton DEF files for all of the DLLs for which we also include a LIB file
(MCAPI.DEF, MCAPI32.DEF, MCDLG.DEF, and MCDLG32.DEF).

The 16-bit LIB files were built with Microsoft Visual C/C++ Version 1.52,
and the 32-bit LIB files Microsoft Visual Studio Version 5.

B B Yew G0 Fpa 540 1
. o+ | X @& B | @A | X @ 1.
Ead Up Lt [Pty Lireks [uiwls Frgwesm dess
ﬂgﬁml_l L Frogpan Fiba ' soon Comsal Moton Conieol AF ' Sau carilwLers ﬂ
a & & I
Ll site i ded (== D ey Cwliesa pae Twlsen PL
" e
L .
Mirell Dulas Fachu s
JLERL]) Wy Do

46

Precision MicroControl

Programming, Software, and Utilities

Visual Basic Programming

Included with each of the Visual Basic program samples (VBDemo. VBDemo32) is a read me file
(readme.txt) that describes how to build the sample program. The following text was reprinted from

the readme.txt file for the VBDemo32 program sample.

Contents

- About the sample
- How to build the sample
- Contacting technical support

About the sample

(such as a full-featured, ready-to-run
axis configuration dialog) are also demonstrated.

How to build the sample

About32.frm
Main32.frm
Servo32.frm
Step32.frm
VBDemo.bas

.\mcapi32.bas
.A\mcdlg32.bas

Set frmMain as the startup object for the project.

This sample demonstrates a simple user interface to one axis of a motion controller. The user may
program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms
demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions

To build the samples you will need to create a new project or use the Visual Basic project file (created
with Visual Basic v6.0) included with the sample. Include the following files if you create your own project:

B EM Wew 4 Favles Hel [+ |
o.o® 4 ¥ B @ X O E.
i g =} Crpy Pam= Uewin [T e, T —
gk | "1 i Flestinon Toranflbonon Casnal SV pusos VA e 17 7]
' 3 e 2 . -
3 O W 5 W 9 =
— b s M Aeedrabd Savell b N T A
VBDemo32
i
it T Wy Compitm

DCX-PCI100 User’'s Manual

47

Programming, Software, and Utilities

Delphi Programming

Included with each of the Delphi program sample (PasDemo) is a read me file (readme.txt) that
describes how to build the sample program. The following text was reprinted from the readme.txt file
for the PasDemo program sample.

Contents

- About the sample
- How to build the sample
- Contacting technical support

About the sample

This sample demonstrates a simple user interface to one axis of a motion controller. The user may
program moves and interact with the motion in a number of ways (stop it, abort it, etc.). Sample forms
demonstrate how to configure servo or stepper motor axes. A number of the new MCDialog functions
(such as a full-featured, ready-to-run

axis configuration dialog) are also demonstrated.

How to build the sample

To build the samples you will need to create a new project or use the Delphi project files included with the
sample (Pdemo.dpr for 16-bit, Pdemo32.dpr for 32-bit). Include the following files if you create your
own project:

About.pas
Global.pas
PasDemo.pas
Servo.pas
Stepper.pas

For 16-bit projects you will also need:

.\mcapi.pas
.A\mcdlg.pas

For 32-bit projects you will also need:

.\mcapi32.pas
.Amcdlg32.pas

ﬁh‘!ﬂ-ﬂl.ll‘p—.lﬂ- E

o, | & W 5 % | K| .
Gk Ui Call Logw Fuilg Likes Delels Fipabei Vi
-‘ﬂ"'ﬁ"ll] i Progeem Flmr i cion CoréafHetbon Cestd APT Soucar Fallon j
5 N B |
| 2 & & = & =
- ST [dahil p 5 L [P v Pl Poberan T cipe
PasDamo
— Ty,
=IO
Calact an sam o v B T
r—— Ressmmtd Sevopm Seppspm
L g, o | :J“.r.lm

48 Precision MicroControl

Programming, Software, and Ultilities

LabVIEW Programming

PMC's LabVIEW Virtual Instrument Library includes an On-Line help with a Getting Started guide.

fie [t Bockpet [phons Heip

:Im'lhhllﬂlﬂil 5< I _:-:-l

Getting Started

_ Befare pai instal the Migtion W1 Library you migel Teed instsll LeaVIEW vermios 50 for Windoes 95 0053 £ MT
ﬁ|mm This I8 necessany so thal b FMohon %1 Lisrary can add s fusction and conteol paletias 1o tha LabvEW
mienid systam, and instal B cnlira halp where LabVIEW can locala il

|"|"li =M e W1 Libwaige Fow @en need 1o have e 32-bil Mation Contral AP (MCAPT nslalled and configured before you can begin

uging ihe Fation Wi Tee cirreni MCAP relaase & avallable fom The PMC Wiold YWids Wek ile anid may
- | .
Gel | Set o | 10D

be msialed baloee or ater you mstall the Motion W Library. For ddl fnclionalily you must uee MECAR
e

wersion 2.1c or highar
Sammjibis

Four sample programs ane now incledad wiih the Mation % libay. The first, SIMPLE W, shows how 1o exacute a smple move The SAMPLE
sample provides an interactike paned far mosing an aais and mondanng the stalus of that axis. CYCLEW] demonstrates how 1o implement a stabe
mackine and sxscule mulliple moves under program conlrol (Ehe stats mackine appeosch makes 7 easy 10 mondor the slalus of aees whils e
mpliona ans axaciled). Finaly AHALOGW demanetmaias the uee of the suibary anabsg inputs avsileile an mosl PMC mation contmolam

T Blobaan Wi ame installed n b Instrumant Onvers fonclion palatis in @ number of kgicaly amanged sub-paleties. To beflar sae how tha Wis
are used, open Hoe SAMIPLE.MY fom the fle menu (select File | Opaen, select the IMETR.UB directory, then the MOTION CONTROL direclory, and
fnaly SAMPLEN

T firsl Shap in any moTion program is 1o obilain & handa to e coniroller, usmg ta BIOOpen . Thie hardle & wsad in 6l subsesuan calls to
he Motion Ws. When b program completes the handle should be passad to the MCClose %110 answe the molion controller is propery closad
Failure to properly close the handle i the pomary source of erors when using the Mation %1 Librarg. The folosing wiing dogram, fom the
SIMPLEW sample program, demorsirstes bow Lo ogen (B moban controler, pedanm & simple move, s0d closs the motion caninaller

Wil reslior Sampli - o & mdkion
comiralier, mosver aaor ore 1200 D ek in
the pasitiveg di reat ion. and Glosas e handle

K2 JJ’@ =
[misianee | 190000

DCX-PCI100 User’'s Manual

49

Programming, Software, and Utilities

PMC Sample Programs

Sample programs with full source code are supplied with the MCAPI. These C++, Visual Basic, and
Delphi sample programs allow the user to:

Move an axis

Monitor the actual, target, and optimal positions of an axis

Monitor axis 1/0O (Limits +/-, Home, Index, an Amplifier Enable)

Define or change move parameters (Maximum velocity, acceleration/deceleration)
Define or change the servo PID parameters

Adis 1 - L1100 - Basio Semo

|

g
#

Y

Figure 19: PMC's CWdemo32 includes the executable and source code

50 Precision MicroControl

Programming, Software, and Utilities

Motion Integrator

PMC’s Motion Integrator program is just like having your own ‘Systems Integrator’ to assist you with
every step of the integration process. Motion Integrator is a suite of powerful Windows tools that are

used to:
¢ Configure the DCX motion control system e Tune the servo axes
Verify the operation of the control system e Diagnose controller failures
e Execute and plot the results of single e View comprehensive on-line help
and/or multi-axes moves including detailed wiring diagrams

e Connect and test I/0
Axis 1/0 (Home, Limits, Enable)
General purpose Digital I/0
General purpose Analog I/O

For first time PMC motion control users, Motion Integrator can be run as a series of Windows Wizards

¥
¥

|1 et | Virerma |

r 2 Cmwin i b Tadl B icliss

L
S
Tt Cower wwi Tan Selithan Fradleishibn Hess, Ly S Fed
£
T 1 Cwwed wui Tent o

a

T & Cavs W [Pl

(L sdsanll jeddua il Cansns=L R

The Motion System Setup program opens with a
picture of the DCX controller and a listing of the
recommended integration steps

The Axis I/O wizard allows the user to verify the
operation of the Limits, Home, and Amp/Drive Enable

DCX-PCI100 User’'s Manual 51

Programming, Software, and Utilities

e Mo

- N ll;..n-l

" i
g | | Wi

-] i
- I G =]

W

[IR i
- I i
- Woe | g | Sam | e
- HETE .-

] Pl e Pl L L I

Once the systems has been tested and tuned, PMC’s Motor
Mover allows users to: move any or all motors, define cycling

routines, monitor position and status

[teoom vact; [
R .—I—
| i R
Pl _J_
| .- vty
P _l—
| ety
.'..
| e vesy EER
At T o
[s ey |
o TR (T,
gz | omas | o=

Tuning servo’s with Motion Integrator
Motion Integrator provides a powerful and easy to use tool for ‘dialing in’ the performance of servo

systems. From simple current/torque mode amplifiers to sophisticated Digital Drives, Motion Integrator
makes tuning a servo is quick and easy.

o il
i R -

st
Typical Ana Ing |r|p|.r|: 'nl1r.|ng dl.;rlm.l

The on-line help provides detailed
information, wiring diagrams, and
application examples.

By disabling the Trajectory generator, the user can execute repeated Gain mode (no ramping -
maximum velocity or acceleration/deceleration) step responses to determine the optimal PID filter

parameters:

Proportional gain
Derivative gain

Derivative sampling period
Integral gain

Integration Limit

With the Trajectory generator turned on, the user can execute ‘real world’ moves displaying the

calculated position, actual position, and following error plots.

52

Precision MicroControl

Programming, Software, and Utilities

e R
Majm

& on | or I
Trap ciory Generasar

@ o proer)

Tasl

Sivp Plus | Stop shinis |
Ciew | |
M 11 o}
ET e T

T - 14k - b -LATE

The Servo Tuning Utility includes on-line help assisting 0
with both using the program and explaining the
fundamentals of servo tuning. A complete Servo Tuning

tutorial is available on the MotionCD

Digital and Analog I/O Test Panels

=lcl m

22 ialeer Swrvn | uneny Frogas Halp
B i Peolpedc [Jpla fee
Loeriz] jron | Back | P | ! |

Serve Tuning Program Controls

-
Th= “aron Turing Erogram incudes the smoorst j
permiing wou fo

L) COITCa S [FS RN VTN,
PETOETr Pl Dureeg) NUSCDOes: selhoul e [0
speEnd your bme cigang Frough menus 5 asog

Tha Control Pansl

comml pare], locat=d an
"_'l _ she lol gdge of the Sana
YOU 10 CNangEs mEor SERngs
and fest okl nneraior
B ouE & e op the
corirol panel spiay e

ety sakched a=is

fiETiner and NS 0S| o

1] b AR 1

Besszalls the nesadou (150)
Mater control. This contro
whatlug o dicsblas e
Tertly selected 3as. An
L TUET es eabibe] in oerdar
10 ==rloim meEaswreirsnia
=|

™ = I S Py

Motion Integrator Digital 1/0, and Analog I/O allow the user to verify the operation of general purpose

I/0.

Ch i Ch 2 Ch1 Ch & Cha

g e [er e e e e
Cal Cin ce 1l CE 17 Ci 3 C Li i IE
B B B BN B O
B = B B B BE B
2 o = | | | |
bl L il Tl L el Tl
0 i AT - - O R T

ced
N

@ _l

Nl

iir He

T P | |

Prirwssi Filer Gl rmbalend vy Tpw
B | [cmenwd s 8

By s Eraay reped B ErgmigwH

Erwwgimnf [
e 1]]

Sy | k1| S S)

Brmmy Thima 1 Eraimg T I Arwog T 1 Brg o Thxpad 4
Bkl] Sl | S || S |l

DCX-PCI100 User’'s Manual

53

Programming, Software, and Utilities

PMC Utilities

A powerful suite of utilities are included with the Motion Control API. These tools allow the user:

Query motion control system version information

Issue native language (MCCL) commands directly to the DCX controller
Upgrade the firmware of the DCX controller

Display the position of any or all axes

PMC’s Motion Control Panel

The Motion Control Panel is used to query the motion control system for firmware and software
(MCAPI) version information, and remove a controller. It can be launched either from the Windows
Start menu or by selecting the Motion Control icon from the Windows Control Panel.

e e * [Tt Eas S P S T N SRR
Fiokon el o
Lok Fladel denpet (5 T — -
b toeeen |
Farmogs Vermmn pinl Fgvma 11
il C el &7
WA DL emma. 2208 Fuishind]
trimdaen (Ll Vw3307 [EL3E S]
Coniig DL Ywson 31248 ETIE e — —
| oe [aas I

WinControl — MCCL (Motion Control Command Language) command set interface utility

This utility provides the user with a direct communication interface with the DCX-PCI100 in its native
language (MCCL). This tool is extremely useful not only during initial controller integration but also as
a debug tool during application software development. Two methods of executing MCCL commands
are supported: A PC keyboard key stroke is passed directly to the DCX controller, and/or download a
MCCL command text file via the File — Open menu options

Fa P [e
—I) b v omd e

WinCominol. e

54 Precision MicroControl

Programming, Software, and Utilities

Flash Wizard

To increase CPU efficiency and reduce cost the DCX-PCI100 uses primarily SDRAM. All operational
program code (otherwise known as firmware) for the DCX-PCI100 is stored on the hard drive during
installation of the MCAPI. When the PC is first powered the MCAPI writes this program code into the
on-board SDRAM in a process called Dynamically Loaded Firmware (DLF).

PMC’s Flash Wizard is a windows utility that allows the user to easily upgrade the program code from
file downloaded from PMC’s web site www.pmccorp.com.

Flazhiwiz. exe

Joystick Applet

‘Weboom to PMCs Motion Confroller Flash 'Wizesd. The Flash
whizaid vl gracke you Thncuagh B rotallaton of nirs spstem o
AOphGahor [rmmasrd [pour molion comloler,

¥ i icoraeeraind il o eal all olhes ‘Windows piogians
bafore rocesding vath B Flash Wead

Seleci fha Med bition below when pou e iaady ba conlirs
it e Flash aizand.

‘Welcome ta Flash Wizand El

Carwcad

Allows the user to manually position two axes using a joystick connected to the game port of a PC.

Full source code for this applet is provided.

. " . —l
Motion Joystick [32-bit] 1 = MCAP| Joystick Demo Help M= B

Setup Help

File Edit PBookmark Options Help

xros [B © on| o] Zen|

Enntentsl Eearchl Blach I Prirt I i I Fr I

veos [l © o0 o] Ze

Motion Control APl Joystick Demo

Leamn

—Posgition—————— ~ Point Storage

Index |1
Total

Forget

Clear

Fewind

Shap

FEfr

o . The Jaystick dema program demonstrates j
| volocity mode operation and point store /
sew | move to point operation using MCAPI

functions.

Dwring Joystick operation, each caontrolled
axis iz placed in velocity mode and velocities proportional to
the joystick displacement are sent to the controller
"on-the-fly". Pressing the number ane buttan an the joystick
gtares the current point in paint memaoary. If the number twa
button is pressed the controlled axes are operated in slow
speed mode for as long as the button is pressed

MOTE: This application requires the MC260 or MC3E0 ;l

DCX-PCI100 User’'s Manual

55

Programming, Software, and Utilities

MCAPI On-line Help

Complete and up to date (from PMC website www.pmccorp.com) On-line help for PMC’s MCAPI

(Motion Control Application Programming Interface). Help documents include; installation and basic
usage, complete function call reference and examples, high level dialog descriptions, and LabVIEW
VI Library reference.

@

b cguide. hip

@

Bt 19 b [ol
P gamn] [ma] |]
Motion Contral APl Users Guide

&
Tha mwas oescols e reodsien e :l
Padi 'y kot Cowndand A el APg
For L Wil pww iy vy e Thw &5
. - b the pren mad pErwmerce © W
T — FA wral D favdkas of pegrarausbis
- Vil Al | e e W -
prrperrey grd dpnEgpred ey

Fra il AT poouirdmsg e 6
b Pisar AT 1 i gl
sy Py Pl mom Lwomy frwcf ey epm ibn

nirducian
rasalatan

Cearod Pragranmi
Fregramming Sasics

rlunaary

L]
L]
-
-
-
.

Tucsrieal Bupparl

The MCAPI Users Guide On-line Help
describes the basics of PMC’s MCAPI. This
should be the ‘first stop’ for any questions
about the MCAPI.

The MCAPI On-line Help provides a

" =] L complete listing and description of all MCAPI
Meapihle e avanmaive functions. Function calls are grouped both
"::‘_"_":__ 3 alphabetically and by functional groups
Bt Ry (Motion, Setup, Reporting, Gearing, etc...).
o, s T s b i Source code examples are provided for C++,
e Visual Basic, and Delphi.
;I Bprirhm = <1 v =
I_.'FHI it LUK
=Ly =
56 Precision MicroControl

Programming, Software, and Ultilities

@

ki cdla. hip

<

Ml hip

W

l:m Motion Dialog Functions Version 2.1

T Crwwepe lebpper

w Lo Magey wi e ppmy dp e
Bt e e Lrm B U el vl | o i o i ym
SRR O g | AR b
ey o rmadd @ amip bpe
[T a = F
rape Fus el e pe
RS T R
rmardy s @ d ppgERy

drpon THaop isdow Ciagses

] Tectupeal Suppart
L]

B

I'a.' W IA-"I e
(Gt Jowr| i | B | |
Motien VI Library

Verslan 1.1 - Windows 85

Wslooms o e gnire ela for e Woion W bizey The online hedp s |
cieleT: Exlend rdpredhem cband 15 Wk el rslie up T Libiiry

The MCAPI Common Dialog On-line Help
describes the high level MCAPI Dialog
functions. These operations include: Save
and Restore axis configurations (PID and
Trajectory), Windows Class Position and
Status displays, Scaling, and 1/0
configuration.

The Motion VI Library On-line Help provides
installation assistance and detailed
descriptions of available VI's.

ard | e i snsan) el LabTA Thes mamas of jes Remon @11 m
han e den s o ihe LabE W 4 L (LB repee g ureiey VS

25, Tain H0ukd S8 LA 1 sril Ui T DE aiuons) T b o e SN

|

Mo paecionn oo rian (b s dor bh Qo il of manon i pdaeg -
EWE] M, ECppng Tz, 3rd conl nlng the daschon of

=1 -
kol il

ZI°E

Ty oo Py Falee

Coasixsl 8F baleas yei il ik Reien 91 Linwy Tas the Lol
Stariud suchan bn' diduds mm m!
L
favel
- QLT
-
B Fasee il
Bl Beminsrasc
@l s:e=
B le=les il Pt
L xl 2
LI

DCX-PCI100 User’'s Manual

57

Communication Interfaces

Chapter Contents

e PC Communication Interface

58 Precision MicroControl

Chapter

5

Communication Interfaces

High Speed Binary interface

For PC based application programs the DCX controller provides a high speed binary interface for
communicating with the PC via the PCI bus. This interface is implemented using dual ported memory
and is mapped into the PC by the BIOS during ‘Plug and Play’ bus enumeration. PMC’s MCAPI
provides Windows device drivers and a high level function library for C++, Visual Basic, Delphi, and
LabVIEW applications programming. For additional information about available software and
integration tools please refer to the Programming, Software, and Utilities chapter.

ASCII MCCL Interface

The DCX-PCI100 also provides a PCI ASCIl communication interface. When using the WinControl
utility the ASCII interface allows the user to communicate directly with the DCX in its native language,
MCCL (Motion Control Command Language). The WinControl utility is installed as a component of the
MCAPI (Motion Control Application Programming Interface), which is available from PMC’s Motion
CD or web site www.pmccorp.com

L]

WinCominol. e

DCX-PCI100 User’'s Manual 59

Communication Interfaces

In addition to allowing the user to issue MCCL commands from the keyboard one character at a time,
the WinControl utility supports downloading a MCCL text file to the controller. Simply store the
command lines in a file using a text editor. Use WinControl’s File menu option to open the file. Each
command line will be executed as it is displayed. Documenting commands can be added to the MCCL
program by preceding the comment by a semi colon.

Commands sent to the DCX through any of the ASCIlI communication
interfaces must be followed by a carriage return (ASCII 13). A
linefeed (ASCII 10) is not required at the end of command lines, and
should not be sent.

60 Precision MicroControl

Communication Interfaces

DCX-PCI100 User’'s Manual 61

DCX Operation Basics

Chapter Contents

e [ntroduction

e Commanding DCX Operations

62

Precision MicroControl

DCX Operation Basics

Introduction

At its lowest level the operation of the DCX is similar to a microprocessor, it has a predefined
instruction set of operations that it can perform. This instruction set, known as MCCL (Motion Control
Command Language), consists of over 130 operations that include motion, setup, conditional
(If/Then), mathematical, and I/O operations.

However the typical PC based application will never use these low level commands. Instead the
programmer will call high level functions (C++, Visual Basic, Delphi, or LabVIEW), which are passed
to the DCX via the MCAPI device driver. A example MCAPI function description is:

Move to relative position

This command generates a motion of relative Distance of n in the specified direction. A motor number
must be specified and that motor must be in the on state for any motion to occur. If the motor is in the
off state, only its internal target position will be changed.

compatibility: MC100,

see also: Move to absolute position

C++ Function: void MCMoveRelative(HCTRLR hCtlr, WORD wAxis, double Distance);

Delphi Function: procedure MCMoveRelative(hCtlr: HCTRLR; wAxis: Word; Distance: Double);

VB Function: Sub MCMoveRelative (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double)

MCCL command: aMRn a=Axisnumber n=integer or real
EHE[:U[E [T]

Handle In Eﬂ-ﬁ Handle Out
LabVIEW VI: Axiz In [1] - Rl L Axis Out
Distance [0.0] —

MCHoveRelative.vi

DCX-PCI100 User’'s Manual 63

DCX Operation Basics

Throughout this manual, when a DCX operation is referenced, the MCAPI command function will be
identified by bold, italicized text. The following description differentiates between an absolute and
relative move.

Point to Point motion is commanded using either of two DCX functions.
To move an axis to an absolute position use the function
MCMoveAbsolute. To move an axis a relative distance from the current
position use the function MCMoveRelative.

Low Level DCX Operations

The WinControl utility allows the user to communicate with the DCX in the native language (MCCL) of
the controller. This utility allows the user to issue MCCL commands directly to the DCX. Each MCCL
command is described in detail in the DCX MCCL Command chapters later in this user manual.

MCCL commands are two character alphanumeric mnemonics built with two key characters from the
description of the operation (eg. "MR" for Move Relative). When the command is received by the
DCX (followed by a carriage return) it will be executed. The following graphic shows the result of
executing the VE command. This command causes the DCX to report firmware version and the
amount of installed memory.

L whwlCanteal
Fie Edt Help
0 & Fom e

All axis related MCCL commands will be preceded by an axis specifier, identifying to which axis the
operation is intended. The graphic below shows the result of issuing the Tell Position (aTP) command
to axis number one.

64 Precision MicroControl

DCX Operation Basics

[7] winControl32 =]

File Edit Help

D& % Bl e

Note that each character typed at the keyboard should be echoed to your display. If you enter an
illegal character or an illegal series of valid characters, the DCX will echo a question mark character,
followed by an error code. The MCCL Error Code listing can be found in the near the end of this
manual. On receiving this response, you should re-enter the entire command string. If you make a
mistake in typing, the backspace can be used to correct it, the DCX will not begin to execute a
command until a carriage return is received.

Once you are satisfied that the communication link is correctly conveying your commands and
responses, you are ready to check the motor interface. When the DCX is powered up or reset, each
motor control module is automatically set to the "motor off" state. In this state, there should be no
drive current to the motors. For servos it is possible for a small offset voltage to be present. This is
usually too small to cause any motion, but some systems have so little friction that a few millivolts can
cause them to drift in an objectionable manner. If this is the case, the "null" voltage can be minimized
by adjusting the offset adjustment potentiometer on the respective module.

Before a motor can be successfully commanded to move certain parameters must be set by issuing
commands to the DCX. These include; PID filter gains (servo only), trajectory parameters (maximum
velocity, acceleration/deceleration), allowable following error, configuring motion limits (hard and soft).

At this point the user should refer to the Motion Control chapter sections titled Theory of Operation
— Motion Control, and Servo Operation. There the user will find more specific information for each
type of motor, including which parameters must be set before a motor should be turned on and how to
check the status of the axis.

Assuming that all of the required motor parameters have been defined, the axis is enabled with the
Motor oN (aMN) command. Parameter ‘a’ of the Motor oN command allows the user to turn on a
specific axes or all axes. To enable all, enter the Motor oN command with parameter ‘a’ = 0. To
enable a single axis issue the Motor oN command where ‘a’ = the axis number to be enabled.

After turning a particular axis on, it should hold steady at one position without moving. The Tell Target
(aTT) and Tell Position (aTP) commands should report the same number. There are several
commands that are used to begin motion, including Move Absolute (MA) and Move Relative (MR). To
move axis 2 by 1000 encoder counts, enter 2MR1000 and a carriage return. If the axis is in the "Motor
oN" state, it should move in the direction defined as positive for that axis. To move back to the
previous position enter 2MR-1000 and a carriage return.

DCX-PCI100 User’'s Manual 65

DCX Operation Basics

With the DCX controller, it is possible to group together several commands. This is not only useful for
defining a complex motion, which can be repeated by a single keystroke, but is also useful for
synchronizing multiple motions. To group commands together, simply place a comma between each
command, pressing the return key only after the last command.

A repeat cycle can be set up with the following compound command:
2MR1000,WS0.5,MR-1000,WS0.5,RP6 <return>

This command string will cause axis 2 to move from position 1000 to position —1000 7 times. The
RePeat (RP) command at the end causes the previous command to be repeated 6 times. The Wait for
Stop (WS) commands are required so that the motion will be completed before the return motion is
started. The number 0.5 following the WS command specifies the number of seconds to wait after the
axis has ceased motion to allow some time for the mechanical components to come to rest and
reduce the stresses on them that could occur if the motion were reversed instantaneously. Notice that
the axis number need be specified only once on a given command line.

A more complex cycle could be set up involving multiple axes. In this case, the axis that a command
acts on is assumed to be the last one specified in the command string. Whenever a new command
string is entered, the axis is assumed to be 0 (all) until one is specified.

Entering the following command:
2MR1000,3MR-500,0WS0.3,2MR1000, 3MR500,0WS0.3,RP4 <return>

will cause axis 2 to move in the positive direction and axis 3 to move in the negative direction. When
both axes have stopped moving, the WS command will cause a 0.3 second delay after which the
remainder of the command line will be executed.

After going through this complex motion 5 times, it can be repeated another 5 times by simply
entering a return character. All command strings are retained by the controller until some character
other than a return is entered. This comes in handy for observing the position display during a move.
If you enter:

1MR1000 <return>
1TP <return>
(return)

(return)

(return)

(return)

The DCX will respond with a succession of numbers indicating the position of the axis at that time.
Many terminals have an "auto-repeat" feature, which allows you to track the position of the axis by
simply holding down the return key.

Another way to monitor the progress of a movement is to use the Repeat command without a value. If
you enter:

1MR10000 <return>
1TP,RP <return>

The position will be displayed continuously. These position reports will continue until stopped by the
operator pressing the Escape key.

While the DCX is executing commands, it will ignore all alphanumeric keys that are pressed. The user
can abort the commands by pressing the escape key. If the user wishes only to pause the execution
of commands, the user should press the space bar. In order to restart command execution press the

66 Precision MicroControl

DCX Operation Basics

space bar again. If after pausing command execution, the user decides to abort execution, this can be
done by pressing the escape key.

] wWinControl32 H[=] E3
File Edit Help

O || & B2 - E e

= md100,ind,mj101,no,in6,mj102,no,jr6 ;monitor digital inputs 5 &6

= md101,1mr1.5,1ws. 1,mj100 ;if channel 5 is on move relative 1.5"
= md102,1mr-1.5,1ws.1,mj100 ;if channel 6 is on move relative -1.5"
=gt100 ;begin sequence as a background task
=1rl0,ar100 ;store task identifier in register 100

-
= inZ,etgl100,no,jr-3 ;terminate the background task if digital
sinput #2 is on

DCX-PCI100 User’'s Manual 67

Motion Control

Chapter Contents

Theory of DCX Motion Control
DCX Servo Basics

Tuning the Servo

Moving Motors with Motor Mover
Defining the Characteristics of a Move
Velocity Profiles

Point to Point Motion

Constant Velocity Motion
Jogging

Defining Motion Limits

Homing Axes

Motion Complete Indicators

On the Fly Changes

Save and Restore Axes Configuration

68

Precision MicroControl

Motion Control

This chapter describes the basic building blocks of DCX motion control.

Theory of DCX Motion Control

The DCX motherboard (DCX-PCI100) uses a 192 MHz 32 bit MIPS processor that is programmed to
perform motion control tasks. Specially designed servo control modules are installed on the
motherboard to configure it for controlling from 1 to 8 servo motors. Each DCX motion control module
(DCX-MC100, DCX-MC110) installed on the motherboard provides all the circuitry required to control
one motor and its associated axis 1/0 (home, limits, amp/driver enable, fault, etc...).

Servo Motor Control

The DCX servo modules use a position feedback loop to control the servo. The DCX-MC100 controls
the operation of servo motor via a 12 bit, +/-10 volt analog output signal to an external servo
amplifier. The DCX-MC110 provides a 0 - +12 volt, 8 bit, direct motor drive output capable of directly
driving a 12 volt motor with up to 0.5A of current.

Incremental encoder input to these modules provide feedback information for closing the position
loop. In operation, the servo module subtracts the actual position (feedback position) from the desired
position (trajectory generator position), and the resulting position error is processed by the digital filter
on the module. The output of the digital filter sets the module’s servo command output level.

The module processor monitors the motor's position via an incremental encoder. The two quadrature
signals from the encoder are used to keep track of the absolute position of the motor. Each time a
logic transition occurs at one of the quadrature inputs, the DCX position counter is incremented or
decremented accordingly. This provides four times the resolution over the number of lines provided by
the encoder. The encoder interface is buffered by a differential line receiver on the DCX module.
Jumpers on the DCX module allow the user to configure the differential receiver for use with single
ended or differential encoder.

A "Proportional Integral Derivative" (PID) digital filter on the module is used to compensate the servo
feedback loop. The motor is held at the desired position by applying a restoring force to the motor that

DCX-PCI100 User’'s Manual 69

Motion Control

is proportional to the position error, plus the integral of the error, plus the derivative of the error. The
following discrete-time equation illustrates the control performed by the servo controller:

u(n) = Kp*E(n) + Ki sum E(n) + Kd[E(n") - E(n" - 1)]

where u(n) is the module's output signal output at sample time n, E(n) is the position error at sample
time n, n' indicates sampling at the derivative sampling rate, and kp, ki, and kd are the discrete-time
filter parameters loaded by the users. The first term, the proportional term, provides a restoring force
proportional to the position error. The second term, the integration term, provides a restoring force
that grows with time. The third term, the derivative term, provides a force proportional to the rate of
change of position error. It provides damping in the feedback loop. The sampling interval associated
with the derivative term is user-selectable; this capability enables the servo controller to control a
wider range of inertial loads.

DCX Servo Basics

The basic steps required to implement closed loop servo motion are:

Proper encoder operation

Setting the allowable following error
Verify proper motor/encoder phasing
Tuning the servo (PID)

Quadrature Incremental Encoder

All closed loop servo systems require position or velocity feedback. These feedback devices output
signals that relay position and/or velocity with which motion controller ‘closes the loop’. The most
common feedback device used with intelligent motion control systems is quadrature incremental
encoder.

A quadrature incremental encoder is an opto electric feedback device. A light source and photo
sensor pickup are used to detect markings on a glass ‘scale’. The more markings on the glass scale,
the higher the resolution of the encoder. Circuitry connected to the photo sensor generates two wave
forms (Phase A and Phase B), which have a phase difference of 90 degrees. This phase difference is
used by the encoder input circuitry of the DCX to:

Determine the direction of rotation (positive or negative) of the encoder/motor
Enhance the resolution of the encoder by a factor of 4.

For example, a 500 line quadrature incremental encoder will have 2000 encoder counts per full
rotation. The 90 degree phase difference is also used to determine the direction of motion of the
encoder. If phase A comes before phase B, the DCX will determine that motion is in the positive or
clockwise direction. If phase B comes before phase A, the DCX will determine that motion is in the
negative or counter-clockwise direction.

Some quadrature encoders include an additional ‘mark’ on the glass scale that is used to generate an
index pulse. This signal, which ‘goes active’ once per rotation, is used by the motion controller to
accurately home (re-define the position of an axis) the axis. Please refer to the Homing Axes section
of this chapter.

70 Precision MicroControl

Motion Control

There are few options that are typically associated with quadrature encoders.

Output type: Differential or single ended
Differential outputs (A+, A-, B+, B-) are recommended for superior noise immunity but the DCX
supports either output type

Index or no Index (used for homing the axis)
MC100/110 modules support only Z-. For Differential Index (Z+, Z-) the DCX-BF100 interconnect
assembly is required.

+5 volt supply required or +12 volt supply required.
A +5 volt encoder is recommended but the DCX also supports a +12V encoder

Glass scale

Phase A
Phase B
o I Index
LED SPer:](;t: ; genezri;t?on
circuitry

Encoder Checkout
The Motion Integrator program provides easy to use tools for testing the operation of an encoder.. The
user has the option of using the Connect Encoder Wizard or the Motion System Setup Test Panel.

Test panel does not allow the user to verify the operation of the encoder

0 Note — Unlike the Connect Encoder Wizard, the Motion System Setup
Index.

DCX-PCI100 User’'s Manual 71

Motion Control

Caivemil Enosbdes wizend © Motion Spztem Setup, Connect and Test Encoders

Ercoder Tat Anksis srcode: stak 5 e tegrees File Help
i bl chrmchion
—&xis 1 Setvo———————— [Axis 2 Servo
O Home (O Amp Fault O Home (& &mp Fault
Q) Pespsd Droods ey & Limit + &) Errar () Limit + (D Error

@ Limit -) Fhase @ Limit - &) Fhizss
_|Latch | Enable _|Latch |Enable

I [y [| I [ove |

Motion System Setup Connect Encoder Wizard Motion System Setup Motor Test Panel

Manually rotate the motor/encoder in either direction, the position reported should increment or
decrement accordingly. Refer to the Troubleshooting guide if the DCX does not report a change of
position.

Setting the Allowable Following Error

Following error is the difference between where an axis ‘is’ and where the controller has ‘calculated
it should be’. All servo systems require ‘some’ position error to generate motion. When a servo axis
is turned on, if a position error exists, the PID algorithm will cause a command voltage to be applied to
the servo to correct the error.

While an axis is executing a move, the following error will typically be between 20 and 100 encoder
counts. Very high performance systems can be ‘tightly tuned’ to maintain a following error within 5 to
10 encoder counts. Systems with low resolution encoders and/or high inertial loads will typically
maintain a following error between 150 and 500 encoder counts during a move.

The DCX supports ‘hard coded’ following error fault checking (which by default is disabled, allowable
following error = 0). To enable following error checking set the allowable following error to a non zero
value between 1 and 32767. after making this change if at anytime the difference between the optimal
position and the current position exceeds the user defined ‘allowable following error’, an error
condition will be indicated. The axis will be disabled (Amplifier Inhibit output turned on, output
command signal set to 0.0V) and the axis status word will indicate that an Motor Error has occurred.
The MCEnableAxis() function is used to clear a following error condition. The following error fault
checking cannot be disabled, the maximum allowable following error is 32767 encoder counts.

The three conditions that will typically cause a following error fault are:

1) Improper servo tuning (Proportional gain too low)
2) Velocity profile that the system cannot execute (moving too fast)

3) The axis is reversed phased (move positive causes encoder
position to begin decrementing)

72 Precision MicroControl

Motion Control

Daxfirw the ollossable
fodlomsiog wopar for a
serwen, The defalr = 0,
Far initil Testing the
recoraaraes] setting iz
LR

Figure 20: From Servo Tuning or Motor Mover use the Servo
Dialog box to redefine the allowable following error

DCX-PCI100 User's Manual 73

Motion Control

Tuning the Servo

A servo motor motion system is a closed loop system with negative feedback. Servo tuning is the
process of adjusting the gains (proportional, derivative, and integral) of this axis controller to get the
best possible performance from the system. A servo motor and its load both have inertia, which the
servo amplifier must accelerate and decelerate while attempting to follow a change in the input (from
the motion controller). The presence of inertia will tend to result in over-correction, with the system
oscillating or "ringing" beyond either side of its target (under-damped response). This ringing must be
damped, but too much damping will cause the response to be sluggish (over-damped response).
Proper balancing will result in an ideal or critically-damped system.

Urdsmidamganad
Heagimniane

TNEmpErdng

IS T BT T |
Hisjrinrss

The servo system is tuned by applying a command output or ‘step response’, plotting the resulting
motion, then adjusting parameters of the digital PID filter until an acceptable system response is
achieved. A step response is an output command by the motion controller to a specific position. A
typical step response distance used for tuning a servo is 100 encoder counts. If the system requires:

e Very short duration moves (less than 100 msec’s)
¢ Very small following error value (less than 20 encoder counts

Then a step response of 50 encoder counts is recommended. If the servo system is moving a high
inertial load (minimal friction) then the step response should be increased to 200 — 300 encoder
counts. There is a ‘loose’ relationship between the step response and the following error of the
system. The shorter the step response when tuning the servo, the lower the following error during
application motion.

Note — Using an ultra short step response (5 — 20 counts) may result in
& an unstable system that oscillates during and after a commanded move.

74 Precision MicroControl

Motion Control

During Servo Tuning the DCX-PCI100 will perform one Motion Data
Capture operation every millisecond. If more than one DCX motor
module is installed, the period between data captures for the target axis
will be:

i

1 msec. X # of installed modules

For example if 6 motor modules are installed, and the MCCaptureData
function is called for axis #1, motor data will be captured for axis #1
every 6 msec’s.

1 msec. X 6 modules = 6 msec’s

Tuning Step #1 - Open the Servo Tuning Utility (Start\Programs\Motion Control\Motion
Integrator\Servo Tuning). From the menu bar select Setup and then Test Setup. Configure the Test
Setup dialog as shown (commanding a 100 encoder count step response with display window period

set to 500 msec’s):

|
| o | N =
: i D-.I.H.ll-.\. 120 B]
—— ey ||
=
. --.--r [| 0 - F
i Tin Bozp Gerwrmoe T Cam T T g
s il © — |
Temd H::!-hh
S Pis | Ziewd T A e
= e
Claw] I I - -
Ly
P
HI._':I L _!:l = I Pt T Pl i
: | [l T P———
Iﬁ 7 i ey b 0
i - =
[| e | I
Tl.‘!ﬂ. 1 L]
- O B OEO

Figure 21: Set Step Distance to 100 encoder counts
and Time period to 500 miliseconds

DCX-PCI100 User’'s Manual

75

Motion Control

Tuning Step #2 - Verify that the | & D slide controls are all the way down (set to 0). Select the P
'zoom in' (+) button until the scale display is set to 1.56%. Set the P slide control to a value of
approximately 50.

| Llgar | LB | |
pat] 1 B oo M
BB _ 100% _ 1004
P zlide contral zcale = 1.56% _‘,_.-_-__,.3-_.) ;
DR - E0% - 0%
- - - I& D=0

S
~

Set P to around B0

Tuning Step #3 - Turn on the axis and turn off the Trajectory Generator. While setting proportional
and derivative gain, the step response should occur with the Trajectory Generator disabled. This will
result in the magnitude of the output signal being determined only by a PD filter, the controller will not
apply a maximum velocity or ramping (acceleration/deceleration).

[T
_+ | I
—

a‘.':':-'__*c_ | o |

Tdm Vap v dia

=

':.!ij‘al | Su.hl--l.l
U lma | Irn |

.. - S - [-

(LY L 1] -

=

LE) L) L4

T e A R

76 Precision MicroControl

Motion Control

Tuning Step #4 - Find the Proportional gain value that causes the axis to cross the target 3 times
(no more and no less). Before each move press the Clear and Zero buttons to initialize the display
and the position of the axis. To move select either the Step+ or Step - buttons. If the proportional gain
is too low the axis may:

Not move at all
It may move but not reach the target
It may reach the target but not cross three times

P RN

e e Ee
Doesn't reach target - P too low Crossestarget only once - P too low

‘t- aelap Test Heip

v |
“a _om | _on |
Trapciory Gencrator

e o | |

rill:

Slep Flus | Sheg Minge |
char | Toen
P 1|4 ok
L . e . W

N 0 i

Figure 22: Axis crosses the target 3 times - good setting for proportional gain

DCX-PCI100 User’'s Manual 77

Motion Control

If no plotted position path is shown and the Motor On LED is off an error has occurred. The most

likely cause is a following error, indicating that the servo is reversed phased. Open the Servo Setup
dialog box and select the Reverse Phase option or ‘swap’ the phase A and B connections from the

encoder to the DCX servo module. Turn the motor back on and proceed with the tuning process.

Tuning Step #5 - Derivative gain dampens the response of the servo system. In this step the goal is
to limit the overshoot of a step response to no more than 25%. In the last step response the maximum
position of the axis is approximately 160 counts (an overshoot or 60%). Increase the derivative gain
until the maximum position is no greater than 125 counts. Before setting the derivative gain you must
first set the Derivative Sampling period. The derivative sampling period is expressed in servo loop
periods (0.000341 micro seconds). For a typical servo system set the derivative sampling period to
0.000682 seconds (2 loop periods). For a high inertia servo system set the derivative sampling period
to 0.001354 seconds (4 loop periods). For a high friction servo system set the derivative sampling
period to 0.000341 seconds (1 loop period). Set the D slide control scale to 3.13% by repeatedly
pressing the D + button. Set the D slide control to approximately 50% and execute a step response.

T Gemp [aw B T e a8 Ham
_eo | _ee |
| ~o- RN
. _m|_m| o i]
Tk v basrind B Farm = s
L] o || | i e oo
Tein Tem
i dam 1] | '!nl.-lllrl|| SHE=wi | Et.uall
- i PR el Daw | Be= |
;lir. _E ;--I; : H:I: l:E .F.I.;II:Ii
R e - [1 | Qee——] L= L
Derivative gain setting of 508 limits overshoot to Derivative gain setting of 1023 limits overshoot to
around 40% - the servo is under dampened, around 10% - the servo is over dampened,
increase Derivative gain decrease Derivative gain

78 Precision MicroControl

Motion Control

I

Bl Gehp lsi Hep

o0

Posiion
Pl
@ Ga | or |
Trajeciony Genamator
e _On | |
Task
'Siiu'ppﬁ.ii-'] Shep Hnu:.l
Ckar | Lo |

Pl 1 ol

M _imT ALY

| “AHT __~ImT “RE

Figure 23: Derivative gain setting of 789 limits overshoot to 25% - good setting for derivative gain

A general guideline for the derivative gain is that it should not be more
than 10 times greater than the setting of proportional gain. If the
derivative gain is 10 times greater than proportional gain double the
Derivative Sampling setting.

Tuning Step #6 - Setting the Integral gain. Due to friction, ‘sticktion’, amplifier offset, etc... most
servo systems are unable to settle at the target if using only proportional and derivative gain. Integral
gain provides a restoring force that increases with time. It is used to correct a static position error of a
servo system. If the servo is unable to repeatedly position within +/- one encoder count of the target
Integral Gain will, in most cases, position the servo at the target. To configure the Servo Tuning utility
for setting the integral gain:

Enable the trajectory generator.

Define trajectory parameters (max. velocity, accel / decel) in the Servo Setup dialog
Define a typical application move distance and duration in the Test Setup dialog
Set the Integration Limit (typically set to 50)

For this example:

e Maximum velocity = 50,000 counts per second

DCX-PCI100 User’'s Manual 79

Motion Control

e Acceleration / deceleration = 100,000 counts per second per second
¢ Move distance = 12,500 counts
e Plot window time = 700 msec's

With the trajectory generator enabled, a step response will cause two plot traces to be displayed in
the upper window and one trace plot in the lower window. The blue trace is a plot of the actual
positions of the servo. The yellow trace is a plot of the calculated (or optimal) positions of the servo.
The optimal positions are the result of calculations by the DCX based on the trajectory parameters
(max. velocity, accel / decel) defined in the Servo Setup dialog. The red trace is a plot of the following
error (the difference between the calculated positions and the actual positions. With no integral gain
setting a typical system response would be:

B Servn Taming
Eie Dedup Iest Hep

12508

Posiian
Policri s
@ _on | _on |
Trajaciory enceatar
@ oo | _of |
Tast
| Sﬁplm_l Step M |
char | Zon |
= L = B
L T Ak
__-':
M i (K T8

| MR e A

Figure 24: Without Integral gain the axis is 8 counts from the target

Set the | slide control scale to 0.78% by repeatedly selecting the | zoom in (+) button. Without
executing another move, slowly increase the integral gain (I slide control) until the position readout
indicates that the axis has reached the target position of the move.

Now repeat the move, if the axis settles within one encoder count the axis has been tuned. If the axis
fails to settle (position changing) reduce the integral gain setting and repeat the move.

80 Precision MicroControl

Motion Control

Ei= Sehp Test Help
—

5 [T
@ on | of |
Trajectory Gensrabor
2 | o |
Taed
Slep Plus] Slep Winus |
Claar | Tarn |
PHE I B oK
R 1t TS Jhiin
—
:-:l.rh :l.]h- :1.!!1-
- — .
T oo | ias | 2o

Figure 25: Tuning is complete, axis stops and settles within 1 encoder count

from the target at the end of the move then double the Integration Limit

ﬂ If the Integral gain setting exceeds 200 and is still more than 2 counts
setting.

Tuning Step #7Saving the Tuning Parameters. When servo tuning is complete, closing the tuning
utility will prompt this message about saving the Auto Initialize settings, selecting Yes will store all
settings for all installed axes in the MCAPL.INI file (in the Widows folder). Selecting No will cause all
settings to be discarded.

R |

Do you wizh to zave changes made ko
wour Auto [nitialize settings?

DCX-PCI100 User’'s Manual 81

Motion Control

N

Changing the Scale of the Slide Controls
At the bottom of each slide control is a value showing the current setting as a percentage of the
current maximum setting. To change the range of one or more slide controls, using the Setup Menu,

open the PID Setup dialog box (Setup — PID Setup).

(T -
P . Fopsdona Ger

Lippar Lirrad LRt -
Lopwver Lird Do &
I - Insgral Giin

Lipper Lirrd [RESED -

LoMtILITdI LR LLLERS

0 - Ciprpire G

Ul:-pﬂLITHI SR LLLERS
l.a.-l.rnil IRLELLLERS |

[]

Electing to save the Auto Initialize settings causes the Servo Tuning
utility to call the MCAPI Common Dialog function MCDLG_SaveAxis. All
servo parameters (PID, Trajectory, Limits, etc...) will be saved in the

To define these servo parameters from a user’s application program, call
the MCAPI Common Dialog function MCDLG_RestoreAxis.

82

Precision MicroControl

Motion Control

Moving Motors with Motor Mover

After tuning the servo, and setting the trajectory parameters (Max. velocity, accel / decel) the axis is
ready to execute motion. The Motor Mover program (Start\Programs\Motion Control\Motion
Integrator\Motor Mover) allows the user to execute absolute, relative, and cycle move sequences,
monitor position and status of the axis. By selecting the Setup button the user can; change velocity
parameters (maximum velocity, acceleration/deceleration), PID parameters, and enable motion limits.

Dl Mickar biorem H. m
Latup Howm Help
@ on on | S | mm | 1900KK] et [
@ Frroe J_
& L off | S a oo or
3@ on on | Sehap | Dis | L] vescty [N
W Erre —
o L aff | Scse Fl-micl s
@ On on | Se | D | =T veiccty (RN
@ B e
& L CHi Tamme il eE—
@ on on | Geha | Dot | # EQal] weccty [
B B I
& L off | Sces E-c (@il TR T
@ on on Sela | Cet | i 250 ooty [HEEE
B broe —_— I
@ Lind o | Sews L .
@ on | Eﬂ.nl ot | E) vecty [
:ﬁ Off | Sces | e mleal T =
Pt ot Mo + e = e |
™ Cypoie YL Ao L=

DCX-PCI100 User’'s Manual

83

Motion Control

Defining the Characteristics of a Move

Prior to executing any move, the user should define the parameters of the move. The components
that make up a move are:

// Set axis 1 maximum velocity

// Set axis 1 acceleration/deceleration
// Set Position mode

// Set target (10000), begin move

MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetOperatingMode(hCtlr, 1, O, MC_MODE_POSITION);
MCMoveRelative(hCtlr, 1, 100000.0);

The parameters defined in the program example above specify a move to position 100,000. During
the move the velocity will not exceed 10,000 encoder counts per second. A trapezoidal velocity profile
will be calculated by the DCX. The rate of change (acceleration and deceleration) will be 100,000
encoder counts per second/per second, there by reaching the maximum velocity (10,000 counts per
second) in 100 msec's. The resulting velocity and acceleration profiles follow:

Velocity
(encoder counts per second)

10000

7500

5000

2500

100 200 300 400 500 600 700 800 900 1000

Time (msec's)

84 Precision MicroControl

Motion Control

Acceleration / Deceleration
(encoder counts per sec / sec)

100000

100000

Velocity Profile

Time (msec's)

The DCX-PCI100 uses a Trapezoidal Velocity Profile to calculate the trajectory of a move.

DCX-PCI100 Velocity Profile

Max. Velocity
10,000 counts / sec.

Time

DCX Accel / Decel Profiles

Accel
100,000 counts /
sec. / sec.

Decel
100,000 counts /
sec. / sec.

DCX-PCI100 User’'s Manual

85

Motion Control

Point to Point Motion

To perform point to point motion of a servo the following steps are required:

// Enable the axis

// Enable Position mode

// define maximum velocity

// define acceleration/deceleration
// execute the move

MCEnableAxis(hCtlr, 1, TRUE);

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE POSITION);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 25000.0);
MCMoveRelative(hCtlr, 1, 122.5);

Constant Velocity Motion

To move a servo at a continuous velocity until commanded to stop:

// Enable the axis

// Enable Velocity mode

// define maximum velocity

// define acceleration/deceleration

// define the direction (positive or negative) of the move
// begin motion of axis 1

// wait for digital 1/0 #4 to be true

// reduce velocity

// wait for digital 1/0 #2 to be true

// stop the motion of axis 1

MCEnableAxis(hCtlr, 1, TRUE);
MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetVelocity(hCtlr, 1, 10000.0);
MCSetAcceleration(hCtlr, 1, 100000.0);
MCSetDirection(hCtlr, 1, POSITIVE);
MCGo(hCtlr, 1);

MCWait For DigitallO(hCtlr, 4, TRUE);
MCSetVelocity(hCtlr, 1, 5000.0);

MCGo(hCtlr, 1);

MCWait For DigitallO(hCtlr, 2, TRUE);
MCStop(hCtlr, 1);

86 Precision MicroControl

Motion Control

Velocity
(encoder counts per seconds)

10000

7500

5000

2500

1 2 3 4 5 6

Time in seconds
= = = Digital input #4 'turned on"

Digital input #2 'turned on"

Jogging

In some applications it may be necessary to have a means of manually positioning the motors. Since
the DCX is able to control the motion of servos with precision at both low and high speeds, all that is
required to support manual positioning is: .

e A PC with a game port
o A PC joystick
o PC based software that positions the axes in Velocity mode

Jogging without writing software
One of the tools provided with the MCAPI is the Joystick Demo. This tool allows the user to configure
and then jog one or two axes.

wro IEEE @ ﬂﬂﬂm
. e dot
o [@ oo o] Zedf o [N <] e
sl P Slage ﬂi:'li-lan'|-'-:-:--'-' 1'| D:ni-l&'|"-:'i-:r- 'I
des [Fst Spaned [ETTAT Fut Eppmnd SRS
Tad D BlewsSpesdd [T5000 | SkesGpesd [NOCD0
—— M. Tagesd [100000 Wae Trawed [10000

Hin Tnn-il'l'l'l'l Hin Tnnil A0
Ilhh‘hh-ﬂll‘il'i um-dh-ae.‘
Eul:-|;m.' Zmm | NI

™ Fip Josstick: [Fip btk

5] oo | |

Figure 26: Joystick Demo program

DCX-PCI100 User’'s Manual 87

Motion Control

Using the Joystick Demo in your application program
After the MCAPI has been installed the source files for the Joystick Demo are available in the Motion
Control folder \Program Files\Motion Control\Motion Control AP\Sources\Joy.

Defining Motion Limits

The DCX-PCI100 supports both ‘hard coded’ handling of End of travel or 'Hard' limit switch/sensors
and programmable soft limits.

Servo or stepper
motor

i

Lead screw

Negative Limit Positive Limit
sensor sensor
Hard Limits

The Limit + /- inputs of all MC1XX motion control modules default to TTL low true operation. When a
limit input signal is pulled low (> 0.7V), the DCX will indicate that the input is active. Use the Motion
Integrator Motion System Setup Test Panel to test the limit sensors, wiring, and MC100, MC110/110
operation.

" Motion System Setup, Connect and Test Switches

File Help

—&xiz 1 Stepper —a&xis 2 Servo

Hame Coarze Hame Armnp Fault) o
o » © © - © Activate a Limit
@ Limit + @ Error O Limit +] @ Error sensor/switch and the
ﬂ Litmit - ﬂ Fhase e Litmit - e Ehase associated LED will turn

orn.

_|ratch | Enable _|iatech | Enable
I Meve | I EVE: |

When limit error checking is enabled by the MCSetLimits() function, the
limit tripped flags (MC_STAT_PLIM_TRIP and MC_STAT_MLIM_TRIP)
indicate an error condition. For a normally closed limit switch, the

RAA 1 IRAIT IRNIFPT e m i mmmbms vmme ek e i Al b e A fim o 2~ a2li o H el

88 Precision MicroControl

Motion Control

of the limit circuit.

The limit LED’s of the Motion Integrator Test Panel display the current
state (MC_STAT_PLIM and MC_STAT_MLIM), not the ‘tripped’ flag
(MC_STAT_PLIM_TRIP and MC_STAT_MLIM_TRIP) of the limit inputs.
The Motion Integrator Test Panel will indicate that a normally closed limit
switch is active until the switch is opened.

The DCX supports two levels of limit switch handling:

Auto axis disable
Simple monitoring

The MCAPI function MCSetLimits() allows the user to enable the Auto Axis Disable capability of the
DCX. This feature implements a hard coded operation that will stop motion of an axis when a limit
switch is active. This background operation requires no additional DCX processor time, and once
enabled, requires no intervention from the user’s application program. However it is recommended
that the user periodically check for a limit tripped error condition using the MCGetStatus(),
MCDecodeStatus() functions. The MCSetLimit() function provides the following limit flags:

MC_LIMIT_PLUS Enables the Positive/High hard limit
MC_LIMIT_MINUS Enables the Negative/Low hard limit
MC_LIMIT_BOTH Enables the Positive and Negative hard limits
MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active

MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active

MC_LIMIT_SMOOTH | Decelerate and stop the axis when the hard limit input goes active

MC_LIMIT_INVERT Invert the active level of the hard limit input to high true. Typically used
for normally closed limit sensors

When a limit event occurs, motion of that axis will stop and the error flags (MC_STAT_ERROR and
MC_STAT_PLIM_TRIP or MC_STAT_MLIM_TRIP) will remain set until the motor is turned back on
by MCEnable(). The axis must then be moved out of the limit region with a move command
(MCMoveAbsolute(), MCMoveRelative()).

// Set the both hard limits of axis 1 to stop smoothly when tripped, ignore
// soft limits:
//

MCSetLimits(hCtlr, 1, MC_LIMIT BOTH | MC_LIMIT_SMOOTH, O, 0.0, 0.0);

// Set the positive hard limit of axis 2 to stop by turning the motor off.
// Because axis 2 uses normally closed limit switches we must also invert the
// polarity of the limit switch. Soft limits are ignored.

MCSetLimits(hCtlr, 2, MC_LIMIT_PLUS | MC_LIMIT_OFF | MC_LIMIT_INVERT, O, 0.0,
0.0);

If the user does not want to use the Auto Axis Disable feature, the current state of the limit inputs can
be determined by polling the DCX using the MCGetStatus(), MCDecodeStatus() functions. The flag

DCX-PCI100 User’'s Manual 89

Motion Control

for testing the state of the Limit + inputis MC_STAT _INP_PLIM. The flag for testing the state of the
Limit - input is MC_STAT_INP_MLIM.

Soft Limits

Soft motion limits allow the user to define an area of travel that will cause a DCX error condition.
When enabled, if an axis is commanded to move to a position that is outside the range of motion
defined by the MCSetLimit() function, an error condition is indicated and the axis will stop. The
MCSetLimit() function provides the following limit flags:

MC_LIMIT_PLUS Enables the High/Positive soft limit
MC_LIMIT_MINUS Enables the Low/Negative soft limit

MC_LIMIT_BOTH Enables the High and Low soft limits

MC_LIMIT_OFF Turn off the axis when the hard limit input ‘goes’ active

MC_LIMIT_ABRUPT Stop the axis abruptly when the hard limit input goes active
MC_LIMIT_SMOOTH | Decelerate and stop the axis when the hard limit input goes active

When a soft limit error event occurs, the error flags (MC_STAT_ERROR and
MC_STAT_PSOFT_TRIP or MC_STAT_MSOFT_TRIP) will remain set until the motor is turned back
on by MCEnable(). The axis must then be moved back into the allowable motion region with a move
command (MCMoveAbsolute(), MCMoveRelative()).

// Assume axis 3 is a linear motion with 500 units of travel. Set the both
// hard limits of this axis to stop abruptly. Set up soft limits that will
// stop the motor smoothly 10 units from the end of travel (i.e. at 10

// and 490).

MCSetLimits(hCtlr, 3, MC_LIMIT _BOTH | MC_LIMIT_ABRUPT, MC_LIMIT BOTH |
MC_LIMIT_SMOOTH, 10.0, 490.0);

90 Precision MicroControl

Motion Control

Homing Axes

When power is applied or the DCX is reset, the current position of all servo axes are initialized to zero.
If they are subsequently moved, the controller will report their positions relative to the position where
they were last initialized. At any time the user can call the MCSetPosition() function to re-define the
position of an axis.

In most applications, there is some position/angle of the axis (or mechanical apparatus) that is
considered 'home'. Typical automated systems utilize electro-mechanical devices (switches and
sensors) to signal the controller when an axis has reached this position. The controller will then define
the current position of the axis to a value specified by the user. This procedure is called a homing
sequence. The DCX is not shipped from the factory programmed to perform a specific homing
operation. Instead, it has been designed to allow the user to define a custom homing sequence that is
specific to the system requirements. The DCX provides the user with two different options for homing
axes:

1) High level function calls using the MCAPI - Easy to program homing sequences using
MCAPI function calls.

2) MCCL Homing macro’s stored in on-board, non-volatile FLASH memory - When executed
as background tasks, MCCL homing macro’s allow the user to home multiple axes
simultaneously.

Verifying the operation of the Home Sensor

Most motion applications will utilize a home sensor as a part of the homing sequence. Use Motion
Integrator's Connect Axis I/0O Wizard or Motion System Setup Test Panel to verify the proper
operation of the encoder index.

© Motion System Setup, Connect and Test Encoders

Arirale s sgreds snd Axig 1 Semm File Help

abcarve e sistur A e A ju

izl o vghl D Horre

Chek Latch Evends b Gl : Limit + —Axis 1 Serwo———————— —Axis 2 Servo

s i D0 e B L e -

“,mﬂﬁ?m i L QO Home D Amp Fault @ Home (D Amp Fault

CH I b ple N::] Luteh @ Limit + & Error O Limit + & Error

_| Enzhik @ Limit - &) Fhizze O Limit - &) Fhizze
_|Lstch | Enable __|Lstch | Enahle
I MowE | I MEVE |
¢ Bach hed: | Coned |

Verifying the operation of the Index Mark of an Encoder

Most servo applications will utilize the Index mark of the encoder to define the ‘home’ position of an
axis. Use Motion Integrator’'s Connect Encoder Wizard to verify the proper operation of the encoder
index.

DCX-PCI100 User’'s Manual 91

Motion Control

Connect Encoder Wizard Ed |

[ndex Test: Rotate encoder haft one complete
ressalution.

) Index Captured

|ndex Capture Position
m Current Position

Fiestart Test | Eipass |

Clizk. Mest to continue.

¢ Back | M et = | Cancel

Homing a Rotary Stage (servo) with the Encoder Index

Many servo motor encoders generate an index pulse once per rotation. For a multi turn rotary stage,
where one rotation of the encoder equals one rotation of the stage, an index mark alone is sufficient
for homing the axis. When an axis need only be homed within 360 degrees no additional qualifying
sensors (coarse home) are required. The following MCAPI and MCCL command sequences will home
a multi turn rotary stage:

// MCAPI rotary axis homing sequence

//

// Configure axis, start homing

//

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCDirection(hCtlr, 1, MC_DIR_POSITIVE);
MCSetVelocity(hCtlr, 1, 5000.0);

MCGo(hCtlr, 3);

// Stop when index mark captured
//

MCFindIndex(hCtlr, 1, 0.0);
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.01);

// Move back to location of index mark

//

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);
MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, 0.0);

MCWaitForStop(hCtlr, 1, 0.01);

;MCCL homing sequence executed as a background task

GTO,1vM™m,1D10,1SVv50000,1G0O,1FI0,1ST,1WS.01,1PM, 1MN, 1MAO, 1IWS .01

92 Precision MicroControl

Motion Control

Homing a Servo Axis with Coarse Home and Encoder Index Inputs

A typical axis will incur multiple rotations of the motor/encoder over the full range of travel. This type of
system will typically utilize a coarse home sensor to qualify which of the index pulses is to be used to
home the axis. The Limit Switches (end of travel) provide a dual purpose:

1) Protect against damage of the mechanical components.
2) Provide a reference point during the initial move of the homing sequence

The following diagram depicts a typical linear stage.

Servo motor
and encoder

|

Lead screw

Negative Limit Coarse Home Positive Limit
sensor sensor sensor

When power is applied or the DCX is reset, the position of the stage is unknown. The following
MCAPI and MCCL homing samples will move the stage in the positive direction. If the coarse home
sensor ‘goes active’ before the positive limit sensor, the Find Index command will redefine the position
of the axis when the index mark is captured. If the positive limit sensor ‘goes active’, the stage will
change direction, until both the coarse home sensor and the encoder index are active, at which point
the position will be redefined.

// MCAPI homing sequence (using positive limit, coarse home, and
// index mark)

//

// Enable limit switches, start velocity mode move

//

MCSetLimits(hCtlr, 1, MC_LIMIT_SMOOTH | MC_LIMIT_HIGH | MC_LIMIT_LOW, O, O, O
);

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetVelocity(hCtlr, 1, 10000.0);

MCDirection(hCtlr, 1, MC_DIR_POSITIVE);

MCGoEx(hCtlr, 1, 0.0));

//

// Wait for coarse home or positive limit inputs

dwStatus = MCGetStatus(hCtlr, 1);

while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_HOME) |1
1 MCDecodeStatus(hCtlr, dwStatus, MC_STAT _PLIM_TRIP)) {
dwStatus = MCGetStatus(hCtlr, 1);

DCX-PCI100 User’'s Manual 93

Motion Control

// IT positive limit switch active

//

dwStatus = MCGetStatus(hCtlr, 1);

if (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT PLIM_TRIP)) {
MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);
MCSetVelocity(hCtlr, 1, 10000.0);
MCGoEx(hCtlr, 1, 0.0));
MCWaitForEdge(hCtlr, 1, TRUE);
MCStop(hCtlr, 1);
MCWaitForStop(hCtlr, 1, 0.1);

}

// Once within Coarse Home sensor range, reduce velocity
// Move until Coarse Home sensor is no longer active

//

MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);

MCSetVelocity(hCtlr, 1, 2000.0);

MCGoEx(hCtlr, 1, 0.0));

MCWaitForEdge(hCtlr, 1, FALSE);

MCStop(hCtlr, 1);

MCWaitForStop(hCtlr, 1, 0.1)

// When Coarse Home no longer is active, reduce velocity
// Move back towards until index mark is captured

//

MCDirection(hCtlr, 1, MC_DIR_POSITIVE);

MCSetVelocity(hCtlr, 1, 1000.0);

MCGoEx(hCtlr, 1, 0.0));

MCWaitForEdge(hCtlr, 1, TRUE);

MCFindIndex(hCtlr, 1, 0.0);

MCStop(hCtlr, 1);

MCWaitForStop(hCtlr, 1, 0.1)

// lIssue position mode move to location of index mark (position 0)
//

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);

MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, 0.0);

MCWaitForStop(hCtlr, 1, 0.1);

; MCCL homing sequence (using positive limit, coarse home, and index mark)

MD1,1LM2,1LN3,MJ10 ;enable limits, call homing macro
MD10,1VM,1Sv10000,1D10,1G0O, LU”’STATUS”,1RL@0, 1S25,M311,NO, 1S17,MJ12,NO,JR-8
;start move, test for sensors (home
;and +limit)
mMb11,1ST,1ws.01,1D11,1G0,1WE1,1ST,1wsS.1,1D10,1G0,1WEQ,1FI0,1ST,1WS.01,1PM, 1MN,
1MAO
;1 home sensor true, initialize on
;index pulse
MD12,1WS0.01,1MN,1DI11,1G0,1WEO,MI11 ;move negative until home true

available. This method of homing utilizes one of the limit (end of travel)

P L D e e R P U o ¥ N 1| P R N - T | PO |

ﬂ An axis can be homed even if no index mark or coarse home sensor is

94

Precision MicroControl

Motion Control

is not recommended for applications that require high repeatability
and accuracy. To achieve the highest possible accuracy when using
this method, significantly reduce the velocity of the axis while polling for
the active state of the limit input.

The following MCAPI and MCCL sequences will home an axis at the position where the positive limit
sensor ‘goes active’

// MCAPI homing sequence (using positive limit index mark)

//

// Enable limit switches, start velocity mode move

//

MCSetLimits(hCtlr, 1, MC_LIMIT_SMOOTH | MC_LIMIT_HIGH | MC_LIMIT_LOW, 0O, O, O
);

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_VELOCITY);
MCSetVelocity(hCtlr, 1, 10000.0);

MCDirection(hCtlr, 1, MC_DIR_POSITIVE);

MCGoEx(hCtlr, 1, 0.0));

//

// Wait for positive limit inputs

dwStatus = MCGetStatus(hCtlr, 1);

while (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_PLIM_TRIP)) {
dwStatus = MCGetStatus(hCtlr, 1);

}

// Once the positive limit switch is active, move negative until switch is inactive
//
MCEnableAxis(hCtlr, 1, TRUE);
MCDirection(hCtlr, 1, MC_DIR_NEGATIVE);
MCSetVelocity(hCtlr, 1, 1000.0);
MCGoEx(hCtlr, 1, 0.0));
dwStatus = MCGetStatus(hCtlr, 1);
it (! MCDecodeStatus(hCtlr, dwStatus, MC_STAT_INP_PLIM)) {
dwStatus = MCGetStatus(hCtlr, 1)
}

// Stop the axis and define the leading edge of the limit switch as position 0O
//

MCAbort(hCtlr, 1);

MCWaitForStop(hCtlr, 1, 0.1);

MCSetPosition(hCtlr, 1, 0.0);

MCSetOperatingMode(hCtlr, 1, 0, MC_MODE_POSITION);

MCEnableAxis(hCtlr, 1, TRUE);

MCMoveAbsolute(hCtlr, 1, -100.0);

; MCCL homing sequence (using positive limit, coarse home, and index mark)

MD1,1LM2,1LN3,MJ10 ;call homing macro
mMD10,1VM,1D10,1G0O,LU”STATUS”,1RL@0,1S17 ,MJ11,NO,JR-5

;move and poll the Limit + sensor
MD11,1WS0.01,1MN,1DI1,1SV1000,1G0O,LU”STATUS”,1RL@0, 1C28,MJ12,NO,JR-5

;move negative until limit + inactive
MD12,1AB,1WS.1,1DHO,1PM,1MN,1MA-100 ;stop when limit + not active, define

;position as 0. Move to position —100.

DCX-PCI100 User’'s Manual 95

Motion Control

Motion Complete Indicators

When the DCX motion controller receives a move command, the DCX-PCI100 motherboard sends a
new target position to the appropriate servo control module (DCX-MC100, MC110 or DCX-MC110).
The servo module then calculates a trapezoidal velocity profile based on the:

o New target position
e Current settings for maximum velocity and acceleration/deceleration.

The trapezoidal velocity profile calculations result in position points that are evenly separated in time
(by 341 usec's, the period of the PID filter). These calculated position points are known as Optimal
Positions. During a servo axis move there will always be some difference between the calculated
position (Optimal Position) and the current position, this difference is known as the Following Error.

Velocity
(encoder counts per second)
100000 —
75000
50000
Calculated trajectory complete
(MC_STAT_TRAJ flag set / status bit 3 set)
25000

Optimal position - Actual position = Following error

4 8 12 16 20 Time (msec's)

= Actual trajectory = Calculated trajectory = Following Error

As the end of a move approaches, once the optimal position of an axis is equal to the move target, the
‘digital trajectory’ of the move has been completed and the MC_STAT_TRAJ status flag (MCCL
status trajectory complete bit 3) will be set. As shown in the preceding diagram, if a following error is
present during a move the axis will continue to move after the trajectory is complete, until the following
error is minimized.

This status flag is the conditional component of the MClsStopped() and MCWaitForStop()
functions. As shown above, a following error can cause MC_STAT_TRAJ to be set before the axis
has reached its target. Issuing MClsStopped() with a timeout value specified or MCWaitForStop()
with a Dwell time specified allows the user to delay execution move has been completed (following
error = 0). In the example below, the MCWaitForStop() command includes a Dwell of 5 msec'’s,
allowing the axis to stop and settle.

MCMoveRelative(hCtlr, 2, 500.0); // move 500 counts
MCWaitForStop(hCtlr, 2, 0.005); // wait till MC_STAT_TRAJ set plus
// 5 msec’s

96 Precision MicroControl

Motion Control

Another method of indicating the end of a move is to use MCIsAtTarget() or MCWaitForTarget() .
To satisfy the conditions of MCIsAtTarget() and MCWaitForTarget() , the axis must be within the
Dead band range for the time specified by DeadbandDelay, both of which are defined within the
MCMotion data structure.

The Dead band and DeadbandDelay are used to define an acceptable ‘at target range’ for the axis.
The Dead band defines an ‘at target’ range (in encoder counts) of an axis. The DeadbandDelay
defines the amount of time that the axis must remain within the ‘at target’ range before the status flag
MC_STAT_AT_TARGET bit will be set.

MCMoveRelative(hCtlr, 1, 1250.0); // move 1250 counts
MCWaitForTarget(hCtlr, 1, 0.005); // wait till MC_STAT_TRAJ set plus
// msec’s

On the Fly changes

During a point to point or constant velocity move of one or more axes, the DCX supports ‘on the fly’
changes of:

e Target
¢ Maximum Velocity
e Servo PID parameters

Changes made to any or all of these motion settings while an axis is moving will take affect within 8
msec’s.

If an “on the fly” target position change requires a change of direction the
axis will first decelerate to a stop. The axis will then move in the opposite
direction to the new target. This will occur if:

1) The new target position is in the opposite direction of the current
move
2) A ‘near target’ is defined. A near target is a condition where the
ﬂ current deceleration rate will not allow the axis to stop at the
new target position. In this case the axis will decelerate to a stop at
the user define rate, which will result in an overshoot. The axis will
then move in the opposite direction to the new target.

If an on the fly change requires the axis to change direction, the DCX

command interpreter will stall, not accepting any additional commands,
until the change of direction has occurred (deceleration complete).

0 The DCX-PCI100 does not support changing the acceleration on the fly

DCX-PCI100 User’'s Manual 97

Motion Control

Integral gain) ‘on the fly’ may cause the axis to jump, oscillate, or ‘error

Note — Changing the PID parameters (Proportional gain, Derivative gain,
& out’.

‘On the fly’ velocity changes will not take effect until after the axis has be
0 re-enabled (MCEnableAxis function or aGO command).

Save and Restore Axis Configuration

The MCAPI Motion Dialog library includes MCDLG_SaveAxis() and MCDLG_RestoreAxis().
These high level dialogs allow the programmer to easily maintain and update the settings for servo
axes.

MCDLG_SaveAxis() encodes the motion controller type and module type into a signature that is
saved with the axis settings. MCDLG_RestoreAxis() checks for a valid signature before restoring the
axis settings. If you make changes to your hardware configuration (i.e. change module types or
controller type) MCDLG_RestoreAxis() will refuse to restore those settings.

You may specify the constant MC_ALL_AXES for the wAxis parameter in order to save the
parameters for all axes installed on a motion controller with a single call to this function.

If a NULL pointer or a pointer to a zero length string is passed as the PrivatelniFile argument the
default file (MCAPL.INI) will be used. Most applications should use the default file so that configuration
data may be easily shared among applications. Acceptance of a pointer to a zero length string was
included to support programming languages that have difficulty with NULL pointers (e.g. Visual Basic).

98 Precision MicroControl

Motion Control

DCX-PCI100 User’'s Manual 99

Application Solutions

Chapter Contents

e Converting from a ISA bus DCX-PC100 Motion Controller
e Emergency Stop

e Encoder Rollover

¢ Flash Memory Firmware Upgrade

e Learning/Teaching Points

¢ Record and Display Motion Data

e Single Stepping MCCL Programs

e Manually Resetting the DCX

e Defining User Units

¢ DCX Watchdog

100 Precision MicroControl

Application Solutions

Converting from an ISA bus DCX-PC100 motion controller

DCX-PCI100 Enhancements

The DCX-PCI100 motion control motherboard was designed specifically to provide PCI bus support
for DCX-MC100 and DCX-MC110 users. With the added processing power of the MIPS CPU the
following enhancements are now available to MC100/MC110 users:

Faster command execution - typical execution time decreases from 750 usec's to 50 usec's
User unit scaling for distance, rate, time, and position offsets

Multi-tasking for MCCL subroutines

Firmware stored in on board FLASH for easy firmware upgrades by the user

Additional axis status data (Hard & Soft Limit Mode, user scaling settings, etc...)

Invert Limit option supports both normally open and normally closed end of travel sensors
User defined motion limits (soft limits)

Graphical Servo Tuning program

Variables for reading axis data (position, status, velocity, etc...)

Floating point and integer parameters

Additional error reporting

Required changes when converting to DCX-PCI100

The DCX-PCI100 enhancements precluded 100% backward compatibility with ISA applications. For
ISA-based (DCX-PC100) applications, programmed using either the MCAPI function library or MCCL
commands, when migrating to PCl-based DCX-PCI100, the following changes will be required:

The DCX-PCI100 must be installed in a computer running Windows 2000/NT/ME/98, it
does not support Windows 3.X or 95.

The PCI bus was not designed to carry high current DC voltages to PCI bus cards. To provide
the necessary current for DCX-MC110 Direct Motor Drive modules (as much as 4.0 amps) the

DCX-PCI100 User’'s Manual 101

Application Solutions

DCX-PCI100 Motion Control Motherboard includes an auxiliary motor power connector (J33).
The pinout of connector J33 matches the power supply connections for 5 % “ floppy disk drives
and HDD’s (Hard Disk Drive). A Floppy Drive Power Cable Splitter is used to directly connect
the PC’s +12 VDC supply to the DCX-PCI100. Floppy Drive Power Cable Splitters are
available at most computer and electronic supply stores, or can be purchased directly from
PMC (P/N 71.060.A).

The DCX-PCI100 does not support DOS application programming, but it does support 32-bit
Console Mode applications. For additional information please refer to TechNOTE 1013
“Porting Legacy MS-DOS Motion Applications to Windows NT”.

Upgrade the MCAPI — the DCX-PCI100 requires MCAPI revision 3.1.00 or higher. For
additional information on installing the MCAPI (and removing older revisions of the MCAPI)
please refer to the DCX-PCI100 User Manual, chapter 2, Controller and Software
Installation.

Trajectory parameters (Set Velocity, Set Acceleration) are expressed in encoder counts per
second (velocity = counts/sec, accel/decel = counts/sec/sec) instead of encoder counts per
sample period (velocity = counts * .000341 *65,536; accel/decel = counts *.000341*.000341 *
65,536)

Time units (WAIt, Wait for Stop) are expressed in seconds instead of milliseconds (1WS5
converts to 1WS0.005)

The Motor Table no longer uses hard coded addressing. For example, the command 1RLO
would load the status word of axis #1 into the accumulator of an ISA based DCX-PCI100. For
PCI based applications, the user first issues the Look Up variable command with the
parameter equal to the variable name (enclosed in quotation marks). Then issue a read
command (long, word, double, etc...) to the appropriate axis:

LU""STATUS",1RL@0O ;load axis #1 status into accumulator

Features no longer supported

Manual positioning (jogging) by activating the Jog Right and Jog Left inputs

Motherboard based general purpose 1/0. The DCX-PC100 has 16 general purpose digital /0
and 4 eight bit analog inputs. The DCX-PCI100 motherboard does not provide any general
purpose I/0. The DCX-MC400 Digital I/0 module and the DCX-MC500 Analog I/O module are
supported by the DCX-PCI100, allowing the user to add I/O capability.

The DCX-PCI100 does not support RS-232 or IEEE-488 communication interfaces

102

Precision MicroControl

Application Solutions

Emergency Stop

Many applications that use motion control systems must accommodate regulatory requirements for
immediate shut down due to emergency situations. Typically these requirements do not allow an
emergency shut down to be controlled by a programmable computing device. The drawing below
depicts an application where an emergency stop must be a completely ‘hard wired’ event.

Servo
Amplifier
H Motor
E- itch
(—D O stop Switc
Servo 2 VDC
Computer Control - —
Panel Amplifier
Motor
—/—H . Relay - NC
Amplifier
(—D O Power Supply w
] N_Q_
- Servo Al
Amplifier AC Power In
ACIn Motor
— f

(—DD

This ‘hard wired’ E-stop circuit uses a relay to disconnect power from the servo amplifiers. The motors
and amplifiers would certainly be disabled, but the motion controller and the application program will
have no indication that an error condition exists.

Wiring the E-Stop switch to the DCX
There are two ways to wire the DCX so that it can monitor the E-stop switch:

1) Connect the E-stop switch to one of the general purpose digital I/O lines
2) Connect all of the Amplifier Fault inputs to the E-stop switch

E-stop switch connected to DCX General Purpose Digital Input

Wire the E-stop switch to a general purpose digital /O (channel #1). Each DCX digital channel has a
4.7K resistor pulled up to +5 volts. A background task is used to monitor the state of the input. If the
channel is configured for low ‘low true’ operation, the input (from the E-stop switch) will report its state
as ‘off’ until the E-stop switch is activated. The WaitForDigitallO function will stay active in
background until the input ‘goes true’.

DCX-PCI100 User’'s Manual 103

Application Solutions

E-stop Switch

=

+5VDC
o Relay - NC
Amplifier
Power Supply m
e PO et e q
AC Power I’

it (MCBlockBegin (hCtlr,MC_BLOCK_TASK, 0) ==MCERR_NOERROR) {
MCSetRegister (hCtlr, 100, O, MC_TYPE_LONG);
MCConfigureDigitallO (hCtlr, 1, MC_DIO_LOW);
MCWaitForDigitallO (hCtlr, 1, TRUE);
MCSetRegister hCtlr, 100, 1, MC_TYPE_LONG);
MCEnableAxes(hCtlr, MC_ALL_AXES, FALSE);
MCBlockEnd (hCtlr, NULL);

// periodically poll the user register #100 for a value of 1. If true the user
// can jump to an E-stop handling routine.

MCGetUserRegister (hCtlr, 100, &Estop, MC_TYPE_LONG);

E-stop switch connected to Amplifier Fault servo module input

The Amplifier Fault input of MC200 and MC210 servo modules can be used to disable motion with no
user software action required. The E-stop switch is wired to the Amplifier Fault input (connector J3 pin
10) of each servo module. Auto shut down of motion upon activation of the Amplifier Fault input is
enabled by the MCMotion structure member EnableAmpFault. When the E-stop switch is activated:

1) The axis is disabled (PID loop terminated, Amplifier Enable output turned off)
2) The status flag MC_STAT_AMP_FAULT will be set for each axis
3) The status flag MC_STAT_ ERROR will be set for each axis

When the E-stop condition has been cleared, motion can be resumed after issuing the
MCEnableAxis function with the parameter wAxis set to MC_ALL_AXES.

104 Precision MicroControl

Application Solutions

E-stop Switch

=

+5 VDC
- Relay - NC
Amplifier
Power Supply m
MC100/110 pin 10

SED

AC Power |

Encoder Rollover

The DCX motion controller provides 30 bit position resolution, resulting in a position range of
—-1,073,741,823 to 1,073,741,823. For an application where the axis is moving at maximum velocity
(750 thousand encoder counts per second), the encoder would rollover in approximately 23 minutes.
When the encoder rolls over, the reported position of the axis will change from a positive to a negative
value. For example, if the axis is at position 2,147,483,647 the next positive encoder count will cause
the DCX to report the position as —2,147,483,647.

If a user scaling other than 1:1 has been defined the DCX controller will report the position in user
units. The reported position at which the value will rollover is based on the user scaling. If user scaling
is set to 10,000 encoder counts to one position unit, the reported position will rollover at position
214,748.3647. The next positive encoder count will cause the DCX to report the position as
—214,748.3647.

Encoder rollover during Position Mode moves
The DCX will not accept a Position Mode move that exceeds the rollover point, this would essentially
be handled as an error condition, except the PID filter will remain enabled.

Encoder rollover during Velocity Mode moves

No disruption or unexpected motion will occur if a rollover occurs during a Velocity mode
(MCSetOperatingMode, MC_MODE_VELOCITY) move. However, once the rollover point has been
crossed, the position reported by the MCTellPosition function will longer be valid.

DCX-PCI100 User’'s Manual 105

Application Solutions

Prior to executing a velocity mode move in which the encoder position
may rollover the axis must be homed (MCFindindex or MCSetPosition)

& to position 0. Defining a offset to the home position will cause the axis to
pause at the rollover point.

Flash Memory Firmware Upgrade

Each time the PC is re-booted (reset or power cycle) the operating code (typically called firmware) for
the DCX-PCI100 is loaded into on-board SDRAM (Static Dynamic Random Access Memory). The
source files for the operating code is written to the PC’s hard disk drive during the installation of the

MCAPI.

PMC’s Flash Wizard (the DCX-PCI100 requires Flash Wizard rev. 2.20 or higher) is a windows utility
that allows the user to easily update the operational code. Code updates are available from the
MotionCD or from PMC’s web site www.pmccorp.com.

T —= R = S e
mf == =] jll — m mf] Sr===m=—

n ;—;2'\—."'—-““;“ — | L:T—r.:ﬁ:::ﬁ] Lf-:‘d‘_'ﬁ::.-- n | — -\.-.._I.._
. e - - _SJ
[] [y . | e rmrms e e [——
[1 Ce — o
= = B =l
—i = :

With Windows 98 and MCAPI 3.1.000 a verification error may will occur
& during code download. To complete the firmware upgrade close Flash
Wizard and restart the PC.

106 Precision MicroControl

Application Solutions

Learning/Teaching Points

As many as 256 points can be stored for each axis in the DCX's point memory by using the
MCLearnPoint() function. A stored point can be either the actual position of an axis
(MC_LRN_POSITION) or the target position of an axis (MC_LRN_TARGET).

The value MC_LRN_POINT would typically be used in conjunction with jogging. The operator would
jog the axes along the desired path, issuing the MCLearnPoint() command at regular intervals. The
MCMovePoint() command would then be used to ‘play back’ the path traversed by the operator.

For applications where the target point data was previously recorded and stored in the PC, the value
MC_LRN_TARGET would be used to load the target points into the DCX.

Once all points have been stored, the axes are commanded to move to the stored positions with
MCMoveToPosition(). The parameter windex indicates to which stored point the axis should move.

// Move axis 1 and store position in consecutive point storage locations.

WORD windex;
MCEnableAxis(hCtlr, 1, TRUE); // motor on
MCGoHome(hCtlr, 1); // start from absolute zero

MCWaitForStop(hCtlr, 1, 0.100);

for (wlndex = 0; windex < 5; wlndex++) {
MCMoveRelative(hCtlr, 1, 1234.0); // move
MCWaitForStop(hCtlr, 1, 0.100); // are we there yet?
MCLearnPoint(hCtlr, 1, wlndex, MC_LRN_POSITION);

}

// Store several positions for axis 4 without actually moving the axis. Note // that
axis is disabled with MCEnableAxis() prior to storing positions

WORD wlndex;

MCEnableAxis(hCtlr, 4, FALSE); // motor off

for (windex = 0; windex < 5; wlndex++) {
MCMoveRelative(hCtlr, 4, 2468.0); // nothing actually moves
MCLearnTarget(hCtlr, 4, windex, MC_LRN_TARGET);

}

// This example moves to the stored positions, dwelling for 0.2 seconds at
// each point.

WORD wlndex;

MCEnableAxis(hCtlr, 4); // enable axis

for (windex = 0; wIndex < 5; wlndex++) {
MCMoveToPoint(hCtlr, 4, windex); // move to next point
MCWaitForStopped(hCtlr, 4, 0.2);

}

DCX-PCI100 User’'s Manual 107

Application Solutions

Record Motion Data

The DCX supports capturing and retrieving motion data from servo axes (MC100, MC110). Captured
position data is typically used to analyze servo motor performance and PID loop tuning parameters.
The MCAPI function MCCaptureData() is used to acquire motion data for a servo axis. PMC's Servo
Tuning utility uses this function to capture and display servo performance. This function supports
capturing:

e Actual Position versus time
e Optimal Position versus time
e Following error versus time

When initiated by the MCCaptureData function the DCX-PCI100 will
perform one Motion Data Capture operation every millisecond. If more
than one DCX motor module is installed, the period between data
captures for the target axis will be:

0 1 msec. X # of installed modules

For example if 6 motor modules are installed, and the MCCaptureData
function is called for axis #1, motor data will be captured for axis #1
every 6 msec’s.

1 msec. X 6 modules = 6 msec’s

The time base for capturing data is the 1 millisecond. The function MCGetCapturedData() is used to
retrieve the captured data. The following example captures 1000 data points, then reads the captured
data into an array for further processing.

double Data[1000];

MCBlockBegin(hCtlr, MC_BLOCK_COMPOUND, 0);
MCCaptureData(hCtlr, 1, 1000, 0.001, 0.0);
MCMoveRelative(hCtlr, 1, 1000.0);
MCWaitForStop(hCtlr, 1, 0.0);

MCBlockEnd(hCtrlr, NULL);

// Retrieve captured actual position data into local array

//

if (MCGetCaptureData(hCtlr, 1, MC_DATA_ACTUAL, 0O, 1000, &Data) {
.- // process data

108 Precision MicroControl

Application Solutions

Resetting the DCX

The DCX supports software controlled reset. To reset the DCX-PCI100 motherboard and all installed
axes issue the MCAPI function MCReset(). For additional information please refer to the MCAPI
function descriptions later in this manual.

Most PMC application programs (Motor Mover, Servo Tuning, Wincontrol) allow the user to reset the
controller by selecting Reset Controller from the WinControl File menu.

=10 %]
Fie Edit Help
O, , u ‘

Buto-Tndialze Bl Axoes
Sape Al Loz Settings

Cortrolas Info.,
Sanhar irodlar, .,
rober

Resetting the DCX-PCI100 from a user application program (with MCReset()) or from one of a PMC'’s
software programs (by selecting Reset Controller from: Motor Mover, WinControl, Servo Tuning,
etc...) will cause the controller to revert to default settings (PID, velocity, accel/decel, limits, etc...). For
additional information on restoring user defined settings please refer to the Motion Control Dialog
function MCDLG_RestoreAxis.

In the event of a ‘hang up’ of the application program and/or controller,
the application program may fail to resume operation after issuing the

& MCReset() function. The user will have to terminate and then re-open
the application program.

Until the DCX has fully re-initialized the Reset Relay (connector J5 pins
ﬂ 2 and 4) will be energized.

DCX-PCI100 User’'s Manual 109

Application Solutions

Single Stepping MCCL Programs

While the DCX is executing any Motion Control Command Language (MCCL) macro program, the
user can enable single step mode by entering <ctrl> . Each time this keyboard sequence is
entered, the next MCCL command in the program sequence will be executed. The following macro
program will be used for this example of single stepping:

MD10,WA1,1MR1000,1WS.1,1TP,1MR-1000,1WS.1,1TP,RP
This sample program will: wait for 1 second, move 1000 encoder counts, report the position 100

msec’s after the calculated trajectory is complete, move -1000 encoder counts, report the position 100
msec’s after the calculated trajectory is complete, repeat the command sequence.

This command sequence can be entered directly into the memory of the DCX by typing the command
seguence in the terminal interface program WinCtl32.exe or by downloading a text file via
WinControl's file menu.

To begin single step execution of the above example macro enter MC10 (call macro #10) then <ctrl>
 the following will be displayed:

{C1,MC10} IMR1000 <

The display format of single step mode is: {Command #,Macro #} Next command to be executed

:_ | "WinComtrod1Z | - 1O x|

File Ect Help
0O | & o] -

D0, WAL T RTER000, WS 1A TE T RE-T00_ 1S 1 1T HP
i [} [| L trl H» k& & -|-|-|||| i actiom that wnll mot e echoed on the Sciean
TEIR1000

LT | EITRTEATE
TP 000

11 B -0
1WAFSI, 0000
1 |

To end single stepping and return to immediate MCCL command execution press <Enter>. To abort
the MCCL program enter <Escape>. Single step mode is not supported for a MCCL sequence that is
executing as a background task.

110 Precision MicroControl

Application Solutions

Defining User Units

When power is applied or the DCX is reset, it defaults to encoder counts as its units for motion
command parameters. If the user issues a move command to a servo with a target of 1000, the DCX
will move the servo 1000 encoder counts. In many applications there is a more convenient unit of
measure than the encoder counts of the servo. If there is a fixed ratio between the encoder counts
and the desired 'user units', the DCX can be programmed with this ratio and it will perform
conversions implicitly during command execution.

Defining user units is accomplished with the function MCSetScale() which uses the MCSCALE data
structure. This function provides a way of setting all scaling parameters with a single function call
using an initialized MCSCALE structure. To change scaling, call MCGetScale(), update the
MCSCALE structure, and write the changes back using MCSetScale().

MCScale Data Structure
typedef struct {

double Constant; // Define output constant

double Offset; // Define the work area zero

double Rate; // Define move (vel., accel, decel) time
units

double Scale; // Define encoder scaling

double Zero; // Define part zero

double Time; // Define time scale
} MCMOTION;

Setting Move (Encoder) Units

The value of the Scale member is the number of encoder counts per user unit. For example, if the
servo encoder on axis 1 has 1000 quadrature counts per rotation, and the mechanics move 1 inch per
rotation of the servo, then to setup the controller for user units of inches:

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Scale = 1000.0; // 1000 encoder counts/inch
MCSetScale(hCtlr, 3, &Scaling);

Prior to issuing the Scale member, the parameters to all motion commands for a particular axis are
rounded to the nearest integer. After setting a new encoder scale and calling MCEnableAxis() to
initialize the axis, motion targets are multiplied by the ratio prior to rounding to determine the correct
encoder position. Calling the MCGetPosition() will load the scaled encoder position.

Note — setting a user scale other than 1:1 will also scale trajectory
settings (Velocity, acceleration/deceleration) but not PID settings.

Trajectory Time Base

DCX-PCI100 User’'s Manual 111

Application Solutions

The value of the Rate member sets the time unit for velocity, acceleration/deceleration values, to a
time unit selected by the user. If velocities are to be in units of inches per minute, the user time unit is
a minute. The value of the Rate member is the number of seconds per 'user time unit'. If the velocity
and accel/decel are to be specified in units of inches per minute and inches per minute per minute for
axis 1, then the Rate value should be set to 60 seconds/1 minute = 60 (1UR60). The function
MCEnableAxis() must be issued before the user rate will take effect.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Rate = 60.0; // set rate to inches per minute
MCSetScale(hCtlr, 3, &Scaling);

Typical Rate values

User Rate Conversion

second 1 (default)
minute 60
hour 3600

Defining the Time Base for Wait commands

For the MCWait(), WaitForStop() and WaitForTarget() functions, the default units are seconds. By
setting the member Time, these three commands can be issued with parameters in units of the user's
preference. The parameter to member is the number of 1 second periods in the user's unit of time. If
the user prefers time parameters in units of minutes, Time = 60 should be issued.

MCSCALE Scaling;

MCGetScale(hCtlr, &Scaling);
Scaling.Time = 60.0; // set Wait time unit to minutes
MCSetScale(hCtlr, &Scaling);

Defining a System/Machine zero

The member Offset allows the user to define a ‘work area’ zero position of the axis. The Offset value
should be the distance from the servo motor home position, to the machine zero position. This offset
distance must use the same units as currently defined by set User Scaling command. Offset does not
change the index or home position of the servo motor, it only establishes an arbitrary zero position for
the axis.

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);
Scaling.Offset = 12.25; // define offset to 12.25 inches
MCSetScale(hCtlr, 3, &Scaling);

Defining a Part Zero

The member Zero would typically be used in conjunction with Offset to define a ‘part zero’ position. A
PCB (Printed Circuit Board) pick and place operation is a good example of how this function would be
used. After a new PCB is loaded and clamped into place the X and Y axes would be homed. The
Offset member is used to define the ‘work area’ zero of the PCB. The Zero member is used to define
the ‘part program’ or ‘local’ zero position. This way a single ‘part placement program’ can be
developed for the PCB type, and a ‘step and repeat’ operation can be used to assemble multiple part
assemblies.

112 Precision MicroControl

Application Solutions

MCSCALE Scaling;

MCGetScale(hCtlr, 3, &Scaling);

Scaling.Offset = 12.25; // define offset to 12.25 inches
Scaling.Zero = 1.25; // define “part zero” to 1.25 inches
MCSetScale(hCtlr, 3, &Scaling);

XY Pick and Place Assembly

&

X &Y servo
motor home

Work area: c>
7610 Part program zero
(UserOffset) _, (User Zero)

e 03
23 o
o o
- °
. 23
03 .
° o
o o
23 .
03 .
. .
° o

®cevcenccoce

PCB clamp assembly

DCX-PCI100 User’'s Manual 113

Application Solutions

DCX Watchdog

The DCX incorporates a watchdog circuit to protect against improper CPU operation.

After a reset or power cycle, once the firmware (operational code) has been loaded by the operating
system (approximately 3 seconds), the watchdog circuit is enabled.

If the DCX processor fails to properly execute firmware code for a period of 10 msec's, the watchdog
circuit will 'time out' and the on-board reset will be latched by the ‘watchdog reset relay’. This in turn
will hold the DCX modules in a constant state of reset. All motor command/drive outputs will be
disabled. When the watchdog circuit has tripped, the green Run LED will be disabled. To clear the
watchdog error either:

Cycle power to the computer (recommended)
Reset the computer

Note: If the watchdog trips while a MCAPI based application program is
& running, manually resetting the DCX will probably not allow the
application program to continue operation.

114 Precision MicroControl

Application Solutions

DCX-PCI100 User’'s Manual 115

General Purpose 1/0

Chapter Contents

e DCX Motherboard Digital I/O

e Configuring the DCX Digital I/O
e Using the DCX Digital I/O

o DCX Motherboard Analog Inputs
e DCX Module Analog I/O

e Using the Analog I/0

e Calibrating the MC500/MC520 +/- 10V Analog Outputs

116 Precision MicroControl

General Purpose I/O

DCX Motherboard Digital 1/0O

The DCX-PCI100 Motion Controller motherboard has 16 general purpose digital I/O channels.
Channels 1 — 8 are TTL inputs and channels 9 — 16 are TTL outputs. These signals can be accessed
on connector J3 of the motherboard. The DCX-PCI100 section of the Connectors, Jumpers, and
Schematics chapter includes a pin-out for this connector. Each digital channel is configured via
software (high true or low true).

Interfacing to the ‘Outside World’
The TTL digital I/O channels can be connected directly to external circuits if output loading (1ma
maximum sink/source) and input voltages (0.0V to +5.0V) are within acceptable limits.

The DCX Digital I/0 channels are not suitable for driving optical
@ isolators, relays solenoids, etc...

Alternatively, a DCX-BFO22 interface board can be used to connect the module's I/O to a relay rack in
order to provide optically isolated inputs and outputs.

The DCX-BFO22 interface board provides a convenient means of connecting the DCX-PCI100 TTL
digital I/0 channels to a 16 position relay rack available from two manufacturers, Opto22 (P/N PB16H)
and Grayhill (P/N 70RCK16-HL). These relay racks accept up to 16 optically isolated input or output
modules for interfacing with external electrical systems. Using one of these relay racks and a DCX-
BFO22, an optically isolated 1/0O module can be connected to each of the DCX's digital I/O channels.

DCX-PCI100 User’'s Manual 117

General Purpose 1/0

As shown above, the DCX-BFO22 plugs directly into the relay rack's 50 pin header connector and
then connects to the DCX-PCI100 via a 26 conductor ribbon cable. Note that the relays are numbered
sequentially starting from 0, while the DCX digital I/O channels are numbered sequentially starting
with 1.

Although the relay rack has screw terminals for connecting a logic supply, it is not necessary to make
this connection. By installing a shorting block on jumper JP17 of the BFO22, the 5 volt supply of the
DCX will be supplied to the relay rack.

For detailed information on configuring the DCX-BF022, please refer to the schematic and jumper
table in the Connectors, Jumpers, and Schematic chapter later in this manual.

Configuring the DCX Digital I/0

The configuration of both the DCX-PCI100 and the DCX-MC400 digital I/O channels is accomplished
using either PMC'’s Motion Integrator software or the MCAPI function MCConfigureDigitallO(). The
screen shot that follows shows the Motion Integrator Digital 1/O test panel. This tool is used to both
configure each 1/0O channel and then verify its operation. A comprehensive on-line help document is
provided.

118 Precision MicroControl

General Purpose 1/0

0 Dugital 1/0 Test Panel M=l E3

File “iew Help
Standard 10 II'-.-1u::duIe1 |

~Ch1— +Ch2—~ Ch3 - Chd4—~ Ch&—~ ChbE— Ch 7 Ch8—

I DN B B B Em | Em

(o I D @) BN e
=tet 1zt o |1 e | s | Pz S e o | e
Test Test Test Test Test Test Test
oL or |l lor|ilell e e ||e
~Ch 83— ~Ch 10—+ ~Ch 11— Ch 12— ~Ch 13— ~Ch 14— ~Ch 15— ~Ch 16—

N | N | I N | I | N | O | O
=g SN oo BN 1o BRI - BIEY o MU o BRI - B o B
Izt o 108 =it e s O S Rz o | =i e o | e

Test

o]| |[o"ai]|{|[a]| {[oal| [0t |[@'=i]| o]} [0 =

Each DCX-PCI100 digital I/O channel is individually programmable as:

High true/Positive logic (MC_DIO_HIGH) or Low true/Negative logic (MC_DIO_LOW)

Each DCX-MC400 digital I1/0 channel is individually programmable as:

Input (MC_DIO_INPUT) or Output (MC_DIO_OUTPUT)
High true/Positive logic (MC_DIO_HIGH) or Low true/Negative logic (MC_DIO_LOW)

The 16 channels of the DCX-PCI100 motherboard are defined as channels 1 — 16. If one or more
DCX-MC400 Digital I/0 modules are installed, the additional I/O channels are assigned to
succeeding channel/numbers in blocks of 16 (e.g. 17-32, 33-48, etc.). All I/O channels accept the

same configuration, monitoring and control.

Note — If a BFO22 interface and relay rack are connected to the DCX
Digital I/0, a MC_DIO_LOW command set to ALL_AXES should be

ﬂ issued to the DCX. This will cause "normally open" relays to turn on
when the Channel oN command is issued, and off when the Channel oFf

command is issued.

DCX-PCI100 User’'s Manual 119

General Purpose 1/0

This example configures all the digital I/O channels (PCI100 channels 9 — 16 and all MC400
channels) on a controller for outputs, then turns each channel on (in order) for a half second.

MCPARAM Param;
MCGetMotionConfig(hCtlr, &Param);

for (i = 9; 1 <= Param.DigitallO; i++) {
MCConfigureDigital 10O hCtlr, i, MC_DIO_OUPUT | MC_DIO_HIGH);

for (i = 1; i <= Param.DigitallO; i++) {
MCEnableDigital10(hCtlr, i, TRUE);
MCWait(hCtlr, 0.5);
MCEnableDigitall0O(hCtlr, i, FALSE);

}

Using the DCX Digital 1/O

After configuring the Digital I/O channels, three MCAPI functions are available for activating and
monitoring the digital 1/O:

MCEnableDigitallO() set digital output channel state
MCGetDigitallO() get digital input channel state
MCWaitForDigitallO() wait for digital input channel to reach specific state

Enable Digital 10

Turns the specified digital 1/0 on or off, depending upon the value of bState.

TRUE Turns the channel on.
FALSE Turns the channel off.

The 1/0 channel selected must have previously been configured for output using the
MCConfigureDigitallO() command. Note that depending upon how a channel has been configured
"on" (and conversely "off") may represent either a high or a low voltage level.

compatibility: MC400

see also: Configure Digital 10

C++ Function: void MCEnableDigitallO(HCTRLR hCtlr, WORD wChannel, short int bState);

Delphi Function: procedure MCEnableDigitallO(hCtir: HCTRLR; wChannel: Word; bState: Smallint);

VB Function: Sub MCEnableDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)

MCCL command: CF, CN

Execute [T] - :

Handle In i Handle Out
LabVIEW VI: Channel (1) T oot
State [T] -~ =——=

MCEnableDigitallO_vi

120 Precision MicroControl

General Purpose 1/0

Get Digital 10

Returns the current state of the specified digital I/O channel. This function will read the current state of
both input and output digital I/O channels. Note that this function simply reports if the channel is "on"
or "off"; depending upon how a channel has been configured "on" (and conversely "off") may
represent either a high or a low voltage level.

compatibility: MC400

see also:

C++ Function: short int MCGetDigitallO(HCTRLR hCtlr, WORD wChannel);

Delphi Function: function MCGetDigitallO(hCtlr: HCTRLR; wChannel: Word): Smallint;

VB Function: Function MCGetDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer

MCCL command : TC

Execute [T] -~

Handle In Handle Out
LabVIEW VI: Channel (1) 7 |Sotal Value

MCGetDigitallD.vi

Wait for Digital 10

Waits for the specified digital /0O channel to go on or off, depending upon the value of bState.

compatibility: MC400

see also: Wait for digital channel on

C++ Function: void MCWaitForDigitallO(HCTRLR hCtlr, WORD wChannel, short int bState);

Delphi Function: procedure MCWaitForDigitallO(hCtlr: HCTRLR; wChannel: Word; bState: Smallint);

VB Function: Sub MCWaitForDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)

MCCL command: WF, WN

EIIE[:LI[E [T]
. Handle In Handle Out

LabVIEW VI: Channel (1) _,?—
State [T]

M Cw aitForDigitall 0 _vi

This example configures all the digital I/O channels on a controller for output, then turns each channel
on (in order) for a half second.

DCX-PCI100 User’'s Manual 121

General Purpose 1/0

DCX Module Analog 1/O

The DCX-MC500 Analog I/O Module provides analog I/O capability for a DCX Motion Controller. One
or more of these modules can be installed in any available module position on a DCX motherboard.
Analog input channels can be used to monitor signal levels from external sensors. Output channels
can be used to control external devices.

Three models of the DCX-MC500 are available:

Part Number

DCX-MC500 4 Inputs and 4 Outputs
DCX-MC510 4 Inputs
DCX-MC520 4 Outputs

On each DCX-MC500/510 Analog I/O Module all analog input channels are numbered sequentially in
groups of four. Likewise, all analog output channels are numbered sequentially in groups of four.
When installed on the DCX-PCI100, the MC500/510 in the lowest module location will have its 4
analog input channels defined as 1 — 4. The four analog inputs of a MC500/510 installed in the next
lowest module location will be defined as channels 5 — 8.

Because the DCX controller board is implemented in digital electronics, all analog input signals must
be converted into a representative numerical value. This function is done by an Analog to Digital
Converter (ADC) on the DCX-MC500/510. Similarly, analog output signals originate on the DCX board
as numerical values. These numbers must be written to a Digital to Analog Converter (DAC) on the
DCX-MC500/520, which converts them to a corresponding analog output signal level.

The DCX-MC500 is designed to accurately measure voltage levels on the input channels. These
inputs are very high impedance with leakage currents less than 10 nano amps. The output channels
are designed to provide signals with accurate voltage levels. The current requirement from these
outputs should not exceed 10 milliamps.

Each of the analog input and analog output channels has 12 bits of resolution. This means that the
digital value read from the ADC, or the digital value written to DAC, must be in the range 0 to 4095.
For both inputs and outputs, a digital value of O translates to the lowest analog voltage. A digital value
of 4095 translates to the highest analog voltage.

Input signals on pins 1, 3, 5 and 7 of the module J3 connector are wired directly to the ADC. No
amplification or clamping to the input voltage range is provided on the module.

A voltage level greater than 5.6 volts will damage the analog input
channels of a DCX-MC5X0 module. The schematic below is
recommended to protect an analog input from damage due to an over
voltage condition. This circuit will limit the maximum voltage applied to
the A/D converter to 5.6 VDC.

122 Precision MicroControl

General Purpose 1/0

Analog Input Protection Circuit

10K

To external EA N Analog Input
sensor §pat (to connectar J3
in= 1,3, 5, andior 7
J FllrlS 1 1 1
T

TMS231 zener diode
LA ar
SALS0A TYS (Gen. Semi.)

In some applications, the signals from a sensor may not be absolute voltage levels, but proportional to
some reference voltage. In these cases, it may be desirable to supply the reference signal to the ADC
on the module through pin 18 of the J3 connector (and setting jumper JP1 accordingly). This will result
in a "ratiometric" conversion of the input signal relative to the reference voltage.

The outputs from the DAC on the DCX-MC500 module are voltage levels in the range 0 to +5 volts.
These outputs have no gain or offset adjustment. These signals are available on pins 10, 12, 14 and
16 of the module J3 connector.

The outputs from the DAC are also connected to operational amplifiers on the module, which offset
and amplify them to provide a +/-10 volt range. Each of these outputs has a 20 turn trim pot for offset
adjustment, and a single turn pot for gain adjustment. The offset pot provides a minimum 0.5 volt
adjustment, and the gain pot provides a nominal 2% range adjustment. These output signals are
available on pins 2, 4, 6 and 8 of the module J3 connector.

After reset the outputs of the DCX-MC500 will be initialized to their mid-scale point. For the 0 to +5
volt outputs, this will be 2.5 volts. For the -10 to +10 volt outputs, this will be 0.0 volts.

Using the Analog I/O

The configuration and operation of the DCX-MC5X0 analog 1/0 channels is accomplished using either
PMC'’s Motion Integrator program or the MCAPI functions MCSetAnalog() , MCGetAnalog(). The
screen capture that follows shows the Motion Integrator Analog I/O test panel. This tool is used to
both configure each I/O channel and then verify its operation. A comprehensive on-line help document
is provided.

DCX-PCI100 User’'s Manual 123

General Purpose 1/0

T Anadog | el Fanel
Fée Help
Sharaiard I Winduie 1 I
Refarance Vallagea Selct Installed Module Type
EIEGE | JMCS00 4 Wputs and 4 Outputs =
Analog Input & Analog Input B Analog Inpud 7 Analog Input 8

EEIIIE EESOE EEDIIE EEETE
_Setup | _Setwp | _Setwp | Setwp |

Analog Cutput 1 Analog Clutpud 2 Analog Cutput 3 Analog Cutput 4

EEEIE EEETE EEDIE EEXTE
_Setw | Setun | _Setua | Setu |

Two MCAPI functions are available for setting and monitoring the MC500 analog 1/O:

MCSetAnalog() set digital output channel state
MCGetAnaloglO() get digital input channel state
Get Analog

Reads the digitized input state of the specified input wChannel. The four 8-bit analog input channels
accessed on connectors J3 are numbered 1,2,3 and 4. For each of these channels, this function will
read a number between 0 and 255. These numbers are the ratio of the analog input voltage to the
reference input voltage multiplied by 256. The reference voltage for the first four channels must be
supplied to the DCX on the J3 connector pin 23, and can be any voltage between 0 and +5 volts DC.
The analog input channels on any installed MC500 modules will be numbered sequentially starting
with channel 5. See the description of Analog Inputs in the DCX General Purpose I/O chapter.

compatibility: MC500, MC510

see also: Set Analog

C++ Function: WORD MCGetAnalog(HCTRLR hCtlr, WORD wChannel);

Delphi Function: function MCGetAnalog(hCtlr: HCTRLR; wChannel: Word): Word;

VB Function: Function MCGetAnalog (ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer

MCCL command: TA

Execute [T] -
Handle In Handle Out
Channel (1)~ | =%

Yalue

LabVIEW VI:
MCGetAnalog. vi

124 Precision MicroControl

General Purpose 1/0

Set Analog

Sets the output level of an analog channel. Analog output ports on MC500 and MC520 Analog
Modules accept values in the range of 0 to 4095 counts (12 bits). This range of values corresponds to
an output voltage of 0 to 5V or -10 to +10V, depending upon how the output is configured (See the
description of Analog Inputs in the DCX General Purpose I/O chapter).

compatibility: MC500, MC520

see also: Get Analog

C++ Function: void MCSetAnalog(HCTRLR hCtlr, WORD wChannel, WORD wValue);

Delphi Function: procedure MCSetAnalog(hCtlr: HCTRLR; wChannel, value: Word);

VB Function: Sub MCSetAnalog (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal Value As Integer)

MCCL command: OA

E recute [T]

Handle In Handle Out
LabVIEW VI: Channel [1] -

Value —

MCS5etAnalog. vi

Calibrating the MC500/MC520 +/- 10V Analog Outputs:

The analog inputs of the DCX-MC500 require no calibration, and the only option is use of the internal
+5, or an external, reference voltage. The analog outputs with the 0 to +5 volt range also have no
adjustments. The reference for the DAC is fixed to the internal reference voltage.

The four 0.0 to +5.0 analog outputs require no calibration. The four +10 to —10 volt analog outputs are
calibrated at the factory. There are four single turn trim pots that are used to adjust the gain of each of
the four analog outputs. There are also four 20 turn trim pots for adjusting the offsets of each of the
analog outputs. It is strongly recommended that the +10 to —10 volt outputs be calibrated using the
Motion Integrator Calibration Wizard.

PACSTD el WACE2] i thitins Rod-Caddvdied & e ok

ippas wihy b Dol o will el & Calibested
Ll e Ard o arvel sl bl nda sovmwinee

T iebieind ChSweil & Cukiul Neds B
Wl DOTY

Cosreo o mestsr iseady 10 conneoon e
whize ol ket

Ehorng comaectoe men =i casta damage
Big pabegiio oo ol e meziey sy

e proceetin Swps | thei Cudasl chia il putpdl
el v e] DR

Ptz

w1 Conarcs sk merien A arees OF

Tepl Susl O Ful by i LD cukgal kel

o] Adiint Gein Posin sl =00 olipan leesl

Sz i Fansanl Dfuwt Pl aea Sy] i conbrus
Hwt + Corend | ke | i | e |

DCX-PCI100 User’'s Manual 125

General Purpose 1/0

The analog outputs can also be calibrated using MCCL command sequences. For a description of
MCCL commands and the WinControl command interface utility please refer to the MCCL section
of the appendix at the end of this user manual. Refer to the module layout diagram in the
Connectors, Jumpers, and Schematics chapter of this user manual. Using the following command
seqguence, and reading the analog output voltage level with a voltmeter, an analog output can be
calibrated to provide the specified -10 to +10 volt range:

ALO,OANn,WA2,AL2048,0An ,WA2,AL4095,0An ,WA2 ,RP

where: n = channel number =1, 2, 3, 4, ...

This command sequence will cycle the specified analog output from the minus limit, to the mid-point,
to the positive limit. There is a 2 second delay at each voltage level, during which the voltmeter can
settle and display the current reading.

The first step in calibrating an analog output is to adjust the gain using the single turn pot to achieve a
20.00 volt "swing". This is the difference between the most positive level reading, and the most
negative level reading. It is not necessary for the two readings to be centered about 0 volts for this
step.

The second step is to adjust the offset using the 20 turn pot. This adjustment will place the mid-point
of analog output at the 0 volt level. When the output changes to the mid- point level turn the pot to
achieve a 0.000 volt reading.

After the second step of the calibration procedure, the output swing should still be 20.00 volts. If not,
repeat steps 1 and 2 again.

126 Precision MicroControl

General Purpose 1/0

DCX-PCI100 User’'s Manual 127

Motion Control API Introduction

Chapter Contents

e [ntroduction

e Motion Control API Function Quick Reference Tables

128 Precision MicroControl

Motion Control API Introduction

The Motion Control Application Programming Interface (MCAPI) implements a powerful set of high
level functions and data structures for programming motion control applications. Although this manual
has been written for the latest version of the MCAPI software, there are still remnants of deprecated
functions. The older functions will still work with this version, however, we recommend that the newer
functions be migrated to when feasible.

The API is backwards compatible, and applications may use the most current version of the MCAPI
for products of varying generations. Care must be taken to note the exceptions of newer features that
older products might not be capable of utilizing, as well as older functions may not be relevant to new
controllers. Please observe the compatibility section in each function.

Function Listing Introduction

An example of a function listing is shown below. What follows the example is a brief description of
what should be found in each of the respective headings.

M CEnableAxis

MCEnableAxis() turns the specified axis on or off.

void MCEnableAxis(

HCTRLR hCtlr, // controller handle

WORD axis, // axis number

short int state // Boolean flag for on/off setting of axis
)
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().

DCX-PCI100 User’'s Manual 129

Motion Control API Function Intreoduction

axis Axis number to turn on or off.

state Flag to indicate if this axis should be turned on or turned off:
Value Description
TRUE Turnon axis.
FALSE Turn off axis.

Returns

This function does not return a value.

Comments

This function does much more than just enable or disable axis. However, as the name implies, the
selected axis(axes) will be turned on or off depending upon the value of state. Note that an axis must
be enabled before any motion will take place. Issuing this command with axis set to MC_ALL_AXES
will enable or disable all axes installed on hCtlr.

state will accept any non-zero value as TRUE, and will work correctly
with most programming languages, including those that define TRUE as
a non-zero value other than one (one is the Windows default value for
TRUE).

If axis is off and then turned on, the following events will occur.

The target and optimal positions are set to the present encoder position.
The offset from MCFindEdge(), MCFindIndex() or MCIndexArm() is applied.
The data passed by MCSetScale(') are applied.
MC_STAT_AMP_ENABLE will be set.

MC_STAT_AMP_FAULT, if present, will be cleared.
MC_STAT_ERROR, if present, will be cleared.
MC_STAT_FOLLOWING, if present, will be cleared.
MC_STAT_MLIM_TRIP, if present, will be cleared.
MC_STAT_MSOFT_TRIP, if present, will be cleared.
MC_STAT_PLIM_TRIP, if present, will be cleared.
MC_STAT_PSOFT_TRIP, if present, will be cleared.

If axis is on and then turned on again, the following events will occur.

The offset from MCFindEdge(), MCFindIndex() or MCindexArm() is applied.
The data passed by MCSetScale() are applied.

not recommended. However, should it be done, axis will cease the

Calling this function to enable or disable an axis while it is in motion is
& current motion profile, and MC_STAT_AT_TARGET will be set.

Compatibility

There are no compatibility issues with this function.

130

Precision MicroControl

Motion Control API Introduction

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableAxis(hCtlr: HCTRLR; axis: Word; state: Smallint); stdcall;
VB: Sub MCEnableAxis (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)
LabVIEW: Execute [T]
Handle In = m Handle Out
Agisin (1) T Fop ~ Axis Out
Enable [T] - —

MCEnablefxis_vi

MCCL Reference
MF, MN

See Also
MCAbort(), MCStop()

Each function definition begins with a brief introductory description that explains what the function is
used for.

Following the description, a grey box contains the C/C++ function prototype. Here each of the
parameters is listed with its type and a short description for a quick overview.

Parameters then further explains in more detail what each of the parameters means. Here a table, if
applicable, will be included listing the allowable values for the preceding parameter. When values are
listed, they will be given as self documenting constants. A complete listing of the self documenting
constants can be found in Appendix B.

Returns describes what the function will return and explains what those values mean. The self
documenting constants will be referenced when possible.

Comments describes the function in even more detail. Explanation will range from why the function is
used, to how it is used, where it could cause problems and potential alternatives.

Occasionally, the following two boxes can be found in the comments section and contain relevant
information that needs to be emphasized. The first box aids in the understanding of the function. The
second box warns of scenarios that will more than likely cause problems.

ﬂ Information to assist the programmer.

& Warning to help the programmer avoid potential problems.

DCX-PCI100 User’'s Manual 131

Motion Control API Function Intreoduction

Compatibility gives information as to which motion control cards or modules will not work with the
function. Generally, only exceptions will be listed, as to provide a more concise listing.

Requirements lists which header files, library, and the MCAPI version that must be used. Obviously,
only the header file which pertains to the development environment must be used. The version of the
MCAPI that is referenced is the earliest version that supports the function, so any version higher that
is used will not cause a problem.

Prototypes lists the function prototypes for Delphi/Pascal, Visual Basic, and LabVIEW. As shown,
each of the parameters are listed with their type. Not all functions will be available in all environments
and will be noted as “Not Supported” when exceptions exist.

MCCL Reference lists the MCCL level commands that comprise the high level function. More
information can be found in the Motion Control Command Language (MCCL) Reference Manual
specific to your controller on how each of these commands works. Not all functions will be comprised
of speaking to the board with MCCL commands, in which cases there will be no equivalent
commands.

See Also lists related functions. Some of these functions may be alternatives to be used, while others
may be the corresponding get function to a set function. Yet there will be other functions that must be
used as in tandem with another function.

132 Precision MicroControl

Motion Control API Introduction

Motion Control APl Function Quick Reference Tables

The following tables show how functions have been classified categorically. Although several
functions could quite logically be listed in multiple categories, each function will appear in only one

chapter, which is noted by the table’s heading. The organization follows closely to prior manuals and
the online help. The grouping of functions in this manner gives a new user of the MCAPI software a
chance to find similar functions in one place. For a handy quick reference printout, please refer to the

MCAPI Quick Reference Card, which can be found on our website (www.pmccorp.com) under

support and then Motion Control API. The quick reference card lists all of the following functions, as

well as the data structures and the constants, in a convenient, alphabetical listing.

Parameter Setup Functions

Function

Description

M CConfigureCompare()

configure high-speed position compare

M CSetAcceleration()

set Acceleration for an axis

M CSetAuxEncPos()

set the position of the auxiliary encoder

M CSetCommutation()

configure commutation

M CSetContour Config()

set contour configuration settings

M CSetDeceleration()

set deceleration for an axis

M CSetDigitalFilter ()

configure digital filter

M CSetFilter ConfigEx()

set the PID filter parameters

M CSetGain() set the proportional gain for aservo axis
M CSetJogConfig() set jogging configuration for axis
M CSetLimits() configure hard and soft limits for an axis

M CSetM odulel nputM ode()

configure stepper module input mode

M CSetM oduleOutputM ode()

define the output type

M CSetM otionConfigEx()

set motion parameters (velocity, accel, step rate, dead band, etc...)

M CSetOper atingM ode()

set the mode of motion (position, velocity, contour, torque)

M CSetPosition()

set the current position of an axis

M CSetProfile() select amotion profile (trapezoidal, s-curve, parabolic)
M CSetRegister () set general purpose user register

M CSetScale() set the scaling factors for an axis

M CSetServoOutputPhase() select normal or reverse phasing for a servo axis
MCSetTorque() set output voltage limit for servo

M CSetVector Velocity() set the vector velocity of acontoured move

M CSetVelocity() set the maximum velocity for aone axis move

I/O Functions

Function

Description

M CConfigureDigitallO()

configure digital 1/0 channels (input, output, high true, low true)

M CEnableDigitall O()

set the state of adigital output channel

M CGetAnalog()

read analog input channel value

M CGetDigital| O()

get the state of adigital input channel

M CGetDigitall OConfig()

get digital 1/0 channel configuration

M CSetAnalog()

set the value of an analog output

M CWaitForDigitallO()

wait for digital 1/0 channel to reach a specific state

Macro’s and Multi-Tasking Functions

Function Description

M CCancelTask() cancel abackground task

MCMacroCall() call aMCCL macro

M CRepeat() inserts arepeat command into a macro or task sequence

DCX-PCI100 User’'s Manual

133

http://www.pmccorp.com/

Motion Control API Function Intreoduction

Motion Functions

Function Description

M CAbort() abort the current motion for an axis

M CArcCenter() sets the center point of an arc

M CArcEndAngle() defines the ending angle of an arc

M CArcRadius() defines the radius of an arc

M CCaptureData() initiate real time capture of position and servo loop data
M CContourDistance() set the path distance for user defined contour motion
MCDirection() set travel direction for velocity mode move

M CEdgeArm() arm edge input for position capture

M CEnableAxis()

turn axis on or off

M CEnableBacklash()

enable backlash compensation

M CEnableCapture()

enable position capture

M CEnableCompare()

enable position compare

M CEnableDigitalFilter ()

enable digital filter

M CEnableGearing()

enable/disable gearing

MCEnableJog ()

enable/disable jogging for axis

M CEnableSync()

enables cubic spline motion, synchronizes contour motion

M CFindAuxEncl dx()

initialize the auxiliary encoder at the location of the index

M CFindEdge()

initialize a stepper motor at the location of the home input

M CFindIndex()

initialize a servo motor at the location of the encoder index input

M CGoEXx() start a velocity mode motion, begin cubic spline motion sequence
M CGoHome() move axis to absolute position 0

M ClndexArm() arms encoder index capture

M CL ear nPoint() store position in point memory

M CM oveAbsolute() move axis to absolute position

M CM oveRelative() move axis to relative position

M CM oveT oPoint() move to position stored in point memory
M CReset() perform a software reset of the controller
M CStop() stop motion

MCWait() wait for avariable time period

M CWaitFor Edge() wait for the home input

M CWaitForIndex()

wait for the index input to go true.

M CWaitFor Position()

wait for axis to reach absolute position

M CWaitFor Relative()

wait for axisto reach relative position

M CWaitFor Stop()

wait for the calculated trajectory to be complete

MCWaitFor Target()

wait for axis to reach target position

MCAPI Driver Functions

Function

Description

M CBIlockBegin()

begin a compound commands (contour motion, macro’s, multi-tasking)

M CBlockEnd()

end a compound commands (contour motion, macro’s, multi-tasking)

MCClosg() close a controller (free handle)

M CGetConfigurationEx() obtain PMC controller hardware configuration
MCGetVersion() get the version of the DLL and device driver

M COpen() open acontroller (get handle)

M CReopen() re-opens existing controller handle for anew mode

M CSetTimeoutEx()

set atimeout value for controller

134

Precision MicroControl

Motion Control API Introduction

Reporting Functions

Function

Description

M CDecodeStatus()

axis status word decoding

M CErrorNotify()

enables/disables error messages for application window

M CGetAccelerationEx()

get current programmed acceleration for axis

M CGetAuxEncl dXEx()

get last observed position of auxiliary encoder index pulse

M CGetAuxEncPosEx() get current position of auxiliary encoder

M CGetAxisConfiguration() get the axis type, location, and capabilities

M CGetBreakpointEx() get the most recent breakpoint position

M CGetCaptureData() retrieve captured axis data (current position, optimal position, error)

M CGetContour Config()

get contour configuration settings

M CGetContouringCount()

get current contour count

M CGetCount()

get count parameter of various modes

M CGetDecelerationEx()

get current programmed decel eration for axis

M CGetDigitalFilter ()

get digital filter settings

MCGetError()

returns the most recent controller error

M CGetFilter ConfigEx()

get the PID parameters

M CGetFollowingError()

get the current programmed following error

M CGetGain()

get the current proportional gain setting for an axis

M CGetl ndexEx()

get the last observed position of the primary encoder index pulse

M CGetlnstalledM odules()

Enumerates the type of DCX modules

M CGetJogConfig()

get jogging configuration for axis

M CGetLimits()

get current hard and soft limit settings

M CGetM odulel nputM ode()

get the current input mode for a stepper module

M CGetM otionConfigEx()

get motion configuration

M CGetOperatingM ode()

get the current operating mode for a motor module

M CGetOptimalEx()

get the current optimal position of an axis

M CGetPositionEx()

get the current position of an axis

M CGetProfile()

get the current profile type (trapezoidal, s-curve, parabolic)

M CGetRegister () get the contents of a general purpose register
MCGetScale() get the current programmed scaling factors for an axis
M CGetServoOutputPhase() get the output phase (normal or reversed) of a servo

M CGetStatus() get the axis status word

MCGetTargetEx() get the current target of an axis

M CGetTorque() get the current torque setting of an axis

M CGetVector Velocity() get the current programmed vector velocity of an axis
M CGetVelocityEx() get the current programmed vel ocity of an axis

MCIsAtTarget()

isaxis at target position?

M ClsDigitalFilter ()

isdigital filter enabled?

M ClsEdgeFound()

has edge input gone true?

M ClslndexFound()

hasindex pulse been found?

M Cl sStopped()

is axis stopped?

MCTransateErrorEx()

translate numeric error code to text message

OEM Low Level Functions

Function Description

pmeemd() send a binary command

pmcecmdex() send a binary command

pmcgetc() get ASCII character from controller
pmcgetram() read directly from controller memory
pmcgets() get ASCII string from controller
pmcputc() write ASCII character to controller
pmcputram() write directly to controller memory
pmcputs() write ASCII string to controller
pmcerdy() is the controller ready to accept a binary command
pmcrpy() read binary reply from controller
pmcrpyex() read binary reply from controller

DCX-PCI100 User’'s Manual

135

Motion Control API Function Intreoduction

Motion Dialog Functions

Function

Description

MCDLG_AboutBox()

display a simple About dialog box

MCDLG_CommandFileExt()

get thefile extension for MCCL command files

MCDLG_ConfigureAxis()

display a servo or stepper axis setup dialog

MCDL G_Controller DescEx()

get a descriptive string for a motion controller type

MCDLG_Controllerinfo()

get configuration information about a motion controller

MCDL G_DownloadFile()

download an ASCII command file to a motion controller

MCDLG_|nitialize()

must be called before any other MCDL G functions or classes

MCDLG_ListControllers()

get the types of motion controllersinstalled

MCDLG_M oduleDescEx()

get a descriptive string for amodule

MCDLG_RestoreAxis()

restore the settings of an axis to apreviously saved state

MCDL G_RestoreDigitallO()

restores the settings of digital I/0 channels to previously saved states

MCDLG_SaveAxis()

save the settings of an axisto an initialization file for later use

MCDLG_SaveDigitall O()

save the settings of digital 1/0 channelsto aninitidization file

MCDLG_Scaling()

display a scaling setup dialog and allow changes to scaling parameters.

MCDLG_SelectController()

display alist of installed controllers and allow selection of a controller

136

Precision MicroControl

Motion Control API Introduction

DCX-PCI100 User’'s Manual 137

MCAPI Data Structurex

Chapter Contents

138 Precision MicroControl

Data Structures

The following data structures allow the programmer to pass data to and from the controller in asimple and efficient
manner. Structures are the only way, short of using MCCL, to set and get certain parameters to and from the motion control
card. Functionslisted in the "see also" section rely on these data structures. The chapters on Parameter Setup Functions
and Reporting Functions contain the majority of the functions that require these structures.

MCAXISCONFIG

M CAXISCONFIG structure provides basic information about the type and configuration of a single motor axis.

typedef struct {
long int cbSize;
long int ModuleType;
long int ModulelLocation;
long int MotorType;
long int CaptureModes;
long int CapturePoints;
long int CaptureAndCompare;
double HighRate;
double MediumRate;
double LowRate;
double HighStepMin;
double HighStepMax;
double MediumStepMin;
double MediumStepMax;
double LowStepMin;
double LowStepMax;

} MCAXISCONFIG;

Members
cbSize Size of the MCAXISCONFIG data structure, in bytes.
ModuleType Array of OEM axis type specifiers, one per axis:

DCX-PCI100 User’'s Manual 139

MCAPI Data Structurex

Value Description

MC100 Identifies a DC Servo axis with analog signal
output.

MC110 Identifies a DC Servo axis with motor output.

MC150 Identifies a stepper motor axis.

MC160 Identifies a stepper motor with encoder axis.

MC200 Identifies an Advanced Servo axis with analog
signal output.

MC210 Identifies an Advanced Servo axis with PWM motor
output.

MC260 Identifies an Advanced Stepper axis.

MC300 Identifies a DSP-Based Servo axis with analog
signal output.

MC302 Identifies a DSP-Based Dual Servo axes with dual
analog signal outputs.

MC320 Identifies a DSP-Based Brushless AC Servo axis
with dual analog signal outputs.

MC360 Identifies a DSP-Based Stepper axis.

MC362 Identifies a DSP-Based Dual Stepper axes.

MF300 Identifies this axis as an RS-232 communications
module. This module is not normally used with a
controller installed in a PC adapter slot.

MF310 Identifies this axis as an IEEE-488 (GPIB)
communications module. This module is not
normally used with a controller installed in a PC
adapter slot.

MC400 Identifies this axis as providing additional digital 1/O
channels (16).

MC500 Identifies this axis as providing additional analog
channels.

DC2SERVO Identifies the dedicated servo output of a DC2
controller.

DC2STEPPER Identifies the optional stepper output of a DC2

controller.

MotorType Provides a simplified type identifier for the motor type (bit flags):
Value Description
MC_TYPE_SERVO AXis is a servo motor.
MC_TYPE_STEPPER Axis is a stepper motor.
CaptureModes Supported data capture modes for this axis (bit flags). One or more of the
following values may be OR'ed together:
Value Description
140 Precision MicroControl

MCAPI Data Structures

Value Description
MC_CAPTURE_ACTUAL AXis can capture actual position data.
MC_CAPTURE_ERROR AXis can capture error position data.
MC_CAPTURE_OPTIMAL AXxis can capture optimal position data.
MCCAPTURE_TORQUE AXxis can capture torque data.
CapturePoints Maximum number of data points that may be captured.

CaptureAndCompare High speed position capture and compare:

Value Description
TRUE Feature is supported.
FALSE Feature isn't supported.
HighRate Servo update period, in seconds, for High Speed mode (valid only for servo
modules).
MediumRate Servo update period, in seconds, for Medium Speed mode (valid only for servo
modules).
LowRate Servo update period, in seconds, for Low Speed mode (valid only for servo
modules).
HighStepMin Minimum step rate for High Speed mode (valid only for stepper modules).
HighStepMax Maximum step rate for High Speed mode (valid only for stepper modules).
MediumStepMin Minimum step rate for Medium Speed mode (valid only for stepper modules).
MediumStepMax Maximum step rate for Medium Speed mode (valid only for stepper modules).
LowStepMin Minimum step rate for Low Speed mode (valid only for stepper modules).
LowStepMax Maximum step rate for Low Speed mode (valid only for stepper modules).

Comments
Unlike the other MCAPI structures, the values in this structure are fixed by the hardware configuration and may not be
changed.

Before you call M CGetAxisConfiguration() you must set the cbSize member to the size of this data structure. C/C++
programmers may use sizeof() , Visual Basic and Delphi programmers will find current sizes for these data structures in
the appropriate MCAPI. XXX header file.

Visual Basic users please note that the value used for TRUE in the M CAXISCONFIG structure is the Windows standard
of 1, not the Basic value of -1. Direct comparisons, such as.

IT (Param.CanDoScaling = True) Then
will fail. To get correct results use the constant WinTrue, declared in the MCAPI.BAS includefile:

IT (Param.CanDoScaling = WinTrue) Then

Compatibility

There are no compatibility issues with this data structure.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.0 or higher

DCX-PCI100 User’'s Manual 141

MCAPI Data Structurex

See Also
M CGetAxisConfiguration()

MCCOMMUTATION

MCCOMMUTATION commutation parameters for an axis.

typedef struct {
long int cbSize;
double PhaseA;
double PhaseB;
long int Divisor;
long int PreScale;
long Int Repeat;

} MCCOMMUTATION;

Members

cbSize Size of the MCCOMMUTATION data structure, in bytes.
PhaseA Phase A setting, in degrees.

PhaseB Phase B setting, in degrees.

Divisor Commutation divisor.

PreScale Commutation prescale factor.

Repeat Commutation repeat count.

Comments

Setting Divisor, PreScale, or Repeat to negative one (-1) will cause M CSetCommutation() to skip setting that value.

Compatibility

The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, and DCX-AT200 controllers do not support amodule which is
capable of onboard commutation. The MC300, MC302, MC360, and the MC362 modules do not support onboard
commutation.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.2 or higher

See Also
M CSetCommutation()

MCCONTOUR

MCCONTOUR structure contains contouring parameters for an axis.

142 Precision MicroControl

MCAPI Data Structures

typedef struct {
double VectorAccel;
double VectorDecel;
double VectorVelocity;
double VelocityOverride;
} MCCONTOUR;

Members

VectorAccel Acceleration value for motion along a contour path.

VectorDecel Deceleration value for motion along a contour path.

VectorVelocity Maximum velocity for motion along a contour path.

VelocityOverride Proportional scaling factor for vector velocity, may be changed while axes are in
motion.

Comments

The vector velocity parameter must be set prior to starting a contour path motion and can not be changed once the motion
has begun. To change velocity on the fly, set the velocity override to a value other than 1.0. Thisvalueis used to
proportionally scale the velocities.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
M CGetContour Config(), M CSetContour Config()

MCFILTEREX

MCFILTEREX structure contains the PID filter parameters for a servo axis, or the closed-loop parameters for a stepper
axis operating in closed-loop mode. Please see the online MCAPI Reference for the MCFIL TER structure.

DCX-PCI100 User’'s Manual 143

MCAPI Data Structurex

typedef struct {

long int cbSize;

double Gain;

double IntegralGain;
double IntegrationLimit;
long int IntegralOption;
double DerivativeGain;
double DerSamplePeriod;
double FollowingError;
double VelocityGain;
double AccelGain;

double DecelGain;

double EncoderScaling;
long UpdateRate;

} MCFILTEREX;

Members

cbSize

Gain
IntegralGain
IntegrationLimit

IntegralOption

DerivativeGain
DerSamplePeriod
FollowingError

Size of the MCFILTEREX data structure, in bytes.

Proportional Gain setting of the PID loop.

Gain setting for the integral term of the PID loop.

Limit value for the integral term, limits the power the integral gain can use to
reduce error to zero.

Operating mode for the integral term of the PID loop:

Value

Description

MC_INT_NORMAL

Selects the normal (always on) operation of the integral term.

MC_INT_FREEZE

Freeze theintegral term while moving, re-enable after move
iscomplete.

MC_INT_ZERO

Zero and freeze the integral term while moving, re-enable
after move is complete.

Gain setting for the derivative term of the PID loop.
Time interval, in seconds, between derivative samples.
Maximum position error, default units are encoder counts.

VelocityGain Gain setting for the feed-forward gain of the PID loop, volts per encoder count
per second.

AccelGain Feed-forward acceleration gain setting.

DecelGain Feed-forward deceleration gain setting.

EncoderScaling Encoder counts per step scaling factor for closed-loop steppers (ignored for
Servos).

UpdateRate This parameter is used to set the feedback loop rate for servo motors and
closed-loop steppers, or the maximum stepper pulse rate for open-loop stepper
motor axes:

Value Description

MC_RATE UNKNOWN Returned if MCAPI cannot determine the current rate.

MC _RATE LOW Selects the normal (always on) operation of the integral term.

MC _RATE _MEDIUM Freeze the integral term while moving, re-enable after move
is complete.

MC _RATE HIGH Zero and freeze the integral term while moving, re-enable
after move is complete.

144 Precision MicroControl

MCAPI Data Structures

Comments
The servo tuning utility program offers a convenient, interactive format for determining appropriate filter settings for your
servo/amplifier or closed-loop stepper.

When used with the DCX-PC100 and MC2xx series modules it is not always possible to read the UpdateRate parameter
from the motion controller (requires recent firmware). If the MCAPI cannot read back this parameter it will return the value
MC_RATE_UNKNOWN. If UpdateRateisset to MC_RATE_UNKNOWN and acall is made to

M CSetM otionConfigEx() the controller's UpdateRate value will not be changed.

Compatibility

VelocityGain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-loop steppers.
AccelGain is not supported on the DC2, DCX-PC100, or DCX-PCI100 controllers. DecelGain is not supported on the
DC2, DCX-PC100, or DCX-PCI100 controllers. Encoder Scaling is not supported on servos. UpdateRate is not supported
on the DC2 or DCX-PCI100 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.2 or higher

See Also
M CGetFilter ConfigEx(), M CSetFilter ConfigEx()

MCJOG

M CJOG structure defines jog parameters for an axis.

typedef struct {
double Acceleration;
double MinVelocity;
double Deadband;
double Gain;
double Offset;

} MCJOG;

Members

Acceleration Acceleration rate for use with jogging.

MinVelocity Stepper motor jog minimum velocity (this parameter has no effect for servo
motors).

Deadband Deadband specifies a threshold value about the center position of the joystick
below which motion of the joystick will not effect motor position. This prevents
undesirable drifting of the motor due to mechanical and electrical variations in
the joystick.

Gain Gain value for jogging. This parameter is effectively multiplied by the current
joystick position to produce a velocity. To increase the maximum velocity, set
Gain to a larger value. To reverse the direction of motor travel with respect to
joystick direction Gain may be set to a negative value.

Offset Specifies the center position of the joystick, in volts.

DCX-PCI100 User’'s Manual 145

MCAPI Data Structurex

Comments
Thejog settings determine the performance of an axis when the jogging inputs are active and jogging has been enabled.

Compatibility
The DCX-PCI controllers, DC2 stepper axes, MC150, and MC160 modules do not support jogging.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
M CEnablelog(), MCGetJogConfig(), MCSetJogConfig()

MCMOTIONEX

MCMOTIONEX structure defines basic motion parameters for an axis.

typedef struct {
int cbSize;
double Acceleration;
double Deceleration;
double Velocity;
double MinVelocity;
short iInt Direction;
double Torque;
double Deadband;
double DeadbandDelay;
short int StepSize;
short int Current;
WORD HardLimitMode;
WORD SoftLimitMode;
double SoftLimitLow;
double SoftLimitHigh;
short int EnableAmpFault;

} MCMOTIONEX;

Members

cbhSize Size of the MCMOTIONEX data structure, in bytes.

Acceleration Acceleration rate for motion.

Deceleration Deceleration rate for motion.

Velocity Velocity for motion.

MinVelocity Stepper motor minimum velocity (this parameter has no effect for servo
motors).

Direction Sets the direction of travel for velocity mode operation. Note that the

interpretation of positive and negative will depend upon your hardware
configuration:

146 Precision MicroControl

MCAPI Data Structures

Value

Description

MC_DIR_POSITIVE

Selects the positive travel direction.

MC_DIR_NEGATIVE

Selects the negative travel direction.

Torque

Deadband
DeadbandDelay

StepSize

Sets the maximum output torque level for servos. When a servo is operated in
torgue mode this value represents the continuous output level. The default
output units are volts, but this may be scaled using the Constant member of
the MCSCALE structure.

Sets the position dead band value.

Time limit that an axis must remain within the dead band area to qualify as "in
range". If this value cannot be read back from the controller the Motion Control
API function MCGetMotionConfigEx() will set this value to -1.
MCSetMotionConfigEx() ignores this parameter if the value is equal to -1.

Sets the step size output for stepper motor operation:

Value

Description

MC_STEP_FULL

Selects full step operation.

MC_STEP _HALF

Selects half step operation.

Current

Selects full or reduced current operation for stepper motors. Reduced current is
typically used with stepper motors when they are stopped in a single position
for an extended time to reduce motor heating.

Value

Description

MC_CURRENT_FULL

Selects full current (normal) operation.

MCCURRENT_HALF

Selects half current (idle) operation.

HardLimitMode

Enables hard (physical) limit switches and selects stopping mode. One or more
of the following values may be OR'ed together:

Value

Description

MC_LIMIT_LOW

Enables lower limit.

MC_LIMIT_HIGH

Enables upper limit.

MC_LIMIT_ABRUPT

Selects abrupt stopping mode when a limit is encountered.

MCLIMIT_SMOOTH

Selects smooth stopping mode when a limit is encountered.

MCLIMIT_INVERT

Inverts the polarity of the hardware limit switch inputs. This
value may not be used with soft limits.

SoftLimitMode

SoftLimitLow
SoftLimitHigh
EnableAmpFault

Enables soft (software) limit switches and selects stopping mode. See the
description of HardLimitMode for details.

Sets "position” of low soft limit.

Sets "position" of high soft limit.

Controls the amplifier fault input for servo motor axes:

DCX-PCI100 User’'s Manual

147

MCAPI Data Structurex

Value Description
TRUE Enables amplifier fault input.
FALSE Disables amplifier fault input.

Comments
All of the basic motion parameters are stored in the MCM OTIONEX structure. Many of these parameters also have their
own Get/Set functions, to permit setting on the fly.

Compatibility

Acceleration is not supported on the DC2 stepper axes. Deceleration is not supported on the DCX-PCI 100 controller, DC2
stepper axes, MC100, MC110, MC150, or MC160 modules. MinVelacity is not supported on the DCX-PCI100, DCX-
PC100, or DC2 controllers. Torqueis not supported on the DCX-PCI 100 controller, MC100, or MC110 modules.
Deadband is not supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360, and
MC362 modules. DeadbandDelay is not supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160,
MC260, MC360 or MC362 modules. StepSize is not supported on the DC2 or DCX-PCI100 controllers. Current is not
supported on the DC2 or DCX-PCI 100 controllers. SoftLimitMode is not supported on the DC2 or DCX-PC100
controllers. SoftLimitL ow is not supported on the DC2 or DCX-PC100 controllers. SoftLimitHigh is not supported on the
DC2 or DCX-PC100 controllers. EnableAmpFault is not supported on the DC2 controllers.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
M CGetM otionConfigEXx(), M CSetM otionConfigEXx()

MCPARAMEX

MCPARAMEX structure provides basic information about the type and configuration of a controller, including the
number of axes and modules supported.

148 Precision MicroControl

MCAPI Data Structures

typedef struct {
int cbSize;
int ID;
int ControllerType;
int NumberAxes;
int MaximumAXxes;
int MaximumModules;
int Precision;
int DigitallO
int Analoglnput;
int AnalogOutput;
int PointStorage;
int CanDoScaling;
int CanDoContouring;
int CanChangeProfile;
int CanChangeRates;
int SoftLimits;
int MultiTasking;
int AmpFault;

} MCPARAMEX;

Members
chSize Size of the MCPARAMEX data structure, in bytes.
ID ID number given this controller during driver setup, permits easy translation of a
controller handle back to an ID.
ControllerType OEM controller type identifier. It can be one of the following values:
Value Description
DCXPC100 DCX series PC100 controller.
DCXAT100 DCX series AT100 controller.
DCXATZ200 DCX series AT200 controller.
DC2PC100 DC2 series controller.
DC2STN DC2 stand-alone series controller.
DCXAT300 DCX series AT300 controller.
DCXPCI300 DCX series PCI300 controller.
DCXPCI100 DCX series PCI100 controller.
NumberAxes Number of axes this controller is currently configured for.
MaximumAXxes Maximum number of axes this controller supports.
MaximumModules Maximum number of modules this controller supports.
Precision Best numerical precision of controller:
Value Description
MC_TYPE_LONG 32 hit integer precision.
MC_TYPE_DOUBLE 64 bit floating point precision.
DigitallO Contains the number of digital IO channels installed.
Analoglnput The number of installed analog input channels.
AnalogOutput The number of analog output channels.
PointStorage Number of learned points that may be stored using MCLearnPoint()

DCX-PCI100 User’'s Manual

149

MCAPI Data Structurex

CanDoScaling

Controller support for scaling (see MCSCALE structure) flag:

Value

Description

TRUE

Scaling is supported.

FALSE

Scaling isn't supported.

CanDoContouring Controller support for contouring (see MCCONTOUR structure) flag:

Value

Description

TRUE

Contouring is supported.

FALSE

Contouring not supported.

CanChangeProfile Controller can change acceleration/deceleration profile::

Value

Description

TRUE

Profile change is supported.

FALSE

Profile change not supported.

CanChangeRates Controller support for selectable rates (see MCFILTEREX structure) flag:

Value Description

TRUE UpdateRate changing is supported.

FALSE UpdateRate changing isn’t supported.
SoftLimits Controller supports soft limits (see MCMOTIONEX structure) flag:

Value Description

TRUE Soft Limits are supported.

FALSE Soft Limits are not supported.
MultiTasking Controller supports multitasking flag:

Value Description

TRUE Multitasking is supported.

FALSE Multitasking is not supported.
AmpFault Controller supports amplifier fault flag:

Value Description

TRUE Amplifier fault input is supported.

FALSE Amplifier fault input is not supported.
Comments

Unlike the other MCAPI structures, the values in this structure are fixed by the hardware configuration and may not be
changed. The axis type information that existed in the old MCPARAM structure may now be found in the

MCAXISCONFIG structure.

150

Precision MicroControl

MCAPI Data Structures

Before you call M CGetConfigurationEx() you must set the cbSize member to the size of this data structure. C/C++
programmers may use sizeof(), Visual Basic and Delphi programmerswill find current sizes for these data structuresin the
appropriate MCAPI. XXX header file.

Visual Basic users please note that the value used for TRUE in the M CPARAMEX structure is the Windows standard of 1,
not the Basic value of -1. Direct comparisons, such as.

IT (Param.CanDoScaling = True) Then
will fail. To get correct results use the constant WinTrue, declared in the MCAPI.BAS include file:

IT (Param.CanDoScaling = WinTrue) Then

Compatibility

There are no compatibility issues with this data structure.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 3.0 or higher

See Also
M CGetConfigurationEx()

MCSCALE

MCSCAL E structure defines basic scaling parameters for an axis.

typedef struct {
double Constant;
double Offset;
double Rate;
double Scale;
double Zero;
double Time;

} MCSCALE;

Members

Constant This factor acts as a scale factor for servo analog outputs. By calibrating your
motor/amplifier combination, it is possible to scale the output with Constant so
that torque settings may be specified directly in ft-Ibs.

Offset This offset represents an offset from a servo encoder’ index pulse to a zero
position.

Rate This factor acts as a multiplier for motion commands time values. The base
controller time unit is the second, to convert this to minutes set Rate to 60.0, to
convert to milliseconds rate should be set to 0.001.

Scale This scaling factor is applied to motion parameters to convert from encoder
counts to real world units.

Zero Specifies that a soft zero should be located this distance from actual zero. By

moving the soft zero around it is possible to have a series of position

DCX-PCI100 User’'s Manual 151

MCAPI Data Structurex

commands repeated at various spots in the range of travel without modifying
the position commands. The actual zero position is not changed by this
command.

Time This is the time factor for controller level wait commands. See the discussion of
the Rate parameter above for more information on setting this value. Note that
a single Time value is maintained per controller (i.e. Time is axis independent).

Comments
The scale factors provide a consistent, easy method of relating motion values to the actual physical system being controlled.

Compatibility
The DC2, and the DCX-PC100 do not support any of the aforementioned members. The DCX-PCI100 does not support
Offset or Constant.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Version: MCAPI 1.0 or higher

See Also
M CGetScale(), MCSetScale()

152 Precision MicroControl

MCAPI Data Structures

DCX-PCI100 User’'s Manual 153

MCAPI Parameter Setup Functions

Chapter Contents

154 Precision MicroControl

MCAPI Parameter Setup Functions

Parameter setup functions allow the program to consistently configure the motion control card and individual modules to
behave in an appropriate manner for a given application. Although tragjectory parameters, PID loop gains, and end of travel
limits should be set prior to commanding motion, these and other parameters may be changed during a move. However,
certain parameters once passed to the card will not alter behavior until M CEnableAxis() is called, which alows the
specific axis to then implement several queued parameters at oncein alogical and safe fashion. For first time setup, a

development tool like Motion I ntegrator should be used to determine the proper tuning parameters that can be passed by
the functions in this chapter.

To see examples of how the functionsin this chapter are used, please refer to the online Motion Control APl Reference.

MCConfigureCompare

M CConfigureCompar e() configures an axis for high-speed position compare mode operation.

long int MCConfigureCompare(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* values, // array of compare points
long int num, // number of points in values array
double inc, // increment between equally paced points
long int mode, // output signal mode
double period // output period for one shot mode
// (seconds)
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure.
values Array of compare position values.
num Number of compare values.
inc Increment between successive compare positions when in evenly-spaced mode

(see Comments, below).

DCX-PCI100 User’'s Manual 155

MCAPI Parameter Setup Functions

mode Specifies how the controller is to signal that a compare position has been seen:

Value Description

MC_COMPARE_DISABLE Disables the output.

MC_COMPARE_INVERT Inverts active level of the output — may be OR'ed together
with any of the other settings for mode.

MC_COMPARE_ONESHOT Configures the output for one-shot operation. The value for
period will be used for the period of the one-shot.

MC_COMPARE_STATIC Configures the output for static mode (see the controller
documentation for details).

MC_COMPARE_TOGGLE Configures the output to toggle between the active and
inactive states each time a compare value is reached.

Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

Points for M CConfigureCompare() may be entered in one of two ways. Discrete points, up to the number allowed by the
module (typically 512) may be stored in the array values and passed to the controller. If the compare points are equally
spaced store the beginning point in the first location of values, set numto one, and set inc to the per point increment. Note
that incisignored if it is set equal to or lessthan zero, or if numis set to avalue other than one.

The high-speed compare function signals avalid compare by way of a hardware output signal from the motor module. Use
the mode flag to configure the operation of this hardware outpuit.

Compatibility
The DC2, DCX-PC100, DCX-AT200, and DCX-PCI100 controllers do not support high-speed position compare.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.1 or higher

Prototypes

Delphi: function MCConfigureCompare(hCtir: HCTRLR; axis: Word; values: Array of Double; num: Longint; inc: Double; mode:
Longlnt; period: Double): Longlnt; stdcall;

VB: Function MCConfigureCompare(ByVal hCtrlr As Integer, ByVal axis As Integer, values As Double, ByVal num As Long,

ByVal inc As Double, ByVal mode As Long, ByVal period As Double) As Long
LabVIEW: Not Supported

MCCL Reference
LC, NC, OC, OP

See Also
M CEnableCompare(), MCGetCount()

156 Precision MicroControl

MCAPI Parameter Setup Functions

MCSetAcceleration

MCSetAcceleration() sets programmed acceleration value for the selected axisto rate, where rate is specified in the
current units for axis.

void MCSetAcceleration(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double rate // new acceleration rate
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change acceleration value of.
rate New acceleration rate.
Returns

Thisfunction does not return avalue.

Comments
The acceleration value for a particular axis may also be set using the M CSetM otionConfigEx() function;
M CSetAcceleration() provides a short-hand method for setting just the acceleration value.

Compatibility
The DC2 stepper axes do not support ramping.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Pr ototypes

Delphi: procedure MCSetAcceleration(hCtir: HCTRLR; axis: Word; rate: Double); stdcall;

VB: Sub MCSetAcceleration Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal rate As Double)
LabVIEW: Execute [T) -«

Handle In — Handle Out
Axiz In (1] T =7 L Axis Out

Acceleration [0.0) — —=

MCS5etAcceleration. vi

MCCL Reference
SA

See Also
M CGetAccelerationEx(), M CSetM otionConfigEx()

DCX-PCI100 User’'s Manual 157

MCAPI Parameter Setup Functions

MCSetAuxEncPos

M CSetAuxEncPos() sets the current position of the auxiliary encoder.

void MCSetAuxEncPos(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double position // new position
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number of auxiliary encoder to set.
position New encoder position.
Returns

This function does not return a value.

Comments
This command sets the current position of the auxiliary encoder to the value given by the position argument. A value of
MC_ALL_AXES may be specified for axis to set the auxiliary encodersfor al axesinstalled on a controller.

DCX-AT200 firmware version 3.5a or higher, or DCX-PC100 firmware version 4.9a or
higher isrequired if you wish to set the position of the auxiliary encoder to a value other
than zero. Earlier firmware versionsignore the value in the Position argument and zero
the Auxiliary Encoder.

Compatibility

The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support auxiliary encoders.
Closed-loop steppers do not support auxiliary encoder functions, since the connected encoder is considered a primary
encoder.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes

Delphi: procedure MCSetAuxEncPos(hCtlr; HCTRLR; axis: Word; position: Double); stdcall;

VB: Sub MCSetAuxEncPos Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabV|EW Execute [T]

Handle In —— -IE. m Handle Out
AxizIn [1] 7 ﬁ L Axiz Out
Mew Position [0.0) —

MCSetAuxEncPos. v

MCCL Reference
AH

See Also
M CGetAuxEncPosEXx()

158 Precision MicroControl

MCAPI Parameter Setup Functions

MCSetCommutation

M CSetCommutation() sets the commutation settings for the MC320 module.

long int MCSetCommutation(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCCOMMUTATION* pCommutation // pointer to commutation structure
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to which commutation parameters are to be set.
pCommutation Points to an MCCOMMUTATION structure that contains commutation settings
for axis.
Returns

M CSetCommutation() returns the value MCERR_NOERROR if the function completed without errors. If there was an
error, one of the MCERR_xxxx error codesis returned.

Comments

See the section on commutation in your DCX-300 Series User’s Guide for details on how to set use the commutation
features of the MC320 module.

Compatibility

The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, and DCX-AT200 controllers do not support a module which is
capable of onboard commutation. The MC300, MC302, MC360, and the MC362 modules do not support onboard
commutation.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.2 or higher

Prototypes

Delphi: function MCSetCommutation(hCtlr; HCTRLR; axis: Word; var pCommutation: MCCOMMUTATION): Longlnt; stdcall;

VB: Function MCSetCommutation(ByVal hCtrlr As Integer, ByVal axis As Integer, Commutation As MCCommutation) As
Long

LabVIEW: Not Supported

MCCL Reference
LA, LB, LD, LE, LR

See Also
MCCOMMUTATION structure definition

DCX-PCI100 User’'s Manual 159

MCAPI Parameter Setup Functions

MCSetContourConfig

M CSetContour Config() sets contouring configuration for the specified axis.

short int MCConfigureDigitallO(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCCONTOUR* pContour // address of contouring configuration
// structure
):
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set contouring configuration for.
pContour Points to an MCCONTOUR structure that contains contouring configuration
information for axis.
Returns

Thereturn value is TRUE if the function is successful. A return value of FALSE indicates the function did not find the axis
specified (hCtlr or axisincorrect).

Comments
Contouring configuration data should be setup prior to executing any contour motion. The field CanDoContouring in the
MCPARAMEX structure will be set to TRUE, if the controller can process contour configuration data.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCSetContourConfig(hCtlr: HCTRLR; axis: Word; var pContour: MCCONTOUR): Smallint; stdcall;
VB: Function MCConfigureDigitallO(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal mode As Integer) As Integer

LabVIEW: Not Supported

MCCL Reference
VA, VD, VO, WV

See Also
M CGetContour Config(), MCCONTOUR structure definition

160 Precision MicroControl

MCAPI Parameter Setup Functions

MCSetDeceleration

M CSetDeceleration() sets programmed decel eration value for the selected axisto rate, whererate is specified in the
current units for axis.

void MCSetDeceleration(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double rate // new deceleration rate
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change acceleration value of.
rate New deceleration rate.
Returns

This function does not return a value.

Comments

The deceleration value for a particular axis may also be set using the M CSetM ationConfigEx() function;

M CSetDeceleration() provides a short-hand method for setting just the deceleration value. A value of MC_ALL_AXES
may be specified for axis to set the deceleration for all axes installed on a controller.

Compatibility
The DCX-PCI100 controller, MC100, MC110, MC150, and MC160 modules do not support a separate deceleration value.
Instead, the acceleration value will also be used as the deceleration value. The DC2 stepper axes do not support ramping.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Proto types

Delphi: procedure MCSetDeceleration(hCtlr; HCTRLR; axis: Word; rate: Double); stdcall;

VB: Sub MCSetDeceleration(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal rate As Double)
LabVIEW: Execute [T] -

Handle In - Handle Dut
Axis In (1) 7= - Axis Out
Deceleration [0.0] — —=

MCS5etDeceleration. vi

MCCL Reference
DS

See Also
M CGetDecelerationEx() , MCSetM otionConfigEXx()

DCX-PCI100 User’'s Manual 161

MCAPI Parameter Setup Functions

MCSetDigitalFilter

MCSetDigitalFilter () setsthe digital filter coefficients for the specified axis.

long int MCSetDigitalFilter(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pCoeff, // array of digital filter coefficients
long Int num // number of coefficients
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis AXis number.
pCoeff Array of coefficients, must be num elements long (or longer). If the pointer is

NULL the filter will be zeroed (overwriting any previous settings) but no new
filter values will be stored.

num Number of coefficients to retrieve, cannot be larger than the maximum digital
filter size supported by the controller.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

This sets zero or more of the digital filter coefficients for the specified axis. The number of coefficients cannot exceed the
maximum value supported by the axis, as reported by M CGetCount(). Calling M CSetDigitalFilter () overwrites any
filter values previously downloaded to this axis.

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100 controllers, MC360, and MC362 modules do not support digital
filtering.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.1 or higher

Prototypes

Delphi: function MCSetDigitalFilter(hCtlr: HCTRLR; axis: Word; pCoeff: Array of Double; num: Longint):Longint; stdcall;

VB: Function MCSetDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer, coeff As Double, ByVal num As Integer) As
Long

LabVIEW: Not Supported

MCCL Reference
FL, ZF

See Also
M CEnableDigitalFilter () , MCGetCount(), M CGetDigitalFilter (), MCl sDigitalFilter ()

162 Precision MicroControl

MCAPI Parameter Setup Functions

MCSetFilterConfigEx

M CSetFilter ConfigEx() configures the PID loop settings for a servo motor or the closed-loop settings for a stepper motor
operating in closed-loop mode. Please see the online MCAPI Reference for the M CSetFilter Config() prototype.

long int MCSetFilterConfigEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCFILTEREX* pFilter // pointer to PID filter structure
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number from which to retrieve PID information.
pFilter Points to a MCFILTEREX structure that contains PID filter configuration
information for axis.
Returns

M CSetFilter Configex() returns the value MCERR_NOERROR if the function completed without errors. If there was an
error, one of the MCERR_xxxx error codesis returned.

Comments

The easiest way to change filter settingsisto first call M CGetFilter ConfigEx() to obtain the current PID filter settings for
axis, modify the valuesin the MCFIL TEREX structure, and write the changed settings back to axis with

M CSetFilter ConfigEx().

Closed-loop stepper operation requires firmware version 2.1a or higher on the DCX-PCI300 and firmware version 2.5a or
higher on the DCX-AT300.

Compatibility

Ve ocityGain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-loop steppers.
AccelGain is not supported on the DC2, DCX-PC100, or DCX-PCI 100 controllers. DecelGain is not supported on the
DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCSetFilterConfigEx(hCtlr: HCTRLR; axis: Word; var pFilter: MCFILTEREX): Smallint; stdcall;
VB: Function MCSetFilterConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, filter As MCFilterEx) As Integer
LabVIEW: Execute [T]
Handle In Handle Out
Axig In [1] - I%I L Axiz Out
Filter —_—

MC5etFilterConfig.vi

DCX-PCI100 User’'s Manual 163

MCAPI Parameter Setup Functions

MCCL Reference
AG, DG, FR, IL, SD, SE, SI, VG

See Also
M CGetFilter ConfigEx(), MCFILTEREX structure definition

MCSetGain

M CSetGain() setsthe proportional gain of aservo's feedback loop.

long Int MCSetGain(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double gain // new gain setting
)
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change gain of.
gain New proportional gain.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments
The gain value for a particular axis may also be set using the M CSetM otionConfigEx() function; M CSetGain() provides
a short-hand method for setting just the gain value and for updating gain settings on the fly when operating in gain mode.

Compatibility
The MCAPI does not support closed-loop functionality on any stepper axes at thistime.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetGain(hCtlr: HCTRLR; axis: Word; gain: Double): Longint; stdcall;
VB: Function MCSetGain(ByVal hCtrir As Integer, ByVal axis As Integer, ByVal gain As Double) As Long
LabVIEW: Execute [T] -
Handle In : Handle Out
Asis In (1) = 3 Axis Out

Gain [0.0] — -
Error

MCSethain.vi

164 Precision MicroControl

MCAPI Parameter Setup Functions

MCCL Reference
SG

See Also
MCGetGain(), MCSetM otionConfigEXx()

MCSetJogConfig

M CSetJogConfig() setsjog configuration for the specified axis.

short int MCSetJogConfig(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCJOG* pJog // address of jog configuration structure
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure jog information.
pJog Points to a MCJOG structure that contains jog configuration information for
axis.
Returns

Thereturn valueis TRUE if the function is successful. Otherwise it returns FAL SE, indicating the function did not find the
axis specified (hCtlr or axisincorrect).

Comments
It isimportant to set the jog configuration before enabling jogging if you will be using non-default parameters for the jog
configuration.

Compatibility
The DCX-PCI controllers, DC2 stepper axes, MC150, and MC160 modules do not support jogging.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCSetJogConfig(hCtir: HCTRLR; axis: Word; var pJog: MCJOG): Smallint; stdcall;
VB: Function MCSetJogConfig(ByVal hCtrlr As Integer, ByVal axis As Integer, jog As MCJog) As Integer

LabVIEW: Not Supported

MCCL Reference
JA, JB, JG, JO, IV

DCX-PCI100 User’'s Manual 165

MCAPI Parameter Setup Functions

See Also
M CEnablelog(), MCGetJogConfig(), MCJOG structure definition

MCSetLimits

M CSetLimits() setsthe current hard and soft limit settings for the specified axis.

long int MCSetLimits(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
short int hardMode, // hard limit mode flags
short int softMode, // soft limit mode flags
double limitMinus, // soft negative limit value
double limitPlus // soft positive limit value
)
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set the limits of .
hardMode Combination of the following limit mode flags for the hard limits:

Value Description

MC_LIMIT_PLUS Enables the positive limit.

MC_LIMIT_MINUS Enables the negative limit.

MC_LIMIT_BOTH Enables both the positive and negative limits.

MC _LIMIT_OFF Sets the limit stopping mode to turn the motor off when a
limit istripped.

MC _LIMIT_ABRUPT Sets the limit stopping mode to abrupt (target position is set to
current position and PID loop stops axis as quickly as
possible).

MC _LIMIT_SMOOTH Sets the limit stopping mode to smooth (axis executes pre-
programmed deceleration when limit is tripped).

MC _LIMIT_INVERT Inverts the polarity of the hardware limit switch inputs. This
value may not be used with soft limits.

softMode Combination of limit mode flags for the soft limits. See the values for hardMode,
above.

limitMinus Positive limit value for soft limits, if supported by this controller.

limitPlus Negative limit value for soft limits, if supported by this controller.

Returns

M CSetL imits() returns the value MCERR_NOERROR if the function completed without errors. If there was an error, one
of the MCERR_xxxx error codes is returned, and the limit settings will be left in an undetermined state.

166 Precision MicroControl

MCAPI Parameter Setup Functions

Comments
The limit settings are the same as those that may be set by the M CSetM otionConfigEx() function, however, this function
provides a short-hand method for setting just the limit settings.

To disable limits (hard or soft) set the corresponding limit mode variable (hardMode and softMode) to zero (0). To disable
aparticular limit (plus or minus) DO NOT include its corresponding mode flag (MC_LIMIT_PLUS or
MC_LIMIT_MINUS, respectively) in the combination of flags that make up the hardMode and softMode values.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2 and DCX-PC100 controllers do not support soft limits.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes

Delphi: function MCSetLimits(hCtlr: HCTRLR; axis: Word; hardMode, softMode: Smallint; limitMinus, limitPlus: Double):
Longint; stdcall;

VB: Function MCSetLimits(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal hardMode As Integer, ByVal SoftMode As

Integer, ByVal limitMinus As Double, ByVal limitPlus As Double) As Long
LabVIEW: Execute [T] -~y

Handle In -+ Handle Out
Axis In (1) T — 52— - Axis Dut
Hard Mode fr‘

Soft Mode

MCSetLimitz. vi

MCCL Reference
HL, LF, LL, LM, LN

See Also
MCGetMotionConfigEx(), MCGetLimits(), M CSetM otionConfigEx()

MCSetModulelnputMode

M CSetM odulel nputM ode() sets the current input mode for the specified axis.

long int MCSetModulelnputMode(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double mode // input mode value

)

DCX-PCI100 User’'s Manual 167

MCAPI Parameter Setup Functions

Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number of which to set input mode.
mode Input mode for the specified axis:
Value Description
MC_IM_OPENLOOP Sets stepper motor axis to open-loop mode.
MC_IM_CLOSEDLOOP Sets stepper motor axis to closed-loop mode.
Returns

Thereturn valueis MCERR_NOERROR if no errors were detected. If there was an error, one of the MCERR_Xxxxx error
codes isreturned and the variable pointed to by mode is left unchanged.

Comments

You will need to issue MCEnableAxis() twice, once FALSE and once
TRUE, after calling this function to assure proper changing of modes.

0 Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, and DCX-AT200 controllers do not support amodule which is
capable of closed-loop stepper operation. The MC362 module is not capable of closed-loop stepper operation.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCSetModulelnputMode(hCtlr: HCTRLR; axis, mode: Longlint): Longnt; stdcall;
VB: Function MCSetModulelnputMode(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Long) As Long

LabVIEW: Not Supported

MCCL Reference
IM

See Also
M CGetM odulel nputM ode()

168 Precision MicroControl

MCAPI Parameter Setup Functions

MCSetModuleOutputMode

M CSetM oduleOutputMode() configures the output of the specified servo or stepper axis.

void MCSetModuleOutputMode(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double mode // output mode selection
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set output mode of.
mode Output mode, one of the following constants:
Value Description
MC _OM_BIPOLAR Sets servo axis to bipolar operation. (-10V to +10V)
MC_OM_UNIPOLAR Sets servo axis to unipolar operation. (OV to +10V, with a
separate direction signal)
MC _OM_PULSE DIR Sets stepper axisto pulse and direction output.
MC _OM_CW_CCW Sets stepper axisto clockwise and counter-clockwise
operation.
Returns

This function does not return a value.

Comments

Note that the function arguments will depend upon the type of axis being addressed - stepper or servo. Output phase
settings are normally made at power up (before motors are energized) and then left unchanged. Incorrect settings can lead
to unpredictable operation.

Compatibility
The DC2, DCX-PC100, DCX-PCI100 controllers, MC100, MC110, MC150, and MC160 modules do not support changing
the output mode.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetModuleOutputMode(hCtlr: HCTRLR; axis, mode: Word); stdcall;
VB: Sub MCSetModuleOutputMode(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Integer)

LabVIEW: Not Supported

MCCL Reference
oM

See Also
M CGetServoOutputPhase()

DCX-PCI100 User’'s Manual 169

MCAPI Parameter Setup Functions

MCSetMotionConfigEXx

M CSetM ationConfigEx() configures an axis for motion.

short int MCSetMotionConFfigEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCMOTIONEX* pMotion // address of motion configuration
// structure
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure.
pMotion Points to a MCMOTIONEX structure that contains motion configuration
information for the specified axis.
Returns
Thereturn valueis TRUE if the function is successful. A return value of FAL SE indicates the function could not configure
the axis.
Comments

This function provides away of setting al motion parameters for a given axis with asingle function call using an initialized
MCMOTIONEX structure. When you need to setup many of the parametersfor an axisit is easier to call
MCGetMotionConfigEXx(), update the MCMOTIONEX structure, and write the changes back using

M CSetM otionConfigEXx(), rather than use a Get/Set function call for each parameter.

Note that some less often used parameters will only be accessible from this function and from M CGetM otionConfigEXx() -
they do not have individual Get/Set functions.

Compatibility

Acceleration is not supported on the DC2 stepper axes. Deceleration is not supported on the DCX-PCI100 controller,
MC100, MC110, MC150, or MC160 modules. MinV el ocity is not supported on the DCX-PCI100, DCX-PC100, or DC2
controllers. Torque is not supported on the DCX-PCI100 controller, MC100, or MC110 modules. Deadband is not
supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360, or MC362 modules.
DeadbandDelay is not supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360 or
MC362 modules. StepSizeis not supported on the DC2 or DCX-PCI100 controllers. Current is not supported on the DC2
or DCX-PCI100 controllers. SoftLimitM ode is not supported on the DC2 or DCX-PC100 controllers. SoftLimitL ow is not
supported on the DC2 or DCX-PC100 controllers. SoftLimitHigh is not supported on the DC2 or DCX-PC100 controllers.
EnableAmpFault is not supported on the DC2 controllers. UpdateRate is not supported on the DC2 or DCX-PCI100
controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

170 Precision MicroControl

MCAPI Parameter Setup Functions

Prot otypes
Delphi: function MCSetMotionConfigex(hCtlr: HCTRLR; axis: Word; var pMotion: MCMOTIONEX): Smallint; stdcall;
VB: Function MCSetMotionConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, motion As MCMotionEx) As Integer
LabVIEW: Execute [T) s
Hatrdle In Handle Out
Az ln 1) i i Az Dt
Flags (0] f i
Title ™) Errar

MCDLG_Configurefxis. i

MCCL Reference
DB, DI, DT, FC, FF, FN, FR, HC, HS, LM, LS, MS, MV, SA, SD, SF, SG, SH, SI, SQ, SV

See Also
MCGetMotionConfigex(), MCMOTIONEX structure definition

MCSetOperatingMode

M CSetOper atingM ode() sets the controller operating mode for axis.

void MCSetOperatingMode(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
WORD master, // master contouring axis
WORD mode // new operating mode
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to configure.
master Contouring master axis (used for contour mode only).
mode New operating mode, can be any of the following:
Value Description
MC_MODE_CONTOUR Selects contouring mode (must also specify master).
MC_MODE_GAIN Selects gain mode of operation.
MC_MODE_POSITION Selects the position mode of operation (default).
MC_MODE_TORQUE Sel ects torque mode operation.
MC_MODE_VELOCITY Selects the velocity mode.
Returns

Thisfunction does not return avalue.

DCX-PCI100 User’'s Manual 171

MCAPI Parameter Setup Functions

Comments

This function is used to switch between the main operating modes of the controller. All modes except
MC_MODE_CONTOUR are supported by all controllers. Programs can check the field CanDoContouring of the
MCPARAMEX structure for the value TRUE to determine if a controller can operatein MC_MODE_CONTOUR mode.

& This function should not be called while axisis in motion.

Compatibility

The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers. Gain mode is not
supported on stepper axes, MC100, or MC110 modules. Torque mode is not supported on stepper axes, DCX-PCI 100
controller, MC100, or MC110 modules.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototyp es
Delphi: procedure MCSetOperatingMode(hCtlr: HCTRLR; axis, master, mode: Word); stdcall;
VB: Sub MCSetOperatingMode(ByVal hCtrir As Integer, ByVal axis As Integer, ByVal master As Integer, ByVal mode As
Integer)
LabVIEW: EHI_TEU'E'T ['Ir] e
i =
Master Axis [1]

Mode [2] —l_

MC5etOperatingMode._vi

MCCL Reference
CM, GM, PM, QM, VM

See Also
Controller hardware manual

MCSetPosition

M CSetPosition() sets the current position for axisto position.

void MCSetPosition(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double position // new position

)

172 Precision MicroControl

MCAPI Parameter Setup Functions

Parameters

hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change position of.

position New position value.

Returns

This function does not return a value.

Comments
The current position of axiswill be immediately updated to the value of position.

This function may be called with axis set to MC_ALL_AXES set the position of all axes at once. All axes will be set to the
same value of position.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes

Delphi: procedure MCSetPosition(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;

VB: Sub MCSetPosition(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW: Execute [T]

Handle In —— 75 Handle Dut
Axiz In [1] - % L Axis Out
Mew Pozition [0.0] —

MC5etPosition.vi

MCCL Reference
DH

See Also
M CGetPositionEx()

MCSetRegister

M CSetRegister () sets the value of the specified general purpose register.

DCX-PCI100 User’'s Manual 173

MCAPI Parameter Setup Functions

long int MCSetRegister(

HCTRLR hCtlr, // controller handle
long int register, // register number
void* pValue, // pointer to variable with new register
// value
long int type // type of variable pointed to by pValue
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
register Register number to read from (0 to 255).
pValue Pointer to a variable that will has the new value for the register.
type Type of data pointed to by pValue:
Value Description
MC _TYPE_LONG Indicates pValue points to a variable of type long integer.
MC_TYPE _DOUBLE Indicates pValue points to a variable of type double precision
floating point.
MC_TYPE_FLOAT Indicates pValue points to a variable of type single precision
floating point.
Returns

Thereturn valueis MCERR_NOERROR, if no errors were detected. However, if there was an error, the return value is one
of the MCERR_xxxx error codes, and the register value is unpredictable.

Comments

M CSetRegister () and MCGetRegister () allow you to write to and read from, respectively, the general purpose registers
on the motion controller. When running background tasks on a multitasking controller the only way to communicate with
the background tasks is to pass parameters in the general purpose registers.

Y ou cannot write to the local registers (registers 0 - 9) of abackground task. When you need to communicate with a
background task be sure to use one or more of the global registers (10 - 255).

To determineif your controller supports multi-tasking check the M ultiTasking field of the M CPARAMEX structure
returned by M CGetConfigurationEx().

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.0 or higher

Prototypes

Delphi: function MCSetRegister(hCtlr: HCTRLR; register: Longint; var pValue: Pointer; type: Longint): Longint; stdcall;

VB: Function MCSetRegister(ByVal hCtrir As Integer, ByVal register As Long, value As Any, ByVal argtype As Long) As
Long

174 Precision MicroControl

MCAPI Parameter Setup Functions

LabVIEW: Execute [T] -y Execute [T] -y
Handle In Handle Out Handle In Handle Out
Regizter [0] - R eqgister [0) -
Walue Value —
|— Error |— Error
MCS5etR eqisterDouble_wi MCS5etReqgisterLong. vi

MCCL Reference
AL, AR

See Also
M CGetRegister ()

MCSetScale

M CSetScale() sets scaling for the specified axis to the values contained in the M CSCALE structure.

short int MCSetScale(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCSCALE* pScale // updated scaling settings
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change scale of.
pScale Pointer to structure with new scale values.
Returns

Thisfunction returns TRUE, if the functions completes successfully. A return value of FAL SE indicates there was an error
(hCtlr or axisisinvalid).

Comments

Setting scaling factors allows application programs to talk to the controller in real world units, as opposed to arbitrary
"encoder counts'. Y ou can determine if a controller can process scaling requests by testing the CanDoScaling flag in the
MCPARAMEX structure for the controller.

This function may be called with axis set to MC_ALL_AXESto set the scaling of all axes at once. All axeswill be set to

the same value.
When Scale to a value other than one, SoftLimitL ow and SoftLimitHigh should be
changed to accommodate the new real world units.
Compatibility
The DC2 and the DCX-PC100 do not support any scaling members. The DCX-PCI100 does not support Offset or
Constant.

DCX-PCI100 User’'s Manual 175

MCAPI Parameter Setup Functions

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCSetScale(hCtlr: HCTRLR; axis: Word; var pScale: MCSCALE): Smallint; stdcall;
VB: Function MCSetScale(ByVal hCtrlr As Integer, ByVal axis As Integer, scale As MCScale) As Integer
LabVIEW: Execute [T] -
Handle In Handle Out

Axiz In [1] - %
Scaling el

L Axiz Out

MCSetScale.wi

MCCL Reference
UK, UO, UR, US, UT, UZ

See Also
M CGetConfigurationEx(), MCGetScale(), MCPARAMEX structure definition

MCSetServoOutputPhase

M CSetServoOutputPhase() sets the output phasing for the specified servo axis.

void MCSetServoOutputPhase(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
WORD phase // desired phasing
):
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change servo phase of.
phase Desired phasing, one of the following:
Value Description
MC_PHASE STD Selects standard or normal phasing. (default)
MC_PHASE REV Selects reverse phasing.
Returns

This function does not return a value.

Comments
Thisfunction may be called with axis set to MC_ALL_AXES set the phase of all axes at once. All axes will be set to the
same value of phase.

176 Precision MicroControl

MCAPI Parameter Setup Functions

Compatibility
The MC100 and MC110 modules do not support phase reverse.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetServoOutputPhase(hCtlr: HCTRLR; axis, phase: Word); stdcall;
VB: Sub MCSetServoOutputPhase(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal mode As Integer)
LabVIEW: Eseute [T] -
Handle Ir Handle Out
Bz I [1] Le] L Az Out

Phase [Feverse — sl

MC5etServolutputPhase_vi

MCCL Reference
PH

See Also
M CGetServoOutputPhase()

MCSetTorque

MCSetTorque() sets maximum output level for servos.

long int MCSetTorque(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double torque // new torque setting
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change torque of.
torque New torque.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

The torque value for a particular axis may also be set using the M CSetM otionConfigEx() function; MCSetTor que()
provides a short-hand method for setting just the torque value and for updating torque settings on the fly when operating in
torque mode.

DCX-PCI100 User’'s Manual 177

MCAPI Parameter Setup Functions

Compatibility
Torque mode is not supported on stepper axes, DCX-PCI100 controller, MC100, or MC110 modules.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetTorque(hCtlr: HCTRLR; axis: Word; torque: Double): Longint; stdcall;
VB: Not Supported

LabVIEW: Execute [T] -

Handle In —[=34]

Axiz In [1] -
Torgue [0.0) — Torg

Handle Out
L Axizs Out

Error

MC5etTorque._vi

MCCL Reference
SQ

See Also
MCGetTorque(), MCSetM otionConfigEx()

MCSetVectorVelocity

MCSetVectorVeoaocity() setsthe vector velocity for the specified axis, in whatever units the axisis configured for.

long int MCSetVectorVelocity(

HCTRLR hCtlr, // controller handle

WORD axis, // axis number

double velocity // new vector velocity value
):
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set vector velocity of.
velocity New vector velocity value for the specified axis.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

178 Precision MicroControl

MCAPI Parameter Setup Functions

Comments

The vector velocity value for a particular axis may also be set using M CSetContour Config(); M CSetVector Velocity()
provides a short-hand method for setting just the vector velocity value and is most useful when updating vector velocity
settings on the fly.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.0 or higher

Proto types
Delphi: function MCSetVectorVelocity(hCtlr: HCTRLR,; axis: Word; velocity: Double): Longint; stdcall;
VB: Function MCSetVectorVelocity(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal velocity As Double) As Long

LabVIEW: Not Supported

MCCL Reference
vV

See Also
M CGetVectorVelocity(), MCSetContour Config()

MCSetVelocity

MCSetVelocity() sets programmed velocity for the selected axis to rate, whererate is specified in the current units for
axis.

void MCSetVelocity(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double rate // new velocity
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to change velocity of.
rate New velocity.
Returns

Thisfunction does not return avalue.

Comments

The velocity value for a particular axis may also be set using the M CSetM otionConfigEx() function; M CSetVelocity()
provides a short-hand method for setting just the velocity value and for updating vel ocity settings on the fly when operating
in velocity mode.

DCX-PCI100 User’'s Manual 179

MCAPI Parameter Setup Functions

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetVelocity(hCtlr: HCTRLR; axis: Word; rate: Double); stdcall;
VB: Sub MCSetVelocity Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal rate As Double)
LabVIEW: Execute [T] - ;
Handle In Handle Out

Axis In (1] 7 (83 [- Axis Dut
Velocity [0.0] —

MCS5etYelocity vi

MCCL Reference
S\

See Also
M CGetVelocityEx(), MCSetMationConfigEx()

180 Precision MicroControl

MCAPI Parameter Setup Functions

DCX-PCI100 User’'s Manual 181

MCAPI Motion Functions

Chapter Contents

182 Precision MicroControl

MCAPI Motion Functions

Motion functions range in use from allowing the program to commence or cease motion to permitting control of sequencing
to altering operation of axes during motion.

A word of caution must be given regarding the use of board-level sequencing commands. Even though each of these
functions includes awarning in this chapter, it should be stressed that once a command containing the word “Wait” or
“Find” in the command name is called, the board will not accept another command nor will it respond to the calling
program until the board has completed what it was initially told to do. This can lead to scenarios where the calling program
has absolutely no control during potentially dangerous or otherwise expensive situations.

To see examples of how the functionsin this chapter are used, please refer to the online Motion Control APl Reference.

MCADbort

MCAbort() aborts any current motion for the specified axis or axes.

void MCAbort(

HCTRLR hCtlr, // controller handle
WORD axis // axis number
);
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis AXxis number to abort motion.
Returns

This function does not return a value.

Comments
The selected axis will execute an emergency stop following this command. Issuing this command with axis set to
MC_ALL_AXESwill abort motion for all axesinstalled on the motion controller.

Servo axes will stop abruptly, and the servo control loop will remain energized.

DCX-PCI100 User’'s Manual 183

MCAPI Motion Functions

For stepper motors, pulses from the motion controller will be disabled immediately. The state of the axis (enabled or
disabled) following the call to MCAbort() will depend upon the type of controller (see your controller hardware manual).

M ClsStopped() or MCWaitFor Stop(). Then call M CEnableAxis() prior to issuing

ﬂ Following a call to MCAbort(), verify that the axis has stopped using
another motion command.

Following acall to M CAbort() on the DCX-PC100 controller when in velocity mode,
0 call M CSetOperatingMode() prior to issuing another motion command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCAbort(hCtlr: HCTRLR; axis: Word); stdcall;
VB: Sub MCAbort(ByVal hCtrlr As Integer, ByVal axis As Integer)
LabVIEW: Execute [T]

Handle In HJ-E.' Handle Dut

Axiz In [1] - Ahart L Axiz Out

MCAbort. vi

MCCL Reference
AB

See Also
M CEnableAxis(), MCSetOperatingM ode(), M CStop(), MCIsStopped(), MCWaitFor Stop()

MCArcCenter

M CArcCenter () specifies the center of an arc for contour path motion.

long int MCArcCenter(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number

long int type, // absolute or relative
double position // center position

)

184 Precision MicroControl

MCAPI Motion Functions

Parameters

hCitlr Controller handle, returned by a successful call to MCOpen().

axis Axis number to specify arc center for.

type Flag to indicate if the center position is specified in absolute units or relative to

the current position.
Value Description
MC_ABSOLUTE Center position is specified in absolute units.
MC_RELATIVE Center position is specified relative to the current position of
axis.
position Absolute or relative arc center position for axis.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

This function sets the center of an arc for contour path motion. Since arc motion is performed by two axes, this function
should be called twice in a contour path block, once for each axis. To determine if aparticular controller can process the
M CATrcCenter () contouring function, check the CanDoContouring flag of the MCPARAMEX structure.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.0 or higher

Prototypes

Delphi: function MCArcCenter(hCtlr: HCTRLR; axis: Word; type: Smallint; position: Double): Longint; stdcall;

VB: Function MCArcCenter (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal arctype As Integer, ByVal position As
Double) As Long

LabVIEW: Not Supported

MCCL Reference
CA, CR

See Also
MCArcEndAngle(), MCArcRadius(), MCBIlockBegin(), MCSetOper atingM ode()

MCArcEndAngle

MCArcEndAngle() specifies the ending angle of an arc for contour path maotion.

DCX-PCI100 User’'s Manual 185

MCAPI Motion Functions

long int MCArcEndAngle(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
long int type, // absolute or relative
double angle // ending angle
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to specify arc ending angle for.
type Flag to indicate if the end angle is specified in absolute units or relative to the
current position.
Value Description
MC_ABSOLUTE Center position is specified in absolute units.
MC_RELATIVE Center position is specified relative to the current position of
axis.
angle Absolute or relative arc ending angle for axis.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

This function sets the ending angle of an arc for contour path motion function should be called twice in a contour path
block, once for each axis. To determine if a particular controller can process the M CArcCenter () contouring function,
check the CanDoContouring flag of the MCPARAMEX structure.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.2 or higher

Prototypes

Delphi: function MCArcEndAngle(hCtlr: HCTRLR; axis: Word; type: Smallint; angle: Double): Longint; stdcall;

VB: Function MCArcEndAngle (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal arctype As Integer, ByVal angle As
Double) As Long

LabVIEW: Not Supported

MCCL Reference
EA, ER

See Also
MCATrcCenter (), MCArcRadius(), MCBlockBegin(), M CSetOperatingM ode()

186 Precision MicroControl

MCAPI Motion Functions

MCArcRadius

M CArcRadius() specifies the radius of an arc for contour path motion.

long int MCArcRadius(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double radius // arc radius
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to specify arc radius for.
radius Arc radius for axis.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function sets the radius of an arc for contour path motion. To determine if a particular controller can process the
M CArcCenter (') contouring function, check the CanDoContouring flag of the M CPARAMEX structure.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCArcRadius(hCtlr: HCTRLR; axis: Word; radius: Double): Longint; stdcall;
VB: Function MCArcRadius(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal radius As Double) As Long

LabVIEW: Not Supported

MCCL Reference
RR

See Also
MCArcCenter (), MCArcendAngle(), MCBIlockBegin(), M CSetOperatingM ode()

MCCaptureData

M CCaptureData() configures a controller to perform data capture for the specified axis. Captured data includes actual
position vs. time, optimal position vs. time, and following error vs. time.

DCX-PCI100 User’'s Manual 187

MCAPI Motion Functions

long int MCCaptureData(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
long int points, // number of data points to collect
double period, // time period between data points
// (seconds)
double delay // delay prior to data capture (seconds)
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to capture data.
points Number of data points to collect.
period Time period between subsequent data point captures.
delay Delay (dwell) before initial data collection.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments
Captured position datais typically used to analyze servo motor performance and PID loop tuning parameters. PMC's Servo
Tuning utility uses this function to analyze servo performance.

M CBIlockBegin() may be used with M CCaptureData() to bundle the capture data command with mode and move
commands (see the example below).

Beginning with version 3.0 of the MCAPI users may use the M CGetAxisConfiguration() function to determine the data
capture capabilities of an axis.

Compatibility

The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the DCX-PC100 controller do
not support data capture. The DCX-PCI100 controller does not support torque mode nor do any stepper axes, which
prevents the capture of torque values.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCCaptureData(hCtlr: HCTRLR; axis: Word; points: Longint; period, delay: Double): Longint; stdcall;
VB: Function MCCaptureData(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal points As Long, ByVal period As

Double, ByVal delay As Double) As Long
LabVIEW: Not Supported

MCCL Reference
PR

See Also
M CGetConfigurationEx(), M CGetCaptureData(), M CBlockBegin()

188 Precision MicroControl

MCAPI Motion Functions

MCContourDistance

M CContour Distance() sets the distance for user defined contour path motions.

long int MCContourDistance(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double distance // path distance
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number of controlling axis for contour motion.
distance Path distance for user path.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
Thisfunction is used to specify the distance, as measured along the path, from the contour path starting point to the end of
the next motion. It isrequired for user defined contour path motions.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.0 or higher

Proto types
Delphi: function MCContourDistance(hCtlr; HCTRLR; axis: Word; distance: Double): Longint; stdcall;
VB: Function MCContourDistance(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double) As Long

LabVIEW: Not Supported

MCCL Reference
CD

See Also
M CBIlockBegin()

DCX-PCI100 User’'s Manual 189

MCAPI Motion Functions

MCDirection

MCDirection() setsthe direction of motion when operating in velocity mode.

void MCDirection(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double dir // new direction
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to set the direction of.
dir New direction to move in, may be either of the following values:
Value Description
MC DIR POSITIVE Selects the positive direction for motion.
MC DIR NEGATIVE Selects the negative direction for motion.
Returns

Thisfunction does not return a value.

Comments
This command may be used to change the direction of travel when an axisis operating in Velocity Mode. The actua
direction of travel for MC_DIR_POSITIVE and MC_DIR_NEGATIVE will depend upon your hardware configuration.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCDirection(hCtlr: HCTRLR; axis, dir: Word); stdcall;
VB: Sub MCDirection(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal dir As Integer)
LabVIEW: Execute [T] -
Handle In T Handle Out

Axiz In [1] - Ijir L Axis Out
Direction [1] < ——

MCDirection.vi

MCCL Reference
DI

See Also
M CSetOperatingM ode()

190 Precision MicroControl

MCAPI Motion Functions

MCEdgeArm

M CEdgeArm() arms the edge capture function of an open-loop stepper axis.

long int MCEdgeArm(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double position // new position for edge
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the home input signal.
position The position where the home input signal is sensed for the axis will be properly
set to position only after a call to MCWaitForEdge() and MCEnableAxis().
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments

Thisfunction is used to initialize a stepper motor at a given position. The function remains pending until the home input of
the module goes active. At that time you must call MCWaitFor Edge() followed by M CEnableAxis() so that the position
where the home signal is sensed will be set to the value of the position parameter. This function does not cause any motion
to be started or stopped.

For the position where the home input signal is sensed to be set to the value of the
position parameter, you must call MCWaitFor Edge() followed by M CEnableAxis().
M ClsEdgeFound() should be used to assure that the home input has latched prior to
caling MCWaitFor Edge().

Compatibility
This function is not supported by the DCX-AT200, DCX-PC, or DC2 controllers. The MC300 and MC360 module when in
closed-loop mode do not support this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCEdgeArm(hCtir: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCEdgeArm(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long

LabVIEW: Not Supported

MCCL Reference
EL

DCX-PCI100 User’'s Manual 191

MCAPI Motion Functions

See Also
M CFindEdge(), M ClsEdgeFound(), MCWaitFor Edge()

MCEnableAxis

M CEnableAxis() turns the specified axis on or off.

void MCEnableAxis(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
short int state // Boolean flag for on/off setting of axis
)E
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to turn on or off.
state Flag to indicate if this axis should be turned on or turned off:
Value Description
TRUE Turn on axis.
FALSE Turn off axis.
Returns

This function does not return a value.

Comments

This function does much more than just enable or disable axis. However, as the name implies, the sel ected axis(axes) will
be turned on or off depending upon the value of state. Note that an axis must be enabled before any motion will take place.
Issuing this command with axis set to MC_ALL_AXESwill enable or disable all axesinstalled on hCtlr.

programming languages, including those that define TRUE as a non-zero val ue other

ﬂ state will accept any non-zero value as TRUE, and will work correctly with most
than one (one is the Windows default value for TRUE).

If axisis off and then turned on, the following events will occur.

The target and optimal positions are set to the present encoder position.

The offset from M CFindEdge(), M CFindindex() or MCIndexArm() is applied.
The data passed by M CSetScale() are applied.

MC_STAT_AMP_ENABLE will be set.

MC_STAT_AMP_FAULT, if present, will be cleared.

MC_STAT_ERROR, if present, will be cleared.

MC_STAT_FOLLOWING, if present, will be cleared.

MC_STAT_MLIM_TRIP, if present, will be cleared.

MC_STAT_MSOFT_TRIP, if present, will be cleared.

MC_STAT_PLIM_TRIP, if present, will be cleared.

192 Precision MicroControl

MCAPI Motion Functions

e MC _STAT _PSOFT_TRIP, if present, will be cleared.
If axisison and then turned on again, the following events will occur.

e The offset from M CFindEdge(), MCFindIndex() or MCIndexArm() is applied.
e Thedatapassed by M CSetScale() are applied.

recommended. However, should it be done, axis will cease the current motion profile,

Calling this function to enable or disable an axis while it isin motion is not
& and MC_STAT_AT_TARGET will be set.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableAxis(hCtlr: HCTRLR; axis: Word; state: Smallint); stdcall;
VB: Sub MCEnableAxis (ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)
LableW: Euecute [T]
Handle In = m Handle Out
Aizln (1) T e b ~ Axis Out
Enable [T] — —

MCEnablefxis_vi

MCCL Reference
MF, MN

See Also
MCAbort(), MCStop()

MCEnableBacklash

M CEnableBacklash() sets the backlash compensation distance and turns backlash compensation on or off, depending
upon the value of state.

long int MCEnableBacklash(

HCTRLR hCtlr, // controller handle

WORD axis, // axis number

double backlash, // backlash compensation distance
short int state // enable state

)

DCX-PCI100 User’'s Manual 193

MCAPI Motion Functions

Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to control the backlash setting of.
backlash Amount of backlash compensation to apply. This parameter is ignored, if state
is FALSE.
state Specifies whether the channel is to be turned on or turned off.
Value Description
TRUE Turns backlash compensation on.
FALSE Turns backlash compensation off.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

In applications where the mechanical system is not directly connected to the motor, it may be required that the motor move
an extra amount to take up gear backlash. The backlash parameter to this function sets the amount of this compensation,
and should be equal to one half of the amount the axis must move to take up the backlash when it changes direction.

programming languages, including those that define TRUE as a non-zero value other

ﬂ state will accept any non-zero value as TRUE, and will work correctly with most
than one (one is the Windows default value for TRUE).

Compatibility
Stepper axes, the DC2, DCX-PC, and DCX-PCI100 controllers do not support backlash compensation.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.0 or higher

Prototyp es

Delphi: function MCEnableBacklash(hCtir: HCTRLR; axis: Word; backlash: Double; state: Smallint): Longint; stdcall;

VB: Function MCEnableBacklash(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal backlash As Double, ByVal state
As Integer) As Long

LabVIEW: Execute [T] s

Handle In 5 ; Handle Out
Az In (1] Las.h L s Out

Backlagh [0.00 —
Erable (1]~ L Fror

MCEnableB acklazh._vi

MCCL Reference
BD, BF, BN

194 Precision MicroControl

MCAPI Motion Functions

MCEnableCapture

M CEnableCapture() begins position capture for the specified axisif count is greater than zero, or stops position capture if
count is zero.

long int MCEnableCapture (

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
long int count // number of points to capture
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to begin or end position capture.
count Set to zero to disable capture mode, or to a number greater than zero to
capture that many positions.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments

This functions enables the high-speed capture of count points (maximum 512) if count is greater than zero, or disables
position capture if count is-1. The count of currently captured data points may be obtained using M CGetCount(), and
captured position values may beretrieved using M CGetCaptureData().

Compatibility

The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the DCX-PC100 controller do
not support data capture. The DCX-PCI100 controller does not support torque mode nor do any stepper axes, which
prevents the capture of torque values.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCEnableCapture(hCtir: HCTRLR; axis: Word; count; Longint): Longint; stdcall;
VB: Function MCEnableCapture(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal count As Long) As Long

LabVIEW: Not Supported

MCCL Reference
CB

See Also
M CGetCaptureData(), MCGetCount()

DCX-PCI100 User’'s Manual 195

MCAPI Motion Functions

MCEnableCompare

M CEnableCompar g() enables or disables high-speed compare mode for the specified axis.

long int MCEnableCompare(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
long int flag // flag to enable/disable compare state
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to enable high-speed compare.
flag Flag to indicate if this axis should be turned on or turned off:
Value Description
MC_COMPARE_DISABLE Disable high-speed compare for Axis.
MC_COMPARE_ENABLE Enable high-speed compare for Axis.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

The high-speed compare function for axis is enabled or disabled by this function. High-speed compare mode must first be
initialized by M CConfigureCompar&() before compare mode may be enabled. To determine how many compares have
occurred use M CGetCount().

Compatibility
The DC2, DCX-PC100, DCX-AT200, and DCX-PCI100 controllers do not support high-speed position compare.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCEnableCompare(hCtlr: HCTRLR,; axis: Word; flag: Longint): Longint; stdcall;
VB: Function MCEnableCompare(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal flag As Long) As Long

LabVIEW: Not Supported

MCCL Reference
BC

See Also
M CConfigureCompare(), MCGetCount()

196 Precision MicroControl

MCAPI Motion Functions

MCEnableDigitalFilter

M CEnableDigitalFilter () enables or disables the digital filter capability of advanced motor modules, such as the MC300.

long int MCEnableDigitalFilter(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
long int state // Boolean flag enables/disables digital
// Filter
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to enable digital filter.
state Flag to indicate if digital filter should be enabled on or disabled:
Value Description
TRUE Enable digital filter for axis.
FALSE Disable digital filter for axis.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

The digital filter function for axisis enabled or disabled by this function. Digital filter coefficients are loaded using

M CSetDigitalFilter () and may be read back from the controller using M CGetDigital Filter (). The function

MCl sDigitalFilter () will return aflag indicating the current enabled state of the digital filter, and M CGetCount() may be
used to determine the maximum filter size and the size of the currently loaded filter.

state will accept any non-zero value as TRUE, and will work correctly with most
ﬂ programming languages, including those that define TRUE as a non-zero value other
than one (one is the Windows default value for TRUE).

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100 controllers, MC360 and MC362 modules do not support digital
filtering.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCEnableDigitalFilter(hCtir: HCTRLR; axis: Word; state: Longint): Longint; stdcall;
VB: Function MCEnableDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Long) As Long

LabVIEW: Not Supported

MCCL Reference
NF, YF

DCX-PCI100 User’'s Manual 197

MCAPI Motion Functions

See Also
M CGetCount(), M CGetDigitalFilter (), MCl sDigjtalFilter (), MCSetDigital Filter ()

MCEnableGearing

M CEnableGearing() enables or disables electronic gearing for the specified axis/ master pair.

void MCEnableGearing(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
WORD master, // master axis number
double ratio, // gearing ratio
short int state // enable state
E
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to enable or disable gearing.
master Master axis that axis is to follow.
ratio Ratio at which axis is to reproduce master’'s motions.
state Specifies whether the gearing is to be enabled on or disabled.
Value Description
TRUE Enables gearing.
FALSE Disables gearing.
Returns

This function does not return a value.

Comments
This function permits you to configure one axis to automatically reproduce the motions of a master axis. In addition, by
using aratio of other than 1.0, the reproduced motion can be scaled as desired.

DC2 users should express theratio as afloating point value (i.e. 0.5 for 2:1, 2.0 for 1:2, etc.). MCEnableGearing()
automatically convertsthisratio to the 32 bit fixed point fraction the DC2 requires. The DCX-PC100 controller supports
only afixed ration of 1:1, the Ratio parameter isignored for this controller.

programming languages, including those that define TRUE as a non-zero value other

ﬂ state will accept any non-zero value as TRUE, and will work correctly with most
than one (one is the Windows default value for TRUE).

Compatibility
The DCX-PCI100 controller, DC2 stepper axes, the MC150, MC160, MC200, and MC260 modules when placed on the
DCX-PC100 controller do not support gearing.

198 Precision MicroControl

MCAPI Motion Functions

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableGearing(hCtlr: HCTRLR; axis, master: Word; ratio: Double; state: Smallint); stdcall;
VB: Sub MCEnableGearing(ByVal hCtrir As Integer, ByVal axis As Integer, ByVal master As Integer, ByVal ratio As
Double, ByVal state As Integer)
LabVIEW: Exgcute (T} -
Handle In m Handle Out

Mazter Axis (1)
Ratio (0.00 :
Enl’JblE m H

MCEnableGearing._wi

Axiz In (1) —'J— i L Axis Out

MCCL Reference
SM, SS

MCEnableJog

MCEnableJog() function enables or disables jogging for the axis specified by axis.
void MCEnableJog(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
short int state // enable state
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to enable or disable synchronized motion.
state Specifies whether the synchronized motion is to be enabled on or disabled.
Value Description
TRUE Enables synchronized motion.
FALSE Disables synchronized motion.
Returns
This function does not return avalue.
Comments
The selected axis should be configured for jogging using the M CSetJogConfig() function before being enabled by this
function.

DCX-PCI100 User’'s Manual 199

MCAPI Motion Functions

programming languages, including those that define TRUE as a non-zero value other

ﬂ state will accept any non-zero value as TRUE, and will work correctly with most
than one (one is the Windows default value for TRUE).

Compatibility
The DCX-PCI controllers, DC2 stepper axes, MC150, and MC160 modules do not support jogging.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableJog(hCtlr: HCTRLR; axis: Word; state: Smallint); stdcall;
VB: Sub MCEnableJog(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)

LabVIEW: Not Supported

MCCL Reference
JF, JN

See Also
M CGetJogConfig(), M CSetJogConfig()

MCEnableSync

M CEnableSync() enables or disables synchronized motion for contour path motion for the specified axis.

void MCEnableSync(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
short int state // enable state
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to enable or disable synchronized motion.
state Specifies whether the synchronized motion is to be enabled on or disabled.
Value Description
TRUE Enables synchronized motion.
FALSE Disables synchronized motion.
Returns

This function does not return a value.

200 Precision MicroControl

MCAPI Motion Functions

Comments
This function isissued to the controlling axis of a contour path motion, prior to issuing any contour path motions, to inhibit
any motion until acall to MCGoEX() is made.

programming languages, including those that define TRUE as a non-zero val ue other

ﬂ state will accept any non-zero value as TRUE, and will work correctly with most
than one (one is the Windows default value for TRUE).

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableSync(hCtlr: HCTRLR; axis: Word; state: Smallint); stdcall;
VB: Sub MCEnableSync(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer)
LabVIEW: Emecute [T] -
Handle In Handle Out
bgizIn (1) ﬁ = iz Out
Enabls (T) =55

MCEnableSync.vi

MCCL Reference
NS, SN

See Also
MCGoEX()

MCFindAuxEncldx

M CFindAuxEncl dx() armsthe auxiliary encoder index capture function of an axis.

long int MCFindAuxEncldx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double position // reserved for future use
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the index signal.
position This parameter is ignored by current motion controller firmware.

DCX-PCI100 User’'s Manual 201

MCAPI Motion Functions

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

This function arms the auxiliary encoder index capture function of an axis. The function remains pending until the auxiliary
encoder index input of the module goes active, at which point, MC_STAT_INP_AUX will be latched. This function does
not cause any motion to be started or stopped.

A homing routine may incorporate this function by using M CDecodeStatus() to determine when MC_STAT _INP_AUX
latches. After making sure the axis has stopped, you may determine how far the current position is from where the auxiliary
encoder index occurred. The difference between M CGetAuxEncPosEx() and M CGetAuxEncl dxEx() should be used as
the current position through acall to M CSetAuxEncPos().

At thistime, the firmware does not support the position parameter. We advise you set
position to zero, so that future firmware updates will not break your code.

Compatibility

The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support auxiliary encoders.
Closed-loop steppers do not support auxiliary encoder functions, since the connected encoder is considered a primary
encoder.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCFindAuxEncldx(hCtlir: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCFindAuxEncldx(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long

LabVIEW: Not Supported

MCCL Reference
AF

See Also
MCBIlockBegin(), MCFindIndex(), MCGetAuxEncldxEXx()

MCFindEdge

M CFindEdge() is used to initialize amotor at a given position, relative to the home or coarse home input.

202 Precision MicroControl

MCAPI Motion Functions

long int MCFindEdge (

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double position // new position for edge
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the edge signal.
position The position where the edge signal is sensed for the axis will be set to position
after a call to MCEnableAxis().
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

Thisfunction is used to initialize a motor at a given position. The function remains pending until the home input of the
modul e goes active. This function does not cause any motion to be started or stopped. See the example code in the online
help for details of how to use M CFindEdge().

the board until the home input is seen as high for axis. We recommend using

Once this command is issued, the calling program will not be able to communicate with
& MCEdgeArm() and M ClsEdgeFound() instead.

Only after an M CEnableAxis() call will the position where the home input was seen as
high for axis be set to the value of the position parameter.

home, but this still trandlatesto MC_STAT _INP_HOME. In these cases,

0 The DC2 controllers, MC100, MC110, and MC260 modules use coarse home instead of
M CDecodeStatus() should be used instead of this function.

Compatibility
The DC2 stepper axes, MC200 and MC210 when installed on the DCX-AT200, MC300, MC302, and MC320 modules do
not support this command.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCFindEdge(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCFindEdge Lib(ByVal hCtrir As Integer, ByVal axis As Integer, ByVal position As Double) As Long

LabVIEW: Not Supported

MCCL Reference
FE

DCX-PCI100 User’'s Manual 203

MCAPI Motion Functions

See Also
M CBlockBegin(), MCEdgeArm(), MCFindIndex(), M ClsEdgeFound(), MCWaitFor Edge()

MCFindIndex

MCFindlIndex() isused to initialize a servo or closed-loop stepper motor at a given position, relative to the index input.

long int MCFindIndex(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double position // new position for index
):
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the index signal.
position The position where the encoder index pulse occurred for the axis will be set to
position after a call to MCEnableAxis().
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

Thisfunction is used to initialize a servo motor at a given position. The function remains pending until the index input of
the module goes active. This function does not cause any motion to be started or stopped. See the example codein the
online help for details of how to use M CFindlndex().

Once this command is issued, the calling program will not be able to communicate with
the board until the axis captures the encoder index. We recommend instead using and
confirming that M ClndexArm() has captured the index through M Cl sl ndexFound()
before calling M CWaitFor I ndex() to avoid this problem.

Only after an M CEnableAxis() call will the position where the encoder index pulse
occurred for axis be set to the value of the position parameter.

Compatibility

Open-loop stepper axes do not support this command, since the connected encoder is considered an auxiliary encoder.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.0 or higher

204 Precision MicroControl

MCAPI Motion Functions

Prototypes
Delphi: function MCFindIndex(hCtlr: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCFindIndex(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long

LabVIEW: Not Supported

MCCL Reference
FI

See Also

M CBlockBegin(), M CFindAuxEncl dx(), MCFindEdge(), M ClndexArm(), MCWaitFor Edge(),
M CWaitForIndex()

MCGOoEXx

M CGoEX() initiates a motion when operating in velocity mode.

long iInt MCGoEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double param // optional argument for the GO command
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to command.
param Argument to the GO command.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

The axis must be configured for velocity mode operation before issuing aM CGoEX() call. All axes may be instructed to
move by setting the Axis parameter to MC_ALL_AXES.

To enable cubic splining while in contour mode on the DCX-AT200 or DCX-AT300 use M CGoEX() with the value of
param set to 1.0.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.1 or higher

DCX-PCI100 User’'s Manual 205

MCAPI Motion Functions

Prototypes

Delphi: function MCGoEX(hCtlr: HCTRLR; axis: Word; param: Double): Longint; stdcall;

VB: Function MCGoEx(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal param As Double) As Long
LabVIEW:

Execute [T] -y
Handle In R Handle Out
Axis In [1] - £ L Axis Out

MCGo_vi

MCCL Reference
GO

See Also
M CSetOperatingM ode(), MCStop()

MCGoHome

MCGoHome() initiates ahome motion for the specified axis or all axes.

void MCGoHome(

HCTRLR hCtlr, // controller handle
WORD axis // axis number
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to command.
Returns

Thisfunction does not return a value.

Comments
The home or zero position is used that was last set by calling M CSetPosition(). This command effectively executes a
M CM oveAbsolute() with atarget position of 0.0.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

206 Precision MicroControl

MCAPI Motion Functions

Prototypes

Delphi: procedure MCGoHome(hCtlr: HCTRLR; axis: Word); stdcall;

VB: Sub MCGoHome Lib(ByVal hCtrlr As Integer, ByVal axis As Integer)
LabVIEW: Execute [T] - ;

Handle In . Handle Out
Axiz In [1] - e L Axiz Out

MCGoHome. w1

MCCL Reference
GH

See Also
MCM oveAbsolute(), M CSetPosition()

MCIndexArm

M CIndexArm() arms the index capture function of a servo or closed-loop stepper axis.

long int MCIndexArm(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double position // new position for index
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to search for the index signal.
position The position where the encoder index pulse occurred for the axis will be set to
position after a call to MCEnableAxis().
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

Thisfunction is used to initialize a servo motor to a specified position where the encoder index pulse occurs. The function
remains pending until the encoder index input of the module goes active, after which acall to MCEnableAxis() setsthe
position where the encoder index pulse occurred to the value of the position parameter. This function does not cause any
motion to be started or stopped.

For stepper axes this function performsin asimilar fashion. The difference is that the stepper axis uses the home input
signal in place of the encoder index input signal.

DCX-PCI100 User’'s Manual 207

MCAPI Motion Functions

Only after an M CEnableAxis() call will the position where the encoder index pulse
occurred for axis be set to the value of the position parameter.

Compatibility

Open-loop stepper axes do not support this command, since the connected encoder is considered an auxiliary encoder.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MClndexArm(hCtir: HCTRLR; axis: Word; position: Double): Longint; stdcall;
VB: Function MCIndexArm(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double) As Long

LabVIEW: Not Supported

MCCL Reference
1A

See Also
MCBIlockBegin(), MCFindAuxEncldx(), MCFindIndex(), MCWaitForIndex()

MCLearnPoint

M CL ear nPoint() stores the current actual position or target position for the specified axisin point memory at location
specified by index.

long int MCLearnPoint(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
WORD index, // point memory index
WORD mode // type of position to store
)E
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to store data for.
index Storage location for point data.
mode Determines if the actual position or the target position will be stored:
Value Description
MC _LRN_POSITION Learns the current actual position for the specified axis.
MC _LRN_TARGET Learns the current target position for the specified axis.

208 Precision MicroControl

MCAPI Motion Functions

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments
The actual position of an axis may be stored asit is moved; or, by disabling the axis, position commands may be issued to
the axis, and the target positions stored, without actually moving the axis (see online help examples).

The number of points that may be stored will vary with the number of motor axes installed and the type of controller (see
the compatibility section, below, for controller dependent limits). The first storage is location zero (not location 1).

The current position of all axes may be stored by setting the Axis parameter to MC_ALL_AXES.

Compatibility
The number of points that can be stored is dependent on the controller type and in some cases on the number of installed
axes:

Controller 1 2 3 4 5 6 7 8

DCX-PCI300 256 256 256 256 256 256 256 256
DCX-PCI100 256 256 256 256 256 256 256 256
DCX-AT300 1536 768 512 384 307 256 n/a n/a
DCX-AT200 1536 768 512 384 307 256 n/a n/a
DCX-PC100 4096 2048 1365 1024 819 682 585 512
DC2-PC100 n/a 2048 n/a n/a n/a n/a n/a n‘a
DCX-PCI300 256 256 256 256 256 256 256 256
DCX-PCI100 256 256 256 256 256 256 256 256
DCX-AT300 1536 768 512 384 307 256 n/a n/a
DCX-AT200 1536 768 512 384 307 256 n/a n/a
DCX-PC100 4096 2048 1365 1024 819 682 585 512

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototyp es

Delphi: function MCLearnPoint(hCtlr: HCTRLR; axis: Word; index: Longint; mode: Word): Longint; stdcall;

VB: Function MCLearnPoint Lib(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal index As Long, ByVal mode As
Integer) As Long

LabVIEW: Not Supported

MCCL Reference
LP, LT

See Also
MCM oveToPoint()

DCX-PCI100 User’'s Manual 209

MCAPI Motion Functions

MCMoveAbsolute

M CM oveAbsolute() initiates an absolute position move for the specified axis.

void MCMoveAbsolute(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double position // new absolute position
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to move.
position Absolute position to move to.
Returns

This function does not return a value.

Comments
The axis must be enabled prior to executing amove (an exception to thisis when the M CM oveAbsolute() is used with
M CL ear nPoint() in target mode).

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes

Delphi: procedure MCMoveAbsolute(hCtlr; HCTRLR; axis: Word; position: Double); stdcall;

VB: Sub MCMoveAbsolute(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)
LabVIEW: Execute [T] -

Handle In i:ﬂ-’é Handle Out
Axiz In [1] - Abs L Axis Out
Position [0.0) — ——

MCMoveAbsolute_ vi

MCCL Reference
MA

See Also
MCMoveRelative(), M CSetPosition()

210 Precision MicroControl

MCAPI Motion Functions

MCMoveRelative

MCM oveRelative() initiates arelative position move for the specified axis or all axes.

void MCMoveRelative(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double distance // distance to move from current position
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to move.
distance Amount of distance to move.
Returns

This function does not return a value.

Comments
The axis must be enabled prior to executing a move (an exception to thisis when the M CM oveRelative() is used with
M CL ear nPoint() in target mode).

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes

Delphi: procedure MCMoveRelative(hCtlr; HCTRLR; axis: Word; distance: Double); stdcall;

VB: Sub MCMoveRelative(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal distance As Double)
LabVIEW: Execute [T] - :

Handle In Eb—? Handle Out
Axiz In [1] - =M L Axis Out
Distance [0.0) — ——

MCMoveHRelative. vi

MCCL Reference
MR

See Also
MCM oveAbsolute(), M CSetPosition()

DCX-PCI100 User’'s Manual 211

MCAPI Motion Functions

MCMoveToPoint

M CM oveToPoint() initiates an absolute move to a stored location for the specified axis or al axes.

long int MCMoveToPoint(

HCTRLR hCtlr, // controller handle

WORD axis, // axis number

WORD index // index of point to move to
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to move.
index Index of stored location to move to.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments

The motor must be enabled prior to executing aM CM oveT oPoint() and the point specified by index must have been
stored by a previous call to M CL earnPoint(). All axes may be instructed to move by setting the axis parameter to
MC_ALL_AXES.

Compatibility

The DC2 stepper axes do not support this command.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCMoveToPoint(hCtlr: HCTRLR; axis: Word; index: Longint): Longint; stdcall;
VB: Function MCMoveToPoint Lib(ByVal hCtrir As Integer, ByVal axis As Integer, ByVal index As Long) As Long

LabVIEW: Not Supported

MCCL Reference
MP

See Also
MCLearnPoint()

MCReset

M CReset() performs a complete reset of the axis or controller, leaving the specified axis (or axes) in the disabled state.

212 Precision MicroControl

MCAPI Motion Functions

void MCReset(

HCTRLR hCtlr, // controller handle
WORD axis // axis number
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to reset.
Returns

This function does not return a value.

Comments
Setting the axis parameter to MC_ALL_AXES will cause the specified controller to be reset.

If you have enabled the hardware reset feature of the DCX-AT, or DCX-PC100 controllers M CReset() will perform a hard
reset when axisis equal to MC_ALL_AXES, or a soft reset when Axis specifies a particular axis. If thisfeatureis off (the
default state), M CReset() issuesthe “RT” command to the board to perform any reset (thisis a"soft" reset). On the DCX-
AT200 and DCX-AT300 you must set jumper JP2 to connect pins 1 and 2 if Hard Reset is enabled, or connect pins5 and 6
(factory default) if Hard Reset is disabled. On the DCX-PC100 you must set jumper JP4 to connect pins 1 and 2 if Hard
Reset is enabled, or connect pins 5 and 6 (factory default) if Hard Reset is disabled. See the Maotion Control Panel online
help for how to enable the MCAPI Hardware Reset feature.

Compatibility

The DC2 series, DCX-PC100, DCX-AT100, and DCX-AT200 (prior to firmware version 1.2a) controllers do not support
the resetting of individual axes. In these cases when this command is executed, the axis parameter isignored and a
controller reset is performed.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCReset(hCtlr; HCTRLR; axis: Word); stdcall;
VB: Sub MCReset Lib(ByVal hCtrlr As Integer, ByVal axis As Integer)
LabVIEW: Exgcite (T) e
Hardle In & Handle Cut
axisIn (01 Eeml - Axis Ot
MCReset. vi

MCCL Reference
RT

See Also
MCAbort(), MCStop()

DCX-PCI100 User’'s Manual 213

MCAPI Motion Functions

MCStop

MCStop() stops the specified axis or axes using the pre-programmed decel eration values.

void MCStop(

HCTRLR hCtlr, // controller handle
WORD axis // axis number
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to stop.
Returns

This function does not return a value.

Comments
This function initiates a controlled axis stop, as compared with M CAbort() which stops the axis abruptly.

M ClIsStopped() or MCWaitFor Stop(). Then call M CEnableAxis() prior to issuing

0 Following a call to MCStop() verify that the axis has stopped using or
another motion command.

Following a call to MCStop() on the DCX-PC100 controller when in velocity mode,
call M CSetOperatingMode() prior to issuing another motion command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCStop(hCtlr: HCTRLR; axis: Word); stdcall;
VB: Sub MCStop(ByVal hCtrir As Integer, ByVal axis As Integer)
LabVIEW: Execute [T] -~

Handle In =1 Handle Out

Axis In [1] - Axis Out

MCS5top.vi

MCCL Reference
ST

See Also
MCAbort(), MCEnableAxis(), MClsStopped(), MCSetOperatingM ode(), MCWaitFor Stop()

214 Precision MicroControl

MCAPI Motion Functions

MCWait

M CWait() waits the specified number of seconds before returning to the caller.

void MCWait(

HCTRLR hCtlr, // controller handle
double period // length of delay
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
period Length of delay, in seconds.
Returns

This function does not return a value.

Comments
The delay is specified in seconds, unless M CSetScale() has been called to change the time scale.

the board until period elapses. We recommend creating your own time based |ooping

Once this command is issued, the calling program will not be able to communicate with
& structure.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWait(hCtlr; HCTRLR; period: Double); stdcall;
VB: Sub MCWait(ByVal hCtrlr As Integer, ByVal period As Double)
LabVIEW:
EHECutE [T]
Handle In Handle Dut
Time [1.0) ——_ &
MO ait. vi

MCCL Reference
WA

See Also
M CWaitFor Position(), MCWaitFor Relative(), MCWaitFor Stop(), MCWaitFor Target()

DCX-PCI100 User’'s Manual 215

MCAPI Motion Functions

MCWaitForEdge

M CWaitFor Edge() waits for the coarse home input to go to the specified logic level for a servo, closed-loop stepper, or an
MC260 open-loop stepper. When used with an open-loop stepper (excluding an MC260) this function completes a call to
M CEdgeArm(). Note that when used with an open-loop stepper (excluding an MC260), the parameter state has no effect.

long int MCWaitForEdge(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
short int state // selects logic level to wait for
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait for.
state Selects the coarse home logic level to wait for:
Value Description
TRUE Wait for coarse home to go active.
FALSE Wait for coarse home to go inactive.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments

This function behaves differently depending on what type of module axis is and whether it isin open-loop or closed-loop
mode. In both cases instruction processing is paused until the home or coarse home input, respectively, goes to the specified
logic state. In open-loop mode, this function is one of three functions that must be called to set the home input signal
transition to a predetermined position. In closed-loop mode, this function is used to find a home sensor to qualify an index
pulse on servo or closed-loop stepper. However, using this function with a closed-loop system is discouraged.

In open-loop mode, exclusively stepper modules (excluding the MC260, see the closed-loop section for function behavior),
this function should be called after M Cl sEdgeFound() confirms that the home input has latched from a previous call to
MCEdgeArm(). After this function returns control to the calling program, acall to M CEnableAxis() will apply position
defined in M CEdgeArm() to the position where the home input first latched.

the board until the home input signal is detected. We recommend calling

Once this command is issued, the calling program will not be able to communicate with
& M ClIsEdgeFound(), to confirm the home input is active prior to calling this function.

state has no effect. Also, thisfunction is only looking for an active signal state, not a

ﬂ Note that when used with an open-loop stepper (excluding an MC260), the parameter
transition.

216 Precision MicroControl

MCAPI Motion Functions

When a module used in closed-loop mode or with an MC260, this function is called by itself to return when the home input
state level defined by stateis observed. To assure aleading or trailing edge, this function would have to be called twice
with state different in both cases.

Once this command is issued, the calling program will not be able to communicate with
the board until state matches the coarse home logic level. We recommend creating your
own looping structure based on M CDecodeStatus() and MC_STAT _INP_HOME
instead of using this function.

programming languages, including those that define TRUE as a non-zero value other

ﬂ state will accept any non-zero value as TRUE, and will work correctly with most
than one (one is the Windows default value for TRUE).

See the example code in the online help for details of how to use MCWaitFor Edge().

Compatibility
The DC2 stepper axes, MC150, and MC160 modules do not support this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCWaitForEdge(hCtlr: HCTRLR; axis: Word; state: Smallint): Longint; stdcall;
VB: Function MCWaitForEdge(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal state As Integer) As Long

LabVIEW: Not Supported

MCCL Reference
WE

See Also
MCEdgeArm(), MCFindEdge(), M CFindIndex(), M ClsEdgeFound()

MCWaitForindex

M CWaitForIndex() waits until the index pulse has been observed on servo or closed-loop stepper axis.

long int MCWaitForlndex(

HCTRLR hCtlr, // controller handle
WORD axis // axis number
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait for.

DCX-PCI100 User’'s Manual 217

MCAPI Motion Functions

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

Thisfunction is used to initialize a motor to a given position relative to the index pulse. When called after

M CIndexArm(), it provides the exact same functionality as M CFindl ndex(). The benefit is that you may query the
controller through M Cl sl ndexFound() to see that the index has latched. Once the index has been seen, acall to

M CWaitForIndex() will not cause the board to stop communicating where M CFindl ndex() has the potentia to cause the
controller to stop communicating.

Once this command is issued, the calling program will not be able to communicate with
the board until axis captures the encoder index. We recommend confirming that

M CIndexArm() has captured the index by using M Cl sl ndexFound() before calling
MCWaitForIndex() to avoid this problem.

Only after an M CEnableAxis() call will the position where the encoder index pulse
occurred for axis be set to the value of the position parameter.

Compatibility

Open-loop stepper axes do not support this command, since the connected encoder is considered an auxiliary encoder.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MCWaitForindex(hCtlr: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MCWaitForindex(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long

LabVIEW: Not Supported

MCCL Reference
wi

See Also
M CFindAuxEncldx(), MCFindEdge(), M CFindIndex(), M ClndexArm(), M ClslndexFound()

MCWaitForPosition

M CWaitFor Position() waits for the axis to reach the specified position before allowing the next command to execute.

218 Precision MicroControl

MCAPI Motion Functions

void MCWaitForPosition(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double position // position to wait for
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait on to reach specified position.
position Absolute position to wait for.
Returns

This function does not return a value.

Comments
Y ou must start the specified axis moving, and make certain the motion will at least reach the wait position, in order for this
function to return to the calling program.

Once this command is issued, the calling program will not be able to communicate with
the board until axis' encoder reaches position.

Compatibility
The DC2 stepper axes, MC150, and MC160 modules do not support this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForPosition(hCtlr: HCTRLR; axis: Word; position: Double); stdcall;
VB: Sub MCWaitForPosition(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal position As Double)

LabVIEW: Not Supported

MCCL Reference
WP

See Also
MCWait(), MCWaitFor Relative(), MCWaitFor Stop(), MCWaitFor Target()

MCWaitForRelative

M CWaitFor Relative() waits for the axisto reach a position that is specified relative to the target position.

DCX-PCI100 User’'s Manual 219

MCAPI Motion Functions

void MCWaitForRelative(

HCTRLR hCtlr, // controller handle

WORD axis, // axis number

double distance // relative position to wait for
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to wait on for to reach specified position.
distance Position, relative to the current target position, to wait for.
Returns

This function does not return a value.

Comments
Y ou must start the specified axis moving, and make certain the motion will at least reach the wait position, in order for this
function to return to the calling program. The position argument is specified as a distance from the target position.

Once this command is issued, the calling program will not be able to communicate with
the board until axis' encoder traverses distance.

Compatibility
The DC2 stepper axes, MC150, and MC160 modules do not support this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCWaitForRelative(hCtlr: HCTRLR; axis: Word; distance: Double); stdcall;
VB: Sub MCWaitForRelative(ByVal hCtrir As Integer, ByVal axis As Integer, ByVal distance As Double)

LabVIEW: Not Supported

MCCL Reference
WR

See Also
MCWait(), MCWaitFor Position(), MCWaitFor Stop(), MCWaitFor Target()

MCWaitForStop

M CWaitFor Stop() waits for the specified axis or al axesto cometo astop. An optional dwell after the stop may be
specified within this command to allow the mechanical system to come to rest.

220 Precision MicroControl

MCAPI Motion Functions

void MCWaitForStop(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double dwell // dwell time after stop
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number function is waiting for to stop.
dwell Delay time after stop has occurred.
Returns

This function does not return a value.

Comments
M CWaitFor Stop() is necessary for synchronizing motions, and for making certain that a prior motion has completed
before beginning a new mation.

the board until axis' encoder comes to rest. We recommend using M Cl sStopped() or

Once this command is issued, the calling program will not be able to communicate with
& MCIsAtTarget() instead.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes

Delphi: procedure MCWaitForStop(hCtlr: HCTRLR; axis: Word; dwell: Double); stdcall;

VB: Sub MCWaitForStop(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal dwell As Double)
LabVIEW:

Handle In ; Handle Out
Axis In [1] - @ L Axis Out
Dwell (0.0] —

MOCWw aitForStop_wi

MCCL Reference
WS

See Also
MCIsAtTarget(), MClsStopped(), MCWait(), MCWaitFor Position(), MCWaitFor Relative(),
MCWaitFor Target()

DCX-PCI100 User’'s Manual 221

MCAPI Motion Functions

MCWaitForTarget

M CWaitFor Target() waits for the specified axis to reach itstarget position. An optional dwell after the stop may be
specified within this command to allow the mechanical system to cometo rest.

void MCWaitForTarget(

HCTRLR hCtlr, // controller handle

WORD axis, // axis number

double dwell // dwell time after stop
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number function is waiting for to reach the target position.
dwell Delay time after stop has occurred.
Returns

Thisfunction does not return avalue.

Comments
For a servo axisto be considered "at target" it must remain within the Deadband region for the DeadbandDelay period.
Deadband and DeadbandDelay are specified in the MCMOTIONEX configuration structure.

Once this command is issued, the calling program will not be able to communicate with
the board until axis' encoder settles within the Deadband region for the
DeadbandDelay period. We recommend using M CDecodeStatus() along with
MC_STAT_AT_TARGET instead.

Compatibility
The DC2 and DCX-PC100 controllers do not support this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Pr ototypes
Delphi: procedure MCWaitForTarget(hCtlr: HCTRLR; axis: Word; dwell: Double); stdcall;
VB: Sub MCWaitForTarget(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal dwell As Double)

LabVIEW: Not Supported

MCCL Reference
WT

See Also
MCGetMotionConfigEx(), M CSetM otionConfigEx(), MCWaitFor Position(), M CWaitFor Relative(),
MCWaitFor Stop()

222 Precision MicroControl

Reporting Functions

DCX-PCI100 User’'s Manual 223

MCAPI Reporting Functions

Chapter Contents

224 Precision MicroControl

MCAPI Reporting Functions

Reporting functions allow the calling program to query the board to determine how parameters have been configured, as
well as getting information regarding the position and status of any given axis.
Also included in this category are functions that allow the program to trap and decode errors.

To see examples of how the functions in this chapter are used, please refer to the online Motion Control APl Reference.

MCDecodeStatus

M CDecodeStatus() permits you to test flags in the controller status word in away that isindependent of the type of
controller being inspected.

long int MCDecodeStatus(

HCTRLR hCtlr, // controller handle
DWORD status, // status word
long iInt bit // status bit selection flag
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
status Status value returned from a previous call to MCGetStatus().
bit Status bit to decode. Over fifty different status bit flags (not all flags are
supported by all controllers) are defined in the Constants section of this help
file. Valid Bit constants begin with "MC_STAT _".
Returns

Thisfunction returns TRUE if the selected bit is set. Otherwise, FALSE isreturned if the bit is not set or the bit does not
apply to this controller type.

Comments
Using this function to test the status word returned by M CGetStatus() isolates the program from controller dependent bit
ordering of the status word. The sample programs include numerous examples of the M CDecodeStatus() function.

DCX-PCI100 User’'s Manual 225

MCAPI Reporting Functions

To assist with proper constant selection two tables have been provided with the online
help. The Status Word Lookup Table lists the constants in the same order as the status

ﬂ word bits they represent for each controller model, and has been included in Appendix
C. A second table, The Status Word Cross Reference, lists the controller models
supported by each constant, and will only be found in the online help.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes

Delphi: function MCDecodeStatus(hCtlr: HCTRLR; status, bit: Longint): Longint; stdcall;

VB: Function MCDecodeStatus(ByVal hCtrlr As Integer, ByVal status As Long, ByVal bit As Long) As Long
LabVIEW: Handle In mae Handle Out

Status In [0] dood —— Status Out
Flag Selector [1] -

MCDecodeStatus._ vi

MCCL Reference

None

See Also
MCGetStatus(), online help sample programs

MCErrorNotify

M CErrorNotify() registers with the MCAPI a specific window procedure that is to receive message based notification of
API errorsfor this controller handle.

void MCErrorNotify(

HWND hWnd, // error handling window procedure
HCTRLR hCtlr, // controller handle
DWORD errorMask // mask to select error category
)
Parameters
hwnd Handle of window procedure to receive error messages.
hCtlr Controller handle, returned by a successful call to MCOpen().
errorMask Selects error categories to be notified about. Any combination of the

MCERRMASK _xxxx constants may be OR’ed together to select errors to be

226 Precision MicroControl

MCAPI Reporting Functions

reported. The constant MCERRMASK_STANDARD includes the most common
error messages.

Returns
This function does not return a value.

Comments

Only one window procedure at atime may receive error messages for a controller handle. If another window procedure
attempts to hook the error messages for a handle that already has an error handler, it will replace the current error handler.
In practice, thisis not a problem as applications have control of the handle. They can decide who to have hook the error
notification mechanism.

The error notification message is a pre-agreed upon, inter-application message that goes by the name "M CErrorNotify".
Application programs need to call the Windows function Register WindowM essage() with the message name
“MCErrorNotify” to obtain the numeric value if the message. The error message will have a numeric error code asits
wParam, and a pointer to a null-terminated ASCI| string representation of the name of the function that caused the error as
its IParam. The CWDemo sample application includes an example of hooking the error notification loop and processing
€rror messages.

In the event of abad controller handle passed to an API function as part of an API call, an error message will be broadcast
to every windows procedure. This is done because with a bad handle thereis no way for the API to identify which window
procedure should receive the error. Rather than quietly tell no one, the API playsit safe and tells everyone.

The standard Windows message queue is small and may be over-run if error messages occur in rapid succession. During
application development, when errors are most likely, you may want to call the Windows function SetM essageQueue() in
your WinMain function to set the application queue to something larger than the default size of 8 messages.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.2 or higher

Prototypes
Delphi: procedure MCErrorNotify(hWnd: HWnd; hCtir: HCTRLR; errorMask: Longint); stdcall;
VB: Sub MCErrorNotify(ByVal hwnd As Long, ByVal hCtrlr As Integer, ByVal errorMask As Long)

LabVIEW: Not Supported

MCCL Reference

None

See Also
MCGetError(), MCTrandateErrorEx(), CWDemo sample code

DCX-PCI100 User’'s Manual 227

MCAPI Reporting Functions

MCGetAccelerationEx

M CGetAccelerationEXx() returns the current programmed acceleration value for the given axis, in whatever units the axis
is configured for.

long int MCGetAccelerationEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pAccel // acceleration return value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query for acceleration
pAccel Pointer to a double precision floating point variable that will hold the
acceleration for the specified axis.
Returns

The acceleration value is placed in the variable specified by the pointer pAccel and MCERR_NOERROR is returned if
there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by
pAccdl isleft unchanged.

Comments

The acceleration value returned by this function is the same as the Acceleration field of the MCM OTIONEX structure
returned by M CGetM otionConfigEXx(); M CGetAccelerationEx() provides a short-hand method for obtaining just the
acceleration value.

0 Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2 stepper axes do not support ramping.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Pr ototypes
Delphi: function MCGetAccelerationEx(hCtlr: HCTRLR; axis: Word; var pAccel: Double): Longint; stdcall;
VB: Function MCGetAccelerationEx(ByVal hCtrlr As Integer, ByVal axis As Integer, accel As Double) As Long
LabVIEW: Execute [T] -
Handle In Handle Out
Axis In - H Axiz Out
Acceleration
Ermror

MCGetAccelerationEx. vi

MCCL Reference

None

228 Precision MicroControl

MCAPI Reporting Functions

See Also
MCSetAcceleration(), M CGetM otionConfigEXx()

MCGetAuxEncldxEx

M CGetAuxEncl dxEx() returns the position where the auxiliary encoder's index pul se was observed.

long iInt MCGetAuxEncldxEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* plndex // index position return value
);
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pindex Pointer to a double precision floating point variable that will hold the auxiliary
encoder index position for the specified axis.
Returns

The auxiliary encoder index position is placed in the variable specified by the pointer plndex and MCERR_NOERROR is
returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable
pointed to by plndex is|eft unchanged.

Comments
The auxiliary encoder's position may be set (to zero) using the M CSetAuxEncPos() function. The index position reported
will be relative to this zero position.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support auxiliary encoders.
Closed-loop steppers do not support auxiliary encoder functions, since the connected encoder is considered a primary
encoder.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetAuxEncldxEx(hCtlr: HCTRLR,; axis: Word; var pindex: Double): Longint; stdcall;
VB: Function MCGetAuxEncldxEx(ByVal hCtrlr As Integer, ByVal axis As Integer, index As Double) As Long

LabVIEW: Not Supported

DCX-PCI100 User’'s Manual 229

MCAPI Reporting Functions

MCCL Reference
AZ

See Also
M CFindAuxEncldx(), MCGetAuxEncPosEXx(), M CSetAuxEncPos()

MCGetAuxEncPosEx

M CGetAuxEncPosEX() returns the current position of the auxiliary encoder.

long int MCGetAuxEncPosEXx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pPosition // position return value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pPosition Pointer to a double precision floating point variable that will hold the auxiliary
encoder position for the specified axis.
Returns

The auxiliary encoder position is placed in the variable specified by the pointer pPosition and MCERR_NOERROR is
returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable
pointed to by pPosition is left unchanged.

Comments
The auxiliary encoder's position may be set using the M CSetAuxEncPos() function.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support auxiliary encoders.
Closed-loop steppers do not support auxiliary encoder functions, since the connected encoder is considered a primary
encoder.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetAuxEncPosEx(hCtlr: HCTRLR; axis: Word; var pPosition: Double): Longint; stdcall;

230 Precision MicroControl

MCAPI Reporting Functions

VB: Function MCGetAuxEncPosEx(ByVal hCtrlr As Integer, ByVal axis As Integer, position As Double) As Long
LabVIEW: Execute [T] -~
Handle In Handle Out

Axis In [1] - L Axiz Out
AUR— Pozition
Error

MCGetAuxEncPosEx vi

MCCL Reference
AT

See Also
M CGetAuxEncl dxEx(), MCSetAuxEncPos ())

MCGetAxisConfiguration

M CGetAxisConfiguration() obtains the configuration for the specified axis. Configuration information includes the axis
type, servo motor update rates, stepper motor step rates, etc.

long int MCGetAxisConfiguration(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCAXISCONFIG* pAxisCfg // address of axis configuration structure
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pAXxisCfg Points to an MCAXISCONFIG structure that receives the configuration
information.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments
This function allows the application to query the driver about installed motor axis hardware and capabilities.

Before you call M CGetAxisConfiguration() you must set the cbSize member to the size of the MCAXISCONFIG data
structure. C/C++ programmers may use sizeof(), Visual Basic and Delphi programmers will find current sizes for these
data structures in the appropriate MCAPI. XXX header file.

Compatibility

There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

DCX-PCI100 User’'s Manual 231

MCAPI Reporting Functions

Version: MCAPI 3.0 or higher

Prototyp es
Delphi: function MCGetAxisConfiguration(hCtlr: HCTRLR; axis: Word; var pAxisCfg: MCAXISCONFIG): Longint; stdcall;
VB: Function MCGetAxisConfiguration(ByVal hCtrlr As Integer, ByVal axis As Integer, axisCfg As MCAxisConfig) As Long

LabVIEW: Not Supported

MCCL Reference
Dual Port RAM

See Also
MCAXISCONFI G structure definition

MCGetBreakpointEx

M CGetBreakpointEx() returns the current breakpoint position as placed by the M CWaitFor Position() or
M CWaitFor Relative() command.

long int MCGetBreakpointEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pBreakpoint // breakpoint position return value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pBreakpoint Pointer to a double precision floating point variable that will hold the breakpoint
position for the specified axis.
Returns

The breakpoint position is placed in the variable specified by the pointer pBreakpoint and MCERR_NOERROR is returned
if there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by
pBreakpoint isleft unchanged.

Comments

0 Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

The DCX-PC100 controller and stepper axes do not support this command.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas

232 Precision MicroControl

MCAPI Reporting Functions

Library: use mcapi32.lib
Version: MCAPI 1.3 or higher

Prototypes

Delphi: function MCGetBreakpointEx(hCtlr; HCTRLR; axis: Word; var pBreakpoint: Double): Longint; stdcall;

VB: Function MCGetBreakpointEx(ByVal hCtrlr As Integer, ByVal axis As Integer, breakpoint As Double) As Long
LabVIEW: Execute [T]

Handle In Handle Out

Axiz In [1] - Axis Out
Breakpont
Error

MCGetBreakpointE x_vi

MCCL Reference
B

See Also
M CWaitFor Position(), MCWaitFor Relative()

MCGetCaptureData

M CGetCaptureData() retrieves data collected following the most recent M CCaptureData() call.

long int MCGetCaptureData(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number to get capture data from
long iInt type, // type of capture data to retrieve
long int start, // index of starting point
long iInt points, // number of data points to retrieve
double* pData // pointer to data array to for data
)E
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
type Specifies the type of data to retrieve:
Value Description
MC_CAPTURE_ACTUAL Retrieves the captured actual position data.
MC_CAPTURE_ERROR Retrieves the following error (difference between actual and
optimal positions).
MC_CAPTURE_OPTIMAL Retrieves the captured optimal position data.
MC_CAPTURE_TORQUE Retrieves the captured torque data.
start Index of the first data point to retrieve. The index is zero based, i.e. the first

data point is 0, not 1.

DCX-PCI100 User’'s Manual 233

MCAPI Reporting Functions

points Total number of data points to retrieve.
pData Pointer to a double precision floating point variable that will hold the breakpoint
position for the specified axis.

Returns

This function places one or more captured data values in the array specified by the pointer pData, and
MCERR_NOERROR isreturned if there were no errors. If there was an error, one of the MCERR_xxxx error codesis
returned and state of the array pointed to by pData is undefined.

Comments
Capture data settings (number of points, delay, etc.) are set with the M CCaptureData() function.

Beginning with version 3.0 of the MCAPI users may use the M CGetAxisConfiguration() function to determine the data
capture capabilities of an axis.

Compatibility

The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the DCX-PC100 controller do
not support data capture. The DCX-PCI100 controller does not support torque mode nor do any stepper axes, which
prevents the capture of torque values.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototyp es

Delphi: function MCGetCaptureData(hCtlr: HCTRLR; axis: Word; type, start, points: Longint; var pData: Double): Longint;
stdcall;

VB: Function MCGetCaptureData(ByVal hCtrir As Integer, ByVal axis As Integer, ByVal start, ByVal argtype As Long,

ByVal points As Long, data As Double) As Long
LabVIEW: Not Supported

MCCL Reference
DO, DR, DQ

See Also
M CCaptureData(), MCGetAxisConfiguration()

MCGetContourConfig

M CGetContour Config() obtains the contouring configuration for the specified axis.

long int MCGetContourConfig(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCCONTOUR* pContour // structure to hold contour data

)

234 Precision MicroControl

MCAPI Reporting Functions

Parameters

hCitlr Controller handle, returned by a successful call to MCOpen().

axis Axis number to query.

pContour Points to an MCCONTOUR structure that receives the configuration information
for Axis.

Returns

Thereturn value is TRUE if the function is successful. A return value of FALSE indicates the function did not find the Axis
specified (hCtlr or axisincorrect).

Comments

0 Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetContourConfig(hCtlr: HCTRLR; axis: Word; var pContour: MCCONTOUR): Smallint; stdcall;
VB: Function MCGetContourConfig Lib(ByVal hCtrir As Integer, ByVal axis As Integer, contour As MCContour) As Integer

LabVIEW: Not Supported

MCCL Reference
Controller RAM Motor Tables

See Also
M CSetContour Config(), MCCONTOUR structure definition

MCGetContouringCount

M CGetContouringCount() obtains the current contour path motion that an axisis performing.

long int MCGetContouringCount(

HCTRLR hCtlr, // controller handle
WORD axis // axis number
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().

DCX-PCI100 User’'s Manual 235

MCAPI Reporting Functions

axis Axis number to query.

Returns
Thereturn value is the number of linear or user defined contour path motions that have been compl eted.

Comments
This function allows the application to determine in what area of a continuous path motion an axisis at any given time.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetContouringCount(hCtlir: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MCGetContouringCount(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long

LabVIEW: Not Supported

MCCL Reference
X

See Also
M CGetContour Config(), M CSetContour Config(), MCCONTOUR structure definition

MCGetCount

M CGetCount() retrieves various count values from the specified axis.

long int MCGetCount(
HCTRLR hCtlr, // controller handle
WORD axis, // axis number
long iInt type, // type of count to retrieve
long int* pCount // variable to hold count value

)

Parameters

hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.

type Specifies the type of data to retrieve:

236 Precision MicroControl

MCAPI Reporting Functions

Value Description

MC_COUNT_CAPTURE Retrieves the number of captured positionsin high-speed
capture mode.

MC_COUNT_COMPARE Retrieves the number of successful comparisonsin high-
speed compare mode.

MC_COUNT_CONTOUR Retrieves the index of the currently executing contour move
in contouring mode.

MC_COUNT_FILTER Retrieves the number of digital filter coefficients currently
loaded.

MC_COUNT_FILTERMAX Retrieves the maximum number of digital filter coefficients
supported.

pCount Variable to hold requested count value.

Returns
MCERR_NOERROR isreturned if there were no errors. If there was an error, one of the MCERR_xxxx error codesis
returned.

Comments
MCGetCount() isageneral purpose function for retrieving values related to high-speed capture mode, high-speed
compare mode, contouring mode, and digital filter mode.

0 Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

The DC2 stepper axes, and the MC100, MC110, MC150, MC160 modules when installed on the DCX-PC100 controller do
not support data capture. The DCX-PCI100 controller does not support torque mode nor do any stepper axes, which
prevents the capture of torque values. The DC2, DCX-PC100, DCX-AT?200, and DCX-PCI100 controllers do not support
high-speed position compare. The MCAPI does not does not support contouring on the DC2, DCX-PC100, and DCX-
PCI100 controllers. The DC2, DCX-PC100, DCX-AT200, DCX-PCI100 controllers, MC360, and MC362 modules do not
support digital filtering.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MCGetCount(hCtlr: HCTRLR; axis: Word; type: Longint; var pCount; Longint): Longint; stdcall;
VB: Function MCGetCount(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal argtype As Long, count As Long) As Long

LabVIEW: Not Supported

MCCL Reference
CG, GC, TX

See Also
M CGetContouringCount()

DCX-PCI100 User’'s Manual 237

MCAPI Reporting Functions

MCGetDecelerationEx

M CGetDeceler ationEX() returns the current programmed decel eration value for the given axis, in whatever units the axis
is configured for.

long int MCGetDecelerationEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pDecel // deceleration return value
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pDecel Pointer to a double precision floating point variable that will hold the
deceleration for the specified axis.
Returns

The deceleration is placed in the variable specified by the pointer pDecel and MCERR_NOERROR is returned if there
were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by pDecel
isleft unchanged.

Comments
The deceleration value is the same as that reported by the M CGetM otionConfigEx() function, these functions provide a
short-hand method for obtaining just the deceleration value.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetDecelerationEx(hCtlr: HCTRLR; axis: Word; var pDecel: Double): Longint; stdcall;
VB: Function MCGetDecelerationEx(ByVal hCtrlr As Integer, ByVal axis As Integer, decel As Double) As Long

238 Precision MicroControl

MCAPI Reporting Functions

LabVIEW: Execute [T]

Handle In : Handle Dut

Axis In [1] - E Axis Out
Deceleration
Error

MCGetD ecelerationEx.vi

MCCL Reference
Controller RAM Motor Tables

See Also
M CSetDeceleration(), M CGetM otionConfigEXx()

MCGetDigitalFilter

M CGetDigitalFilter () obtains the digital filter coefficients for the specified axis.

long int MCGetDigitalFilter(

HCTRLR hCtlr // controller handle
WORD axis, // axis number
double* pCoeff, // array to hold retrieved coefficients
long int num, // number of coefficients to retrieve
long Int* pActual // number of valid coefficients retrieved
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pCoeff Array to hold retrieved coefficients, must be num elements long (or longer). If
this pointer is NULL, no coefficients are retrieved.
num Number of coefficients to retrieve, cannot be larger than the maximum digital
filter size supported by the controller.
pActual Points to long integer that will be set equal to the number of valid coefficients
currently loaded for this axis. If this pointer is NULL, no value is returned.
Returns
MCERR_NOERROR isreturned if there were no errors. If there was an error, one of the MCERR_xxxx error codesis
returned.
Comments

Thisfunction retrieves zero or more of the digital filter coefficients currently loaded in an axis. Optionally the actual
number of loaded coefficientsis also returned (this value is also available from M CGetCount()).

0 Y ou may not set the axis parameter to MC_ALL_AXES for this command.

DCX-PCI100 User’'s Manual 239

MCAPI Reporting Functions

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI 100 controllers, MC360, and M C362 modules do not support digital
filtering.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.1 or higher

Prototypes

Delphi: function MCGetDigitalFilter(hCtlr: HCTRLR; axis: Word; coeff: Array of Double; num: Longint; var pActual: Longint):
Longint; stdcall;

VB: Function MCGetDigitalFilter(ByVal hCtrlr As Integer, ByVal axis As Integer, coeff As Double, ByVal num As Long,

actual As Long) As Long
LabVIEW: Not Supported

MCCL Reference
GF

See Also
M CEnableDigitalFilter (), MCGetCount(), M ClsDigjtalFilter (), M CSetDigital Filter ()

MCGetError

MCGetError () returnsthe most recent error code for hCtlr.

short int MCGetError(

HCTRLR hCtlr // controller handle
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
Returns

Thereturn value is anumeric error code (or MCERR_NOERROR if there is no error) for the most recent error detected for
the specified controller.

Comments
Theerror iscleared (set equal to MCERR_NOERROR) after it has been read. Errors are maintained on a per-handle basis,
such that callsto M CGetError () only return errors that occurred during function calls that used the same handle.

A more flexible way to detect errorsisto use the M CError Notify(). Thisfunction delivers error messages directly to the
window procedure of your choice.

Compatibility

There are no compatibility issues with this function.

240 Precision MicroControl

MCAPI Reporting Functions

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.2 or higher

Prototypes
Delphi: function MCGetError(hCtlr: HCTRLR): Smallint; stdcall;
VB: Function MCGetError(ByVal hCtrlr As Integer) As Integer
LabVIEW: Execute [T] -~ ,

Handle In Handle Out

Errar

Error Code [0]

MCGetError vi

MCCL Reference

None

See Also
MCErrorNotify(), MCTrandateError Ex()

MCGetFilterConfigEx

M CGetFilter ConfigEx() obtains the current PID filter configuration for a servo motor or the closed-loop configuration for
a stepper motor operating in closed-loop mode. Please see the online MCAPI Reference for the M CGetFilter Config()

prototype.
long int MCGetFilterConfigEx(
HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCFILTEREX* pFilter // address of filter configuration
// structure
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pFilter Points to an MCFILTEREX structure that receives the PID filter configuration
information for axis.
Returns

M CGetFilter ConfigEx() placesthe PID filter settings in the structure specified by the pointer pFilter.
MCERR_NOERROR isreturned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is
returned.

Comments
This function must be used to obtain the current PID filter configuration for a servo motor or the closed-loop configuration
for a stepper motor operating in closed-loop mode.

DCX-PCI100 User’'s Manual 241

MCAPI Reporting Functions

Closed-loop stepper operation requires firmware version 2.1a or higher on the DCX-PCI300 and firmware version 2.5a or
higher on the DCX-AT300.

0 Y ou may not set the axis parameter to MC_ALL_AXES for this command..

Compatibility

Ve ocityGain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-loop steppers.
AccelGain is not supported on the DC2, DCX-PC100, and DCX-PCI100 controllers. Decel Gain is not supported on the
DC2, DCX-PC100, and DCX-PCI100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.2 or higher

Prototypes

Delphi: function MCGetFilterConfigEx(hCtlr: HCTRLR,; axis: Word; var pFilter: MCFILTEREX): Smallint; stdcall;
VB: Function MCGetFilterConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, filter As MCFilterEx) As Integer
LabVIEW:

EHEL’:ulE [T]_
Handle In [~ Handle Out
Axiz In [1] - IO | ';A.xis Out
Filter

MCGetFilterConfig.vi

MCCL Reference
TD, TF, TG, TIl, TL, Controller RAM Motor Tables

See Also
M CSetFilter Configex(), MCFILTEREX structure definition

MCGetFollowingError

M CGetFollowingError () returns the current following error (difference between the actual and the optimal positions) for
the specified axis.

long int MCGetFollowingError(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pError // following error return value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pError Points to a double precision variable that will hold the following error.

242 Precision MicroControl

MCAPI Reporting Functions

Returns

This function places the following error in the variable specified by the pointer pError, and MCERR_NOERROR is
returned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable
pointed to by pError isleft unchanged.

Comments

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetFollowingError(hCtlr: HCTRLR; axis: Word; var pError: Double): Longint; stdcall;
VB: Function MCGetFollowingError(ByVal hCtrlr As Integer, ByVal axis As Integer, error As Double) As Long
LabVIEW: Execute [T]
Handle In Handle Out

Axiz In[1] - F Er L Axiz Out
" — Following Error

Error

MCGetFollowingE rror_vi

MCCL Reference
TF

See Also
MCGetOptimalEx(), MCGetPositionEXx()

MCGetGalin

MCGetGain() returns the current gain setting for the specified axis.

long Int MCGetGain(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pGain // gain return value

)

DCX-PCI100 User’'s Manual 243

MCAPI Reporting Functions

Parameters

hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.

pGain Points to a double precision variable that will hold the gain value.
Returns

MCGetGain() places the gain value in the variable specified by the pointer pGain and MCERR_NOERROR isreturned if
there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by
pGain isleft unchanged.

Comments
The gain value is the same as that reported by the M CGetM otionConfigEXx() function, this function provide a short-hand
method for obtaining just the gain value.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetGain(hCtlr: HCTRLR; axis: Word; var pGain: Double): Longint; stdcall;
VB: Function MCGetGain(ByVal hCtrlr As Integer, ByVal axis As Integer, gain As Double) As Long
LabVIEW: Execute [T] -
Handle In Handle Out

Axiz In [1] - ¥ Axis Out

Gamn
Error

MCGetGain. vi

MCCL Reference
TG

See Also
MCGetMotionConfigex() , MCSetGain()

MCGetindexEx

M CGetlndexEx() returns the position where the encoder index pulse was observed for the specified axis, in whatever
unitsthe axisis configured for.

244 Precision MicroControl

MCAPI Reporting Functions

long int MCGetlIndexEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* plndex // index position return value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pindex Pointer to a double precision floating point variable that will hold the index
position for the specified axis.
Returns

Theindex position is placed in the variable specified by the pointer pindex and MCERR_NOERROR isreturned if there
were no errors. If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by pIndex
isleft unchanged.

Comments
Controller resets and the M CSetPosition() function may be change the position reading of the primary encoder.

0 Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The MC100, MC110 modules, and all stepper axes do not support this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetIndexEx(hCtlr; HCTRLR; axis: Word; var pIndex: Double): Longint; stdcall;
VB: Function MCGetindexEx(ByVal hCtrlr As Integer, ByVal axis As Integer, index As Double) As Long
LabVIEW: Execute [T] -~
Handle In Handle Out
Axiz In [1] - L Axiz Out
Index
Ermror

MCGetindexEx. vi

MCCL Reference
TZ

See Also
M CGetAuxEncldxEx(), MCSetPosition()

DCX-PCI100 User’'s Manual 245

MCAPI Reporting Functions

MCGetlinstalledModules

M CGetl nstalledM odules() enumerates the types of modules installed on a motion controller.

long int MCGetlnstalledModules(

HCTRLR hCtlr, // controller handle
long int* modules, // pointer to an array for controller type
// 1Ds
long iInt size // size of Modules array
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
modules Pointer to an array of long integers, filled with module types on return.
size Size of modules array (number of integers).
Returns
MCERR_NOERROR isreturned if there were no errors. If there was an error, one of the MCERR_xxxx error codesis
returned.
Comments

M CGetl nstalledM odules() fills the modules array with module type identifiers, where the type of moduleinstalled in
position #1 on the controller is stored in Moduleg 0], the type of module installed in position #2 on the controller is stored
in Moduleg[1], etc. In order to list al installed controllers the array must have asize at least equal to the value in the
MaximumM odules field of the M CPARAMEX () data structure.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCGetlInstalledModules(hCtlr: HCTRLR; modules: Array of Longlnt; size: Longlnt): Longint; stdcall;
VB: Function MCGetlnstalledModules(ByVal hCtrir As Integer, modules As Any, ByVal size As Long) As Long

LabVIEW: Not Supported

MCCL Reference

None

See Also
M CGetConfigurationEx()

246 Precision MicroControl

MCAPI Reporting Functions

MCGetJogConfig

M CGetJogConfig() obtains the current jog configuration block for the specified axis.

short int MCGetJogConfig(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCJOG* pJog // address of jog configuration structure
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number from which to retrieve jog information.
pJog Points to a MCJOG structure that contains jog configuration information for
axis.
Returns

Thereturn valueis TRUE if the function is successful. Otherwise it returns FAL SE, indicating the function did not find the
axis specified (hCtlr or axisincorrect).

Comments
This function must be used to obtain current jog configuration information for an axis.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DCX-PCI controllers, DC2 stepper axes, MC150, and MC160 modules do not support jogging.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetJogConfig(hCtir: HCTRLR; axis: Word; var pJog: MCJOG): Smallint; stdcall;
VB: Function MCGetJogConfig(ByVal hCtrlr As Integer, ByVal axis As Integer, jog As MCJog) As Integer

LabVIEW: Not Supported

MCCL Reference
Controller RAM Motor Tables

See Also
M CEnablelog(), MCGetJogConfig(), MCJOG structure definition

DCX-PCI100 User’'s Manual 247

MCAPI Reporting Functions

MCGetLimits

MCGetL imits() obtains the current hard and soft limit settings for the specified axis.

long int MCGetLimits(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
short int* pHardMode, // hard limit mode flags
short int* pSoftMode, // soft limit mode flags
double* pLimitMinus, // soft low limit value
double* pLimitPlus // soft high limit value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pHardMode Combination of limit mode flags for the hard limits. See description of
pSoftMode for details.
pSoftMode Combination of the following limit mode flags for the soft limits:

Value Description

MC _LIMIT_PLUS Enables the positive limit.

MC_LIMIT_MINUS Enables the negative limit.

MC_LIMIT_BOTH Enables both the positive and negative limits.

MC _LIMIT_OFF Limit stopping modeis set to turn the motor off when alimit
istripped.

MC_LIMIT_ABRUPT Limit stopping modeis set to abrupt (target position is set to
current position and PID loop stops axis as quickly as
possible).

MC_LIMIT_SMOOTH Limit stopping mode is set to smooth (axis executes pre-
programmed decel eration when limit is tripped).

MC_LIMIT_INVERT Inverts the polarity of the hardware limit switch inputs. This
value may not be used with soft limits.

pLimitMinus Pointer to a variable where the negative limit value for soft limits, if supported
by this controller, will be stored.

pLimitPlus Pointer to a variable where the positive limit value for soft limits, if supported by
this controller, will be stored.

Returns

MCGetLimits() returns the vdlue MCERR_NOERROR if the function completed without errors. If there was an error, one
of the MCERR_xxxx error codes is returned, and the variables pointed to by the function pointers will be left in an
undetermined state.

Comments
The limit settings are the same as those reported by the M CGetM otionConfigEx() function, this function provide a short-
hand method for obtaining just the limit settings.

Beginning with Version 2.23 of the Motion Control APl you may pass a NULL pointer for pHardMode, pSoftMode,
pLimitMinus, or pLimitPlus. This permits a program to easily ignore valuesit is not interested in. A program that needs to
check the Hard Limit settings might set all the pointers for Soft Limit valuesto NULL to ignore those values, as opposed to

248 Precision MicroControl

MCAPI Reporting Functions

having to create dummy variables to hold the values that will never be used. Because this featureis new in Version 2.23,
only applications that do not require backward compatibility with an earlier MCAPI version should take advantage of it.

0 Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2 and DCX-PC100 controllers do not support soft limits.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes

Delphi: function MCGetLimits(hCtlr: HCTRLR; axis: Word; var pHardMode, pSoftMode: Smallint; var pLimitMinus, pLimitPlus:
Double): Longint; stdcall;

VB: Function MCGetLimits(ByVal hCtrlr As Integer, ByVal axis As Integer, hardMode As Integer, softMode As Integer,

limitMinus As Double, limitPlus As Double) As Long
LabVIEW: Execute [T] -~

Handle In Handle Out

Agig In (1) s Axis Out
Hard Mode
Soft Mode

Lirnitz
MCGetLimits_vi

MCCL Reference
Controller RAM Motor Tables

See Also
M CGetMotionConfigex(), MCSetLimits(), M CSetM otionConfigEXx()

MCGetModulelnputMode

M CGetM odulel nputM ode() returns the current input mode for the specified axis.

long int MCGetModulelnputMode(
HCTRLR hCtlr, // controller handle
WORD axis, // axis number
long int* mode // input mode value

)

Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.

DCX-PCI100 User’'s Manual 249

MCAPI Reporting Functions

mode Pointer to a long integer variable that will hold the input mode for the specified
axis:
Value Description
MC_IM_OPENLOOP Stepper motor axisis in open-loop mode.
MC_IM_CLOSEDLOOP Stepper motor axisisin closed-loop mode.
Returns

The return value is MCERR_NOERROR if no errors were detected. If there was an error, one of the MCERR_xxxx error
codes isreturned and the variable pointed to by mode is left unchanged.

Comments

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2, DCX-PC100, DCX-PCI100, DCX-AT100, and DCX-AT200 controllers do not support a module which is
capable of closed-loop stepper operation. The MC362 module is not capable of closed-loop stepper operation.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCGetModulelnputMode(hCtlr: HCTRLR; axis: Word; var mode: Longlnt): Longint; stdcall;
VB: Function MCGetModulelnputMode(ByVal hCtrlr As Integer, ByVal axis As Integer, mode As Long) As Long

LabVIEW: Not Supported

MCCL Reference
IM

See Also
M CSetM odulel nputM ode()

MCGetMotionConfigEx

M CGetM otionConfigEx() obtains the current motion configuration block for the specified axis.

250 Precision MicroControl

MCAPI Reporting Functions

short int MCGetMotionConFfigEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
MCMOT IONEX* pMotion // address of motion configuration
// structure
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pMotion Points to an MCMOTIONEX structure that receives motion configuration
information for axis.
Returns

Thereturn value is TRUE if the function is successful. A return value of FALSE indicates the function did not find the axis
specified (hCtlr or axisincorrect).

Comments

Thisfunction provides away of initializingaMCMOTIONEX structure with the current motion parameters for the given
axis. When you need to setup many of the parameters for an axisit iseasier to call MCGetM otionConfigEXx(), update the
MCMOTIONEX structure, and write the changes back using M CSetM otionConfigEXx(), rather than use a Get/Set
function call for each parameter.

Note that some less often used parameters will only be accessible from this function and from M CSetM otionConfigEx() -
they do not have individual Get/Set functions.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

Acceleration is not supported on the DC2 stepper axes. Deceleration is not supported on the DCX-PCI100 controller,
MC100, MC110, MC150, or MC160 modules. MinVelocity is not supported on the DCX-PCI100, DCX-PC100, or DC2
controllers. Torque is not supported on the DCX-PCI100 controller, MC100, or MC110 modules. Deadband is not
supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360 or MC362 modules.
DeadbandDelay is not supported on the DCX-PC100 controller, DC2 stepper axes, MC150, MC160, MC260, MC360 or
MC362 modules. StepSizeis not supported on the DC2 or DCX-PCI100 controllers. Current is not supported on the DC2
or DCX-PCI100 controllers. SoftLimitM ode is not supported on the DC2 or DCX-PC100 controllers. SoftLimitL ow is not
supported on the DC2 or DCX-PC100 controllers. SoftLimitHigh is not supported on the DC2 or DCX-PC100 controllers.
EnableAmpFault is not supported on the DC2 controllers. UpdateRate is not supported on the DC2 or DCX-PCI 100
controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetMotionConfigEx(hCtlr: HCTRLR; axis: Word; var pMotion: MCMOTIONEX): Smallint; stdcall;
VB: Function MCGetMotionConfigEx(ByVal hCtrlr As Integer, ByVal axis As Integer, motion As MCMotionEx) As Integer

LabVIEW: Not Supported

DCX-PCI100 User’'s Manual 251

MCAPI Reporting Functions

MCCL Reference
TG, Controller RAM Motor Tables

See Also
M CSetM otionConfigEx(), MCMOTIONEX structure definition

MCGetOperatingMode

M CGetOperatingM ode() returns the current operating mode for the specified axis.

long int MCGetOperatingMode(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
long int* mode // operating mode value
)
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
mode Pointer to a long integer variable that will hold the operating mode for the
specified axis:
Value Description
MC_MODE_CONTOUR Contouring mode operation.
MC_MODE_GAIN Gain mode operation.
MC_MODE_POSITION Position mode operation.
MC_MODE_TORQUE Torque mode operation.
MC_MODE_UNKNOWN Unable to determine current mode of operation.
MC_MODE_VELOCITY Velocity mode operation.
Returns

The return value is MCERR_NOERROR if no errors were detected. If there was an error, one of the MCERR_xxxx error
codes isreturned and the variable pointed to by mode is left unchanged.

Comments

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas

252 Precision MicroControl

MCAPI Reporting Functions

Library: use mcapi32.lib
Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCGetOperatingMode(hCtir: HCTRLR; axis: Word; var mode: Longlnt): Longint; stdcall;
VB: Function MCGetOperatingMode(ByVal hCtrlr As Integer, ByVal axis As Integer, mode As Long) As Long

LabVIEW: Not Supported

MCCL Reference

None

See Also
M CSetOperatingM ode()

MCGetOptimalEx

M CGetOptimal Ex() returns the current optimal position from the trajectory generator for the specified axis, in whatever
units the axisis configured for.

long int MCGetOptimalEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pOptimal // optimal return value
)
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pOptimal Pointer to a double precision floating point variable that will hold the optimal
position for the specified axis.
Returns

The optimal position is placed in the variable specified by the pointer pOptimal and a zero is returned, if there were no
errors. |f there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by pOptimal is left
unchanged.

Comments

The trgjectory generator generates an optimal position based upon an ideal (i.e. error free) motor. The PID loop then
compares the actual position to the optimal position to calculate a correction to the actual trajectory. The maximum
difference allowed between the optimal and actual positionsis set with the FollowingError member of an MCFIL TEREX
structure.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

DCX-PCI100 User’'s Manual 253

MCAPI Reporting Functions

Compatibility

The DC2 stepper axes do not support this command.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes

Delphi: function MCGetOptimalEx(hCtlr: HCTRLR; axis: Word; var pOptimal: Double): Longint; stdcall;

VB: Function MCGetOptimalEx(ByVal hCtrlr As Integer, ByVal axis As Integer, optimal As Double) As Long
LabVIEW: Execute [T] -

Handle In 1234 Handle Out
Axis In [1] - EI- L Axiz Out
- Optimal

Error

pt.

MCGetOptimalEx. vi

MCCL Reference
TO

See Also
M CGetFilter ConfigEx(), MCSetFilter ConfigEx(), M CSetPosition()

MCGetPositionEx

M CGetPositionEx() returns the current position for the specified axis, in whatever units the axisis configured for.

void MCGetPositionEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pPosition // position return value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pPosition Pointer to a double precision floating point variable that will hold the position for
the specified axis.
Returns

The position value is placed in the variable specified by the pointer pPosition and a zero is returned, if there were no errors.
If there was an error, one of the MCERR_xxxx error codes is returned and the variable pointed to by pPosition isleft
unchanged.

Comments

254 Precision MicroControl

MCAPI Reporting Functions

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetPositionEx(hCtlr: HCTRLR; axis: Word; var pPosition: Double): Longint; stdcall;
VB: Function MCGetPositionEx(ByVal hCtrlr As Integer, ByVal axis As Integer, position As Double) As Long
LabVIEW: Execute [T]
Handle In Handle Out

Axis In [1] - L Axiz Out
" L Position

Error

Fos

MCGetPositionEx. vi

MCCL Reference
TP

See Also
M CSetPosition(), MCSetScale()

MCGetProfile

M CGetProfile() returns the current acceleration / deceleration profile for the specified axis.

long int MCGetProfile(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
WORD* pProfile // profile return value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pProfile Pointer to a WORD variable that will hold the profile for the specified axis:
Value Description
MC_PROF_PARABOLIC Indicates that a parabolic acceleration / deceleration profile
has been sel ected.

DCX-PCI100 User’'s Manual 255

MCAPI Reporting Functions

Value Description

MC_PROF _SCURVE Indicates that an S-curve acceleration / deceleration profile
has been selected.

MC_PROF _TRAPEZOID Indicates that atrapezoidal acceleration / deceleration profile
has been selected.

MC_PROF_UNKNOWN Thisvalueis returned when M CGetPr ofile() cannot
determine the current profile setting.

Returns
Thereturn valueis MCERR_NOERROR, if no errors were detected. If there was an error, the return value is one of the
MCERR_xxxx error codesis returned and the variable pointed to by pProfile isleft unchanged.

Comments
To determineif the controller supports user configurable acceleration profiles check the CanChangePr ofile field of the
MCPARAMEX structure returned by M CGetConfigurationEx().

0 Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCGetProfile(hCtlr: HCTRLR; axis: Word; var pProfile: Word): Longint; stdcall;
VB: Function MCGetProfile(ByVal hCtrlr As Integer, ByVal axis As Integer, profile As Integer) As Long

LabVIEW: Not Supported

MCCL Reference
Controller RAM Motor Tables

See Also
M CSetProfile(), MCPARAMEX structure definition

MCGetRegister

M CGetRegister () returns the value of the specified general purpose register.

256 Precision MicroControl

MCAPI Reporting Functions

long int MCGetRegister(

HCTRLR hCtlr, // controller handle
long int register, // register number
void* pValue // pointer to variable to hold register
// value
long int type // type of variable pointed to by pValue
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
register Register number to read from (0 to 255).
pValue Pointer to a variable that will hold the register contents.
type Type of data pointed to by pValue:
Value Description
MC _TYPE_LONG Indicates pValue points to a variable of type long integer.
MC_TYPE _DOUBLE Indicates pValue points to a variable of type double precision
floating point.
MC_TYPE_FLOAT Indicates pValue points to a variable of type single precision
floating point.
Returns

Thereturn valueis MCERR_NOERROR, if no errors were detected. If there was an error, the return value is one of the
MCERR_xxxx error codesis returned and the variable pointed to by pValue is left unchanged.

Comments

MCGetRegister () and M CSetRegister () allow you to read from and write to, respectively, the general purpose registers
on the motion controller. When running background tasks on a multitasking controller the only way to communicate with
the background tasks is to pass parameters in the general purpose registers.

Y ou cannot read from the local registers (registers 0 - 9) of abackground task. When you need to communicate with a
background task be sure to use one or more of the global registers (10 - 255).

To determineif your controller supports multi-tasking check the M ultiTasking field of the M CPARAMEX structure
returned by M CGetConfigurationEx().

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.0 or higher

Prototypes

Delphi: function MCGetRegister(hCtlr: HCTRLR; register: Longint; var pValue: Pointer; type: Longint): Longint; stdcall;

VB: Function MCGetRegister(ByVal hCtrlr As Integer, ByVal register As Long, value As Any, ByVal argtype As Long) As
Long

DCX-PCI100 User’'s Manual 257

MCAPI Reporting Functions

LabVIEW: Execute [T] Erecute [T] s
Handle In Rin Handle Out Handle In R Handle Out
Register (0] - % Value Fegister [0) - Eng Valus
Errior Errar
MCGetReqgisterDouble. vi MCGetRegisterLong. vi
MCCL Reference
TR
See Also
M CSetRegister ()
MCGetScale

M CGetScale() obtains the current scaling factors for the specified axis.
void MCGetScale(

HCTRLR hCtlr, // controller handle

WORD axis, // axis number

MCSCALE* pScale // address of scale factors structure
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pScale Pointer to a MCSCALE structure that will hold scaling information for axis.
Returns

Thereturn value is TRUE if the function is successful. A return value of FALSE indicates the function did not find the axis
specified (hCtlr or axisincorrect).

Comments
Scaling allows the application to communicate with the controller in real world units such as inches, meters, and radians; as
opposed to low level (i.e. un-scaled) values such as raw encoder counts, etc.

In order to seeif acontroller supports scaling, an application can test the Boolean flag CanDoScaling in the
MCPARAMEX structure returned by M CGetConfigurationEx().

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2 and DCX-PC controllers do not support scaling.

258 Precision MicroControl

MCAPI Reporting Functions

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetScale(hCtlr: HCTRLR; axis: Word; var pScale: MCSCALE): Smallint; stdcall;
VB: Function MCGetScale(ByVal hCtrlr As Integer, ByVal axis As Integer, scale As MCScale) As Integer
LabVIEW: Execute [T] -~
Handle In Handle Out
Axis In [1] - H - Axis Out
e Scaling

MCGetScale vi

MCCL Reference
Controller RAM Motor Tables

See Also
M CGetConfigurationEx(), MCSetScale(), MCSCALE structure definition

MCGetServoOutputPhase

M CGetServoOutputPhase() returns the current servo output phasing for the specified axis.

long int MCGetServoOutputPhase(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
WORD* pPhase // phase return value
)E
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query for phase setting.
pPhase Pointer to a WORD variable that will hold the phase setting for the specified
axis:
Value Description
MC _PHASE STD Indicates that the axisis configured for standard phasing.
MC _PHASE REV Indicates that the axisis configured for reverse phasing.
Returns

Thereturn valueis MCERR_NOERROR if no errors were detected. If there was an error, the return value is one of the
MCERR_xxxx error codesis returned, and the variable pointed to by pPhase is left unchanged.

Comments

DCX-PCI100 User’'s Manual 259

MCAPI Reporting Functions

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The MC100 and MC110 modules do not support phase reverse.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prot otypes
Delphi: function MCGetServoOutputPhase(hCtlr: HCTRLR; axis: Word; var pPhase: Word): Longint; stdcall;
VB: Function MCGetServoOutputPhase(ByVal hCtrlr As Integer, ByVal axis As Integer, phase As Integer) As Long

LabVIEW: Not Supported

MCCL Reference

None

See Also
M CSetServoOutputPhase()

MCGetStatus

MCGetStatus() returns the controller dependent status word for the specified axis.

long Int MCGetStatus(

HCTRLR hCtlr, // controller handle
WORD axis // axis number
):
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
Returns

The return value is the 32-bit status word for the selected axis.

Comments

Please refer to the hardware manual for your controller for specific information about meaning and location of the flags
located within the status word. As an alternative, the MCAPI function M CDecodeStatus() provides a controller-
independent way to process the flagsin the status word.

260 Precision MicroControl

MCAPI Reporting Functions

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes

Delphi: function MCGetStatus(hCtlr: HCTRLR; axis: Word): Longint; stdcall;

VB: Function MCGetStatus(ByVal hCtrlr As Integer, ByVal axis As Integer) As Long
LabVIEW:

Execute [T] pe———

Handle In "‘ Handle Out

Axis In [1] - Ctat L Axiz Out
L Status

MCGetStatus. vi

MCCL Reference
TS

See Also
M CDecodeStatus(), Controller hardware reference manual

MCGetTargetEx

MCGetTar getEx() returns the move target position, as set by the most recent M CM oveAbsolute() or
MCM oveRelative() function call, for the specified axis.

void MCGetTargetEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pTarget // target position return
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pTarget Pointer to a double precision floating point variable that will hold the target

position for the specified axis.

DCX-PCI100 User’'s Manual 261

MCAPI Reporting Functions

Returns

The target position value is placed in the variable specified by the pointer pTarget and MCERR_NOERROR is returned if
there were no errors. If there was an error, one of the MCERR_xxxx error codes is returned, and the variable pointed to by
pTarget is|eft unchanged.

Comments

The APl move functions M CM oveAbsolute() and M CM oveRelative() update the target position for an axis. The
controller will then generate an optimal trgjectory to the target position, and the PID loop will seek to minimize the error
(difference between actual and optimal trajectories).

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetTargetEx(hCtlr: HCTRLR; axis: Word; var pTarget: Double): Longint; stdcall;
VB: Function MCGetTargetEx(ByVal hCtrlr As Integer, ByVal axis As Integer, target As Double) As Long
LabVIEW: Execute [T]
Handle In - Handle Out
Axis In [1] - L Axiz Out
Target
Error

MCGetTargetEx_vi

MCCL Reference
TT

See Also
MCMoveAbsolute(), MCMoveRédative()

MCGetTorque

MCGetTorque() returns the current torque setting for the specified axis.

262 Precision MicroControl

MCAPI Reporting Functions

long int MCGetTorque(

HCTRLR hCtlr, // controller handle

WORD axis, // axis number

double* pTorque // torque return value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pTorgue Points to a double precision variable that will hold the torque.
Returns

MCGetTorque() places the torque setting in the variable specified by the pointer pTorque and a zero is returned if there
were no errors. If there was an error, one of the MCERR_xxxx error codes is returned, and the variable pointed to by
pTorqueisleft unchanged.

Comments

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
Torque mode is not supported on stepper axes, DCX-PCI100 controller, MC100, or MC110 modules.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes

Delphi: function MCGetTorque(hCtlr: HCTRLR; axis: Word; var pTorque: Double): Longint; stdcall;

VB: Function MCGetTorque(ByVal hCtrlr As Integer, ByVal axis As Integer, torque As Double) As Long
LabVIEW: Execute [T] -

Handle In Handle Out

Axis In [1] - L Axiz Out
el — Torque

MCGetT orque.vi

MCCL Reference
TQ

See Also
M CGetM otionConfigex(), M CSetM otionConfigEx(), MCSetTorque(), MCMOTIONEX structure definition

DCX-PCI100 User’'s Manual 263

MCAPI Reporting Functions

MCGetVectorVelocity

M CGetVectorVelocity() returns the current programmed velocity for the specified axis, in whatever unitsthe axisis
configured for.

long int MCGetVectorVelocity(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pVelocity // vector velocity return value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pVelocity Pointer to a double precision floating point variable that will hold the vector
velocity value for the specified axis.
Returns

The position value is placed in the variable specified by the pointer pVelocity and MCERR_NOERROR isreturned if there
were no errors. If there was an error, one of the MCERR_xxxx error codes is returned, and the variable pointed to by
pVelocity is left unchanged.

Comments

The vector velocity value for aparticular axis may also be obtained using M CGetContour Config().

M CGetVectorVelocity() provides a short-hand method for getting just the vector velocity value and is most useful when
updating vector velocity settings on the fly.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.0 or higher

Prototypes
Delphi: function MCGetVectorVelocity(hCtir: HCTRLR; axis: Word; var pVelocity: Double): Longint; stdcall;
VB: Function MCGetVectorVelocity(ByVal hCtrlr As Integer, ByVal axis As Integer, velocity As Double) As Long

LabVIEW: Not Supported

MCCL Reference

None

See Also
M CGetContour Config(), M CSetVectorVelocity()

264 Precision MicroControl

MCAPI Reporting Functions

MCGetVelocityEx

M CGetVelocityEx() returns the current programmed velocity for the specified axis, in whatever unitsthe axisis
configured for.

long int MCGetVelocityEx(

HCTRLR hCtlr, // controller handle
WORD axis, // axis number
double* pVelocity // velocity return value
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
pVelocity Pointer to a double precision floating point variable that will hold the velocity
value for the specified axis.
Returns

The position value is placed in the variable specified by the pointer pVelocity, and MCERR_NOERROR isreturned if there
were no errors. If there was an error, one of the MCERR_xxxx error codes is returned, and the variable pointed to by
pVelocity is left unchanged.

Comments

The programmed velocity value for a particular axis may also be obtained using the M CGetM otionConfigEx() function.
M CGetVelocityEx() provides a short-hand method for getting just the vel ocity value and is most useful when updating
velocity settings on the fly in velocity mode.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes

Delphi: function MCGetVelocityEx(hCtlr: HCTRLR; axis: Word; var pVelocity: Double): Longint; stdcall;

VB: Function MCGetVelocityEx(ByVal hCtrlr As Integer, ByVal axis As Integer, velocity As Double) As Long
LabVIEW: Execute [T] ,

Handle In 1234 Handle Out
Axiz In [1] - g L Axis Out
T L Velocity

Error

MCGetYelocityEx. vi

DCX-PCI100 User’'s Manual 265

MCAPI Reporting Functions

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetVelocity(), MCSetM ationConfigEx()

MCIsAtTarget

MCIsAtTarget() waitsfor the "At Target" condition to go true for the specified axis. Use it to determine when motion has
completed for an axis.

long int MCIsAtTarget(

HCTRLR hCtlr, // controller handle

WORD axis, // axis number

double timeout // timeout, iIn seconds
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "At Target" condition.
timeout Time to wait, in seconds, for the At Target condition to go true.
Returns

Thisfunction returns TRUE, if the axisis"At Target." A return value of FAL SE indicates the specified axisis not "At
Target" by theend of timeout. If MC_ALL_AXESis specified for Axis, TRUE will be returned only if all axesare"At
Target."

Comments

This function waits for up to timeout seconds for the At Target status of the axisto be TRUE. It returns as soon as the status
goes TRUE or when timeout expires. Set timeout to zero to check the At Target status only once and return immediately
(i.e. nowait is performed).

Compatibility
The DC2, DCX-PC, and DCX-PCI 100 do not support the At Target status bit and should use M Cl sStopped() instead.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MClIsAtTarget(hCtlr: HCTRLR,; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MClsAtTarget(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long

LabVIEW: Not Supported

266 Precision MicroControl

MCAPI Reporting Functions

MCCL Reference

None

See Also
M ClIsStopped()

MClsDigitalFilter

MCl sDigitalFilter () isused to determine the enabled state of the digital filter mode.

long int MCIsDigitalFilter(

HCTRLR hCtlr, // controller handle
WORD axis // axis number
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number to query.
Returns

This function returns TRUE if the digital filter for the specified axisis enabled, or it returns FALSE if the digital filter is
disabled.

Comments
Thisfunction is used to determine the enabled state of the digital filter mode supported by advanced motion control
modules, such as the MC300.

ﬂ Y ou may not set the axis parameter to MC_ALL_AXES for this command.

Compatibility
The DC2, DCX-PC100, DCX-AT200, DCX-PCI100 controllers, MC360 and MC362 modules do not support digital
filtering.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.1 or higher

Prototypes
Delphi: function MClsDigitalFilter(hCtlr: HCTRLR; axis: Word): Longint; stdcall;
VB: Function MClsDigitalFilter(ByVal hCtrir As Integer, ByVal axis As Integer) As Long

LabVIEW: Not Supported

DCX-PCI100 User’'s Manual 267

MCAPI Reporting Functions

MCCL Reference

None

See Also
M CEnableDigitalFilter (), MCGetCount(), MCGetDigitalFilter (), MCSetDigitalFilter ()

MClsEdgeFound

M ClIsEdgeFound() waits for the "Edge Found" condition to go true for the specified axis. Use it to determine when an
open-loop stepper motor homing sequence has detected the edge sensor.

long int MClsEdgeFound(

HCTRLR hCtlr, // controller handle

WORD axis // axis number

double timeout // timeout, iIn seconds
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "Edge Found" condition.
timeout Time to wait, in seconds, for the “Edge Found” condition to go true.
Returns

This function returns TRUE if the stepper axis has detected the edge input or FALSE if the axis has not detected the edge
input by the end of timeout.

Comments

This function waits for up to timeout seconds for the Edge Found status of a stepper motor axisto go TRUE. It returns as
soon as the status goes TRUE or when timeout expires. Set timeout to zero to check the edge found status only once and
return immediately (i.e. no wait is performed). This function uses M CDecodeStatus() internally to test the
MC_STAT_EDGE_FOUND status bit.

Compatibility
The DC2, DCX-PC100, and DCX-AT200 controllers do not support this function. Stepper modules when run in closed-
loop mode do not support this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MCIsEdgeFound(hCtlr: HCTRLR; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MCIsEdgeFound(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long

LabVIEW: Not Supported

268 Precision MicroControl

MCAPI Reporting Functions

MCCL Reference
TS

See Also
M CDecodeStatus(), MCEdgeArm(), MCWaitFor Edge()

MClsIindexFound

M Cl sl ndexFound() waits for the "Index Found" condition to go true for the specified axis. Use it to determine when a
servo or closed-loop stepper motor homing sequence has detected the encoder index.

long int MClslIndexFound(

HCTRLR hCtlr, // controller handle

WORD axis // axis number

double timeout // timeout, in seconds
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "Index Found" condition.
timeout Time to wait, in seconds, for the “Index Found” condition to go true.
Returns

This function returns TRUE if the servo axis has detected the encoder index or FALSE if the axis has not detected the
encoder index by the end of timeout.

Comments

This function waits for up to timeout seconds for the Index Found status of a servo motor axisto go TRUE. It returns as
soon as the status goes TRUE or when timeout expires. Set timeout to zero to check the encoder index status only once and
return immediately (i.e. no wait is performed). This function uses M CDecodeStatus() internally to test the
MC_STAT_INDEX_FOUND status hit.

Compatibility
The DC2, DCX-PC100, and DCX-AT200 controllers do not support this function. Stepper modules when run in open-loop
mode with an auxiliary encoder do not support primary encoder functions such as this.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 3.2 or higher

Prototypes
Delphi: function MClsIndexFound(hCtlr: HCTRLR; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MClsIndexFound(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long

LabVIEW: Not Supported

DCX-PCI100 User’'s Manual 269

MCAPI Reporting Functions

MCCL Reference
TS

See Also
M CDecodeStatus(), M ClndexArm(), MCWaitForIndex()

MClsStopped

M ClsStopped() waits for the "Trajectory Complete" condition to go true for the specified axis. Use it to determine when
motion has completed for an axis.

long int MCIsStopped(

HCTRLR hCtlr, // controller handle

WORD axis, // axis number

double timeout // timeout, iIn seconds
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for which to wait for the "Trajectory Complete" condition.
timeout Time to wait, in seconds, for the Trajectory Complete condition to go true.
Returns

This function returns TRUE if the axisis " Trajectory Complete." A return value of FALSE indicates the specified axisis
not "Trajectory Complete" by the end of timeout. If MC_ALL_AXESis specified for Axis, TRUE will be returned only if
all axes are "Trajectory Complete."

Comments

This function waits for up to timeout seconds for the Trajectory Complete status of the axisto be TRUE. It returns as soon
as the status goes TRUE or when timeout expires. Set timeout to zero to check the Trajectory Complete status only once
and return immediately (i.e. no wait is performed).

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.2 or higher

Prototypes
Delphi: function MClsStopped(hCtlr: HCTRLR,; axis: Word; timeout: Double): Longint; stdcall;
VB: Function MClsStopped(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal timeout As Double) As Long

LabVIEW: Not Supported

MCCL Reference

None

270 Precision MicroControl

MCAPI Reporting Functions

See Also
MCIsAtTarget()

MCTranslateErrorEx

MCTrandateError Ex() translates numeric error codes into ASCII text messages.

long int MCTranslateErrorEx(

short int error, // error code to translate
char* buffer, // character buffer for message
long int length // length of Buffer, in bytes

)

Parameters

error Numeric error code to translate.

buffer String buffer to hold ASCII error message.

length Length of string buffer (in bytes).

Returns

This function returns a pointer to the ASCII error message corresponding to Error. If Error does not correspond to avalid
error message, aNULL pointer isreturned. It will work with errors returned from MCGetError() and M CErrorNotify()
€rror messages.

Comments

Beginning with version 2.1 of the MCAPI this function isincluded as a native MCAPI function (previously it was
contained in a separate modul€). Incorporating MCTrangateError Ex() into the MCAPI DLL will facilitate future
updates, but has required changes from how It previously worked. The string buffer and buffer length have been added to
the argument list. These changes make it possible to call MCTrandateError Ex() from a much wider range of
programming languages.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.1 or higher

Prototypes

Delphi: function MCTranslateErrorEx(error: Smallint; buffer: PChar; length: Longint): Longint; stdcall;

VB: Function MCTranslateErrorEx(ByVal error As Integer, ByVal buffer As String, ByVal length As Long) As Long
LabVIEW:

Error Code (0} —— o
Euffer In Trans Buffer Cut

MCTranzlateErrorEx . wi

DCX-PCI100 User’'s Manual 271

MCAPI Reporting Functions

MCCL Reference

None

See Also
MCErrorNotify(), MCGetError()

272 Precision MicroControl

MCAPI Reporting Functions

DCX-PCI100 User’'s Manual 273

MCAPI 1/O Functions

Chapter Contents

274 Precision MicroControl

MCAPI I/O Functions

Digital 1/0 functions allow configuration of high or low “true” states, reading of inputs, sequencing based on input, and
setting outputs. Analog 1/0 functions control the input and output of analog values through A/D and D/A portsinstalled on
the controller.

A word of caution must be given regarding the use of board-level sequencing commands. Even though awarning is
included with M CWaitFor Digitall O(), it should be stressed that once this command is called, the board will not accept
another command nor will it respond to the calling program until the board has completed what it wasinitially told to do.
This can lead to scenarios where the calling program has absolutely no control during potentially dangerous or otherwise
expensive situations.

To see examples of how the functionsin this chapter are used, please refer to the online Motion Control APl Reference.

MCConfigureDigitallO

M CConfigureDigitall O() configures a specific digital 1/0 channel for input or output and for high or low true logic.

short int MCConfigureDigitall10(

HCTRLR hCtlr, // controller handle
WORD channel, // channel number
WORD mode // configuration flags
)
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to configure.
mode Specifies how the channel is to be configured. This parameter may be any one

of the digital 1/0O flags listed below. An input/output flag and a logic level flag
may be OR'ed together.

Value Description

MC_DIO_INPUT Configures the channel for input.

DCX-PCI100 User’'s Manual 275

MCAPI 1/O Functions

Value Description

MC_DIO_OUTPUT Configures the channel for output.

MC_DIO_LOW Configures the channel for negative logic level.

MC_DIO_HIGH Configures the channel for positive logic level.

MC_DIO_LATCH Configures the (input) channel for latched
operation.

Returns

Thereturn valueis TRUE if the function is successful. A return value of FAL SE indicates M CConfigureDigitall O() was
unable to configure the channel as requested.

Comments

Each digital 1/0 channel may be configured for input or for output. The logic level mapsthelogical "on" and "off" states of
the channel to the physical input and output voltages for that channel. If the channel isset to MC_DIO_L OW (hegative
logic) the "on" state of a channel will represent alow voltage (<0.4VDC) and "off" a high voltage (>2.4VDC). When set to
MC _DIO_HIGH (positive logic) the "on" state of a channel will represent a high voltage (>2.4vDC) and "off" alow
voltage (<.0.4VDC).

On the DC2-STN controller, beginning with firmware release 1.23, it is possible to configure an input channel to "latch”
input events (see the controller manual for details of signal hold time, etc.). Configure an input channel using the

MC _DIO_LATCH constant to enable latching or clear the latched state. Configure an input channel using the
MC_DIO_INPUT constant to disable latching.

The DCX-PCI motherboard has 16 general 1/0, consisting of 8 fixed inputs and 8 fixed outputs. Since these digital 1/0 are
fixed, they may not be configured for input or output. A program may verify the functionality (input or output) of a channel
by using M CGetDigitall OConfig() to check the current configuration.

output channels are numbered 9 - 16 (the MCAPI requires that each channel have a

ﬂ Under the MCAPI, the DC2-STN controller's input channels are numbered 1 - 8, and the
unique channel number).

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCConfigureDigitallO(hCtlr: HCTRLR; channel, mode: Word): Smallint;
VB: Function MCConfigureDigitallO (ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal mode As Integer) As Integer
LabVIEW: E“:cu:ﬁ ['I[] oo
Channel (1) -~ vt andle
Level (H] —

140 [output] -~ i
MCConfigureDigitall D _vi

MCCL Reference
CH,CI,CL,CT

276 Precision MicroControl

MCAPI I/O Functions

See Also
M CEnableDigitall O(), MCGetDigitallO(), M CGetDigitall OConfig()

MCEnableDigitallO

M CEnableDigitall O() turns the specified digital I/0 channel on or off.

void MCEnableDigitallO(

HCTRLR hCtlr, // controller handle
WORD channel, // channel number
short int state // enable state
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to enable.
state Specifies whether the channel is to be turned on or turned off.
Value Description
TRUE Turns the channel on.
FALSE Turns the channel off.
Returns

This function does not return a value.

Comments

The I/O channel selected by hCtlr and channel must have previously been configured for output using the

M CConfigureDigitall O() command. Note that depending upon how a channel has been configured "on" (and conversely
"off") may represent either ahigh or alow voltage level.

programming languages, including those that define TRUE as a non-zero value other

0 state will accept any non-zero value as TRUE, and will work correctly with most
than one (one is the Windows default value for TRUE).

Under the MCAPI, the DC2-STN controller's input channels are numbered 1 - 8, and the
ﬂ output channels are numbered 9 - 16 (the MCAPI requires that each channel have a
unique channel number).

Compatibility

There are no compatibility issues with this function.

Requirements
Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

DCX-PCI100 User’'s Manual 277

MCAPI 1/O Functions

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCEnableDigitallO(hCtir: HCTRLR; channel: Word; state: Smallint); stdcall;
VB: Sub MCEnableDigitallO(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
LabVIEW: E“:cu';? ['I[] Hardle O
Channel (1) -~) andle
State [T] — =—=

MCEnableDigitallO_wi

MCCL Reference
CF, CN

See Also
M CConfigureDigitall O(), MCEnableDigitall O(), MCGetDigitall OConfig(), MCPARAMEX structure definition

MCGetAnalog

MCGetAnalog() reads the current input state of the specified input Channel.

WORD MCGetAnalog(

HCTRLR hCtlr, // controller handle
WORD channel // channel number
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Analog channel number to read from.
Returns

This function returns the current A/D reading for channel.

Comments

The DC2, DCX-AT, and DCX-PC controllers al include four undedicated 8-bit analog input channels. By default these
channels are assigned channel numbers 1 to 4. Each analog input accepts an input voltage between 0 and +5 volts. The
value read in from the channel will be the ratio of the input voltage to the reference voltage times 255. An internal 5.0 volt
reference is supplied by the controller; an external reference may be supplied in place of the internal reference if desired.

VnU
value = — =L x 255

Reference

Additional analog input/output channels supplied by MC500 modules will occupy sequential channel numbers beginning
with channel 5. The fields Analogl nput and AnalogOutput in the M CPARAM EX structure contain the number of input
and output channels the controller is configured for.

278 Precision MicroControl

MCAPI I/O Functions

Compatibility
There are no compatibility issues with this function, however, please note that the DCX-PCI controllers have no built-in
analog inputs.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes

Delphi: function MCGetAnalog(hCtlr: HCTRLR; channel: Word): Word; stdcall;

VB: Function MCGetAnalog(ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
LabVIEW: Execute [T] -~

Handle In Handle Out
Channel (1] - |}

Yalue

MCGethnalog.vi

MCCL Reference
TA

See Also
MCSetAnalog(), MCPARAMEX structure definition

MCGetDigitallO

MCGetDigitall O() returns the current state of the specified digital 1/0 channel.

short int MCGetDigitall10(

HCTRLR hCtlr, // controller handle
WORD channel // channel number
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to get state of.
Returns

Thereturn value is TRUE if the channel is"on." A return value of FALSE indicates the channe! is "off".

Comments

Thisfunction will read the current state of both input and output digital 1/0 channels. Note that this function simply reports
if the channel is"on" or "off"; depending upon how a channel has been configured "on" (and conversely "off") may
represent either a high or alow voltage level.

Thefield DigitallO in the MCPARAMEX structure contains the total number of digital 1/0 channels the controller is
configured for.

DCX-PCI100 User’'s Manual 279

MCAPI 1/O Functions

Under the MCAPI, the DC2-STN controller's input channels are numbered 1 - 8, and the
ﬂ output channels are numbered 9 - 16 (the MCAPI requires that each channel have a
unique channel number).

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCGetDigitallO(hCtlr: HCTRLR; channel: Word): Smallint; stdcall;
VB: Function MCGetDigitallO(ByVal hCtrlr As Integer, ByVal channel As Integer) As Integer
LabVIEW: Execute [T] -~
Handle In Handle Out

EhaﬂnEI [1] Eet i|:| value

MCGetDigitalld_vi

MCCL Reference
TC

See Also
M CEnableDigitall O(), M CGetDigitall O(), MCGetDigitall OConfig()

MCGetDigitallOConfig

MCGetDigitall OConfig() returns the current configuration (in/ out / high / low) of the specified digital I/0O channel.

short int MCGetDigitallO(

HCTRLR hCtlr, // controller handle
WORD channel, // channel number
WORD* pMode // variable to hold the channel settings
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to get configuration of.
pMode Pointer to a variable to hold the current configuration settings of the specified

channel. This variable will contain one or more of the following flags on return:

Value Description
MC _DIO_INPUT Channel configured for input.
MC_DIO_OUTPUT Channel configured for output.

280 Precision MicroControl

MCAPI I/O Functions

Value Description

MC _DIO_LOW Channel configured for low true logic level.

MC_DIO HIGH Channel configured for high true logic level.

MC DIO LATCH Input channel configured for latched operation.

MC _DIO_FIXED Channel isafixed input or output and cannot be changed
using M CConfigureDigitall O().

MC DIO LATCHABLE Input channel is capable of latched operation.

MC _DIO_STEPPER Input channel has been dedicated to driving a stepper motor
(DC2-PC or DC2-STN).

Returns

The current configuration of the specified digital 1/0 channel is placed in the variable specified by the pointer pMode, and
MCERR_NOERROR isreturned if there were no errors. If there was an error, one of the MCERR_xxxx error codes is
returned, and the variable pointed to by pMode is left unchanged.

Comments

The configuration of the specified channel is returned as one or more of the MC_DIO_xxx constants OR'ed together. This
valueisidentical to the value you would create to configure the channel using M CConfigureDigital| O(), with the
exception of the MC_DIO_FIXED, MC_DIO_LATCHABLE, and MC_DIO_STEPPER which areread-only (i.e.
MCGetDigitall OConfig() only) parameters.

Currently none of the motion controllers supported by the MCAPI allow you to read back the configuration of the digital
1/0. To implement M CGetDigitall OConfig() the MCAPI "remembers" any changes made to the digital 1/0 using

M CConfigureDigitall O(). When the MCAPI DLL isloaded into memory (at application run time), it assumes the default
state power-on state for al the installed digital 1/0. Therefore, this function is most useful within a single application, after
you have explicitly configured each 1/O channel.

Thefield Digitall O in the M CPARAM EX structure contains the total number of digital 1/0 channels the controller is
configured for.

output channels are numbered 9 - 16 (the MCAPI requires that each channel have a

0 Under the MCAPI, the DC2-STN controller's input channels are numbered 1 - 8, and the
unique channel number).

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCGetDigitallOConfig(hCtlr: HCTRLR; channel: Word; var pMode: Word): Longlnt; stdcall;
VB: Function MCGetDigitallOConfig(ByVal hCtrlr As Integer, ByVal channel As Integer, mode As Integer) As Long

LabVIEW: Not Supported

MCCL Reference

None

DCX-PCI100 User’'s Manual 281

MCAPI 1/O Functions

See Also
M CConfigureDigitall O(), MCEnableDigitall O(), MCPARAMEX structure definition

MCSetAnalog

MCGetAnalog() reads the current input state of the specified input Channel.

void MCSetAnalog(

HCTRLR hCtlr, // controller handle
WORD channel, // channel number
WORD value // new output value
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Analog output channel number to set
value New output value.
Returns

This function does not return a value.

Comments

Analog output ports on MC500 and MC520 Analog Modules accept valuesin the range of 0 to 4095 counts (12 bits). This
range of values corresponds to an output voltage of 0 to 5V or -10 to +10V, depending upon how the output is configured
(see your controller's hardware manual). Each digital bit corresponds to avoltage level asfollows:

Output Used Volts per Count

Oto5V 0.0012v

-10to +10V 0.0049v
Compatibility

Analog output channels are not supported by the DC2-PC100 dedicated 2 axis controllers.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure MCSetAnalog(hCtlr: HCTRLR; channel, value: Word); stdcall;
VB: Sub MCSetAnalog(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal value As Integer)
LabVIEW: Execute [T]
Handle In : Handle Out
Channel (1] -~ |Po
Yalue

MCSetAnalog.vi

282 Precision MicroControl

MCAPI I/O Functions

MCCL Reference
OA

See Also
MCGetAnalog()

MCWaitForDigitallO

MCWaitFor Digitall O() waits for the specified digital 1/0 channel to go on or off, depending upon the value of state.

void MCWaitForDigitallO(

HCTRLR hCtlr, // controller handle
WORD channel, // digital 1/0 channel to watch
short int state // state of channel to watch for
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
channel Digital channel number to wait for.
state Selects state of channel to wait for:
Value Description
TRUE Wait for channel to go "on.”
FALSE Wait for channel to go "off.”
Returns

This function does not return a value.

Comments

Digital channels 1 to 16 are built into each controller. Additional digital channels, beginning with channel 17, may be added
in blocks of 16 channels using MC400 Digital 1/0 Modules. The field Digitall O in the MCPARAMEX structure contains
the total number of digital channelsinstalled on the controller.

the board until the digital 1/0 is equal to state. We recommend creating your own

Once this command is issued, the calling program will not be able to communicate with
& looping structure based on M CGetDigitall O() instead.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

DCX-PCI100 User’'s Manual 283

MCAPI 1/O Functions

Prototypes
Delphi: procedure MCWaitForDigitallO(hCtlr: HCTRLR; channel: Word; state: Smallint); stdcall;
VB: Sub MCWaitForDigitallO(ByVal hCtrlr As Integer, ByVal channel As Integer, ByVal state As Integer)
LabVIEW: Execute [T] -
Channel (1) - pronde D
State [T]

MCWaitForDigitall0_vi

MCCL Reference
WF, WN

See Also
M CConfigureDigitall O(), MCEnableDigitall O(), MCGetDigitall O(), MCPARAMEX structure definition

284 Precision MicroControl

MCAPI I/O Functions

DCX-PCI100 User’'s Manual 285

MCAPI Macros and Multi-tasking Functions

Chapter Contents

286 Precision MicroControl

Macros and Multi-tasking Functions

Macro and multi-tasking functions provide access to the motion controllers on-board macro capability, as well as the
multitasking features of advanced controllers.

To see examples of how the functionsin this chapter are used, please refer to the online Motion Control APl Reference.

MCCancelTask

MCCancelTask() cancels an executing task on a multi-tasking controller. The task should have been previously started
with an M CBlockBegin() / MCBlockEnd() pair.

long int MCCancelTask(
HCTRLR hCtlr, // controller handle
long int taskID // 1D of task to cancel

)

Parameters

hCtlr Controller handle, returned by a successful call to MCOpen().

taskiD Task ID value for the task to be stopped. This value was returned by the
MCBlockEnd() function when the task was generated.

Returns
This function returns MCERR_NOERROR if there were no errors. One of the MCERR_xxxx defined error codes will be
returned if there was a problem.

Comments
MCCancelTask() isthe only way to stop tasks that are not programmed to stop themselves (i.e. infinite loop tasks).

See the description of M CBlockBegin() for more information and reference the online help for examples.

Compatibility
The DC2 and DCX-PC100 controllers do not support background tasks.

DCX-PCI100 User’'s Manual 287

MCAPI Macros and Multi-tasking Functions

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCCancelTask(hCtir: HCTRLR; taskID: Longint): Longint; stdcall;
VB: Function MCCancelTask(ByVal hCtrlr As Integer, ByVal taskID As Long) As Long

LabVIEW: Not Supported

MCCL Reference
ET

See Also
M CBIlockBegin(), MCCancel Task()

MCMacroCall

MCMacroCall() causes apreviously loaded macro to be executed.

void MCMacroCall(

HCTRLR hCtlr, // controller handle
WORD macro // macro number
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
macro Macro number to execute.
Returns

This function does not return a value.

Comments

Macros are normally downloaded using the pmcputs() ASCII interface command, using the Motion Control Command
Language (MCCL); or by converting the MCAPI functions to a macro with the M CBlockBegin(') / M CBlockEnd()
functions. These controller level macros are often the only efficient way to implement hardware specific sequences, such as
special homing routines, initializing encoder positions, etc.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

288 Precision MicroControl

MCAPI Macros and Multi-tasking Functions

Prototypes

Delphi: procedure MCMacroCall(hCtlr: HCTRLR; macro: Word); stdcall;
VB: Sub MCMacroCall(ByVal hCtrlr As Integer, ByVal macro As Integer)
LabVIEW: Execute [T] s

Handle In Handle Out
b acro Murnber (0] Macro

MCMacroCall. vi

MCCL Reference
MC

See Also
M CBIlockBegin(), MCBlockEnd(), pmcputs(), Controller hardware manual

MCRepeat

M CRepeat() inserts arepeat command into a block command - task, compound command, or macro.

long int MCRepeat(
HCTRLR hCtlr, // controller handle
long int count // repeat count

)

Parameters

hCtlr Controller handle, returned by a successful call to MCOpen().

count Repeat count. Commands that precede the MCRepeat() in the block command
will be repeated count more times (for a total execution of count + 1).

Returns
M CRepeat() returns the value MCERR_NOERROR if the function completed without errors. If there was an error, one of
the MCERR_xxxx error codes is returned.

Comments
This function may only be used within an M CBlockBegin() / MCBlockEnd() command pair.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCRepeat(hCtlr: HCTRLR; count: Longint): Longint; stdcall;
VB: Function MCRepeat(ByVal hCtrlr As Integer, ByVal count As Long) As Long

DCX-PCI100 User’'s Manual 289

MCAPI Macros and Multi-tasking Functions

LabVIEW: Not Supported

MCCL Reference
RP

See Also
MCBIlockBegin(), MCBlockEnd()

290 Precision MicroControl

MCAPI Macros and Multi-tasking Functions

DCX-PCI100 User’'s Manual 291

MCAPI Driver Functions

Chapter Contents

292 Precision MicroControl

MCAPI Driver Functions

Driver functions handle driver related housekeeping, and as such do not directly affect the controller.

To see examples of how the functionsin this chapter are used, please refer to the online Motion Control APl Reference.

MCBlockBegin

M CBIlockBegin() initiates a block command sequence. All commands up to the subsequent M CBlockEnd() will be
included in the block. Block commands include compound commands, macro definition commands, contour path motions,
and tasks on multitasking controllers.

long int MCBlockBegin(

HCTRLR hCtlr, // controller handle
long int mode, // block mode type
long Int num // macro / task number / controlling axis
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
mode Type of block command to begin:
Value Description
MC_BLOCK_COMPOUND Specifies that this block is a compound command.
MC _BLOCK_TASK Specifies this block as an individual task on multitasking
controllers. num should be set to the desired task number.
MC _BLOCK_MACRO Specifies this block as a macro definition. num should be set
to the desired macro number for this macro.
MC_BLOCK_RESETM Resets macro memory. Setting numto zero resets all macros
(and works with al controllers), nummay also be setto 1 or 2
onthe DCX AT200 to selectively delete ram or flash based
Macros.

DCX-PCI100 User’'s Manual 293

MCAPI OEM Low Level Functions

Value Description

MC_BLOCK_CANCEL Cancels a block command without sending any commands to
the controller.

MC_BLOCK_CONTR_USER Specifies that this block is a user defined contour path
motion. num should be set to the controlling axis number.

MC _BLOCK_CONTR_LIN Specifies that this block isalinear contour path motion. num
should be set to the controlling axis number.

MC_BLOCK_CONTR_CW Specifies that this block is a clockwise arc contour path
motion. num should be set to the controlling axis number.

MC_BLOCK_CONTR_CCW Specifiesthat this block isa counter clockwise arc contour
path motion. num should be set to the controlling axis
number.

num Specifies the macro number for macro blocks, the task number for task blocks,

the controlling axis for contour blocks, or the macro types for macro reset.

Returns
This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments

The M CBlockBegin() and MCBlockEnd() commands are used to bracket other APl commands in order to affect how
those commands are executed. While the high level MCAPI is function based (as are most Windows APIs), PMC's motion
control cards are command based. They are capable of accepting single commands or blocks of commands, depending upon
the complexity of the motion. To provide the same block functionality to the MCAPI the M CBlockBegin() and

M CBIlockEnd() functions where created. These functions may be used to bracket one or more MCAPI function callsto
create function blocks.

One useisto create a compound command block - where multiple commands are sent to the controller as a single block.
Thisisuseful for data capture sequences, homing segquences, or anywhere you want to synchronize a complex group of
commands.

For multi-tasking controllers, the block commands can be used to group individual commands as separate tasks. Multi-
tasking permits multiple user programsto run in parallel on PMC's advanced motion control cards. Multi-tasking also
permits you to run command sequences that would normally lock-up the controller's command interpreter in the
background, thus leaving the command interpreter unaffected.

A third use of the block commands is to store the bracketed command sequence as a macro. Macros may be replayed at any
time using the M CM acroCall() function. Please note that APl commands that read data from a controller, such as any of
the MCGet... functions, should not be included in macros. Macro memory may be reset (cleared) by calling

M CBlockBegin() with Mode set to MC_BLOCK_RESETM. If your controller allows you to reset selected blocks of
macros you may specify this by setting num to 1 for RAM-based macros or 2 for Flash memory macros.

All callsto M CBIlockBegin(), except those with a mode of MC_BLOCK_RESETM or MC_BLOCK_CANCEL require a
corresponding call to MCBlockEnd(). Callsto MCBlockBegin() may not be nested, except that M CBlockBegin() calls
with an Mode of MC_BLOCK_CANCEL may be included within other M CBlockBegin() blocks (this call terminates the
outer M CBlockBegin(), so no MCBIlockEnd() is needed in this case).

Beginning with version 2.0 of the MCAPI, blocks are also used for multi-axis contouring. Contouring requires first that the
selected axes be placed in contouring mode and a controlling axis specified. Thisis done with the

M CSetOperatingM ode() function. Then blocks of contour path moves are issued. Under the MCAPI, these contour path
blocks are specified by bracketing M CArcCenter (), MCGoHome(), MCM oveAbsolute(), MCMoveRelative(), or
MCSetVectorVelocity() with block commands that are one of the MC_BLOCK_CONTR_xxx types.

294 Precision MicroControl

MCAPI Driver Functions

Block commands may be canceled prior to issuing an M CBlockEnd() by calling M CBlockBegin() with Mode set to
MC_BLOCK_CANCEL.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers. The DC2 and
DCX-PC100 controllers do not support background tasks.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCBlockBegin(hCtir: HCTRLR; mode, num: Longint): Longint; stdcall;
VB: Function MCBIlockBegin(ByVal hCtrlr As Integer, ByVal mode As Long, ByVal num As Long) As Long

LabVIEW: Not Supported

MCCL Reference
CP, GT, MD, RM

See Also
MCBIlockEnd(), MCCancelTask(), MCMacroCall(), MCRepeat()

MCBlockEnd

M CBIlockEnd() ends a block command and transmits the compound command, task, macro, or contour path to the
controller.

long int MCBlockEnd(

HCTRLR hCtlr, // controller handle
long int* pTaskID // task ID for MC_BLOCK TASK blocks
);
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
pTaskID Pointer to variable to hold the Task ID value for MC_BLOCK_TASK blocks, this
parameter is ignored and may be set to NULL for MC_BLOCK_COMPOUND or
MC_BLOCK_MACRO blocks. Setting this parameter to NULL for
MC_BLOCK_TASK will cause the function to not return the Task ID for this
task.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

DCX-PCI100 User’'s Manual 295

MCAPI OEM Low Level Functions

Comments
The M CBlockBegin() and MCBlockEnd() commands are used to bracket other APl commands in order to affect how
those commands are executed.

See the description of M CBlockBegin() for more information.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI 100 controllers. The DC2 and
DCX-PC100 controllers do not support background tasks.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCBlockEnd(hCtlr: HCTRLR; var pTaskID: Longlnt): Longint; stdcall;
VB: Function MCBIlockEnd(ByVal hCtrlr As Integer, taskiD As Long) As Long

LabVIEW: Not Supported

MCCL Reference

None

See Also
M CBIlockBegin(), MCCancel Task()

MCClose

M CClose() closes the specified motion controller handle, and is typically called at the end of a program.

short int MCClose(

HCTRLR hCtlr // controller handle
)
Parameters
hCitlr Controller handle, returned by a successful call to MCOpen().
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
Following acall to MCClos&(), no further calls should be made to the Maotion Control API functions with this handle (the
exception being M COpen(), which may be called to open or reopen the APl at any time).

By calling M CClosg() you notify Windows that you are done with the controller and device driver. When the last user has
closed the driver Windows is then free to unload the driver from memory. Failure to call close |eaves the handle open,
reducing the number of available controller handles for other applications.

296 Precision MicroControl

MCAPI Driver Functions

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCClose(hCtlr: HCTRLR): Smallint; stdcall;
VB: Function MCClose(ByVal hCtrlr As Integer) As Integer

LabVIEW: Execute [T] -

Handle In _I:Igel

MCClose.vi

MCCL Reference

None

See Also
MCOpen()

MCGetConfigurationEx

M CGetConfigurationEx() obtains the configuration for the specified controller. Configuration information includes the
controller type, number and type of installed motor modules, and if the controller supports scaling, contouring, etc.

long int MCGetConfigurationEx(

HCTRLR hCtlr, // controller handle
MCPARAMEX* pParam // address of extended configuration
// structure
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pParam Points to an MCPARAMEX structure that receives the configuration information
for hCltlr.

Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codes if there was a problem.

Comments
This function allows the application to query the driver about installed controller hardware and capabilities. Included are
the number and type of axes, digital and analog 10 channels, scaling, and contouring.

DCX-PCI100 User’'s Manual 297

MCAPI OEM Low Level Functions

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 3.0 or higher

Prototypes
Delphi: function MCGetConfigurationEx(hCtlr: HCTRLR; var pParam: MCPARAMEX): Longlnt; stdcall;
VB: Function MCGetConfigurationEx(ByVal hCtrlr As Integer, param As MCParamEx) As Long

LabVIEW: Not Supported

MCCL Reference
Dual Port RAM

See Also
MCPARAMEX structure definition

MCGetVersion

MCGetVersion() returns version information about the MCAPI.DLL and, optionally, about the device driver in use for a
particular controller.

DWORD MCGetVersion(

HCTRLR hCtlr // controller handle
)
Parameters
hCtlr Controller handle, selects which motion controller to obtain device driver
version info from. May be NULL (if NULL MCGetVersion() version number info
is returned for the MCAPI DLL only).
Returns

The return version number for the MCAPI DLL and, if hCtlr isnot NULL, the version number for the device driver in use
for the controller. If hCtlr isNULL, device driver version info will be zero.

Comments

The DLL version number is contained in the low order word of the return value. The major version number is stored as the
low order byte of thisword, while the release number is multiplied by 10, added to the revision number, and stored as the
high order byte.

If the controller handle is not NULL, the version information for the device driver that is associated with this controller will
be placed in the high order word of the return value, using the same format as was used for the DLL version information.

Compatibility

There are no compatibility issues with this function.

298 Precision MicroControl

MCAPI Driver Functions

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.2 or higher

Prototypes
Delphi: function MCGetVersion(hCtlr: HCTRLR): Longint; stdcall;
VB: Function MCGetVersion(ByVal hCtrlr As Integer) As Long

LabVIEW: Not Supported

MCCL Reference

None

MCOpen

M COpen() returns a handle to a particular controller for use with subsegquent API calls.

HCTRLR MCOpen(

short int id, // controller ID
WORD mode, // open mode - ASCII / binary
char* pName // not used
)
Parameters
id Controller ID, selects the controller to open.
mode I/O mode to open controller in:
Value Description
MC_OPEN_ASCII Open controller for ASCII (character) 1/0.
MC_OPEN_BINARY Open the binary command interface of the controller.
MC_OPEN_EXCLUSIVE May be OR'ed with MC_OPEN_ASCI| or
MC_OPEN_BINARY to request exclusive accessto the
controller.
pName Should be set to NULL for the present
Returns

This function returns handle to the specified controller for use in subsequent API calls. The handle will be greater than zero
if the open call succeeds or less than zero if thereis an error. Standard error codes (see the file MCERR.H) will be
multiplied by -1 to make their values negative and returned in place of ahandle, if thereis an error:

Value Description

MCERR_ALLOC_MEM Unable to allocate memory for handle.
MCERR_CONSTANT The constant value supplied for mode isinvalid.
MCERR_INIT_DRIVER Unable to initialize device driver.

DCX-PCI100 User’'s Manual 299

MCAPI OEM Low Level Functions

MCERR_MODE_UNAVAIL The requested mode (ASCII or binary) is unavailable.
Typically due to the fact that another process has an open
handle to the controller in the opposite mode.

MCERR_NO_CONTROLLER No controller isinstalled at this ID, run MCSETUP.

MCERR_NOT_PRESENT The specified controller hardware is missing or not
responding.

MCERR_OPEN_EXCLUSIVE Unable to open controller for exclusive use - another process
must already have an open handle to this controller.

MCERR_OUT_OF HANDLES Thedriver is out of handles, try closing unused handles first.

MCERR_RANGE Specified id is out of range.

MCERR_UNSUPPORTED_MODE The requested open mode (ASCII or binary) is not supported
for this controller.

Please note that the error codes in the table above, when an error has occurred, will
returned as a negative value.

Comments

Always save the handle returned by M COpen() and use that value in subsequent callsto the API. MCOpen() must be
called before any other API calls are attempted. If acall is made to any other API function with a bad handle, a handle error
message (MCERR_CONTROLLER) will be broadcast to all windows. Everyone is notified in the case of abad handle
because the MCAPI normally uses the handle to route error messages, and obvioudly can't do thisif the handleisinvalid.

If it is necessary that no one else gains access to a controller while you are using it, you may combine the open mode with
MC_OPEN_EXCLUSIVE:

if ((hCtlr = MCOpen(7, MC_OPEN_ASCII | MC_OPEN_EXCLUSIVE, NULL)) > 0)
{

}

will only return avalid handle if no other process has an open handle to this controller already, and will prevent any one
else from opening the controller while the exclusive handle is open.

// got an exclusive handle

The name argument in the M COpen() function call is for future enhancements to the API and should be set to NULL for
the present.

If you are using an DCX-AT or DCX-PCI configured for multi-interface, you may open binary and ASCII handles
simultaneously. Exclusive handles are interface based, not controller based, in this case (i.e. you may have one exclusive
ASCII handle and one exclusive binary handle open at the same time).

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function MCOpen(id: Smallint; mode: Word; pName: PChar): HCTRLR; stdcall;
VB: Function MCOpen(ByVal id As Integer, ByVal mode As Integer, ByVal name As String) As Integer

300 Precision MicroControl

MCAPI Driver Functions

LabVIEW: Execute [T] - .
Controller ID [0) —— DOpen
Mode [Binary] ——— L4 Handle Dut

MCOpen.vi

MCCL Reference

None

See Also
MCClose(), MCErrorNotify()

MCReopen

M CReopen(') may be used to change the mode of an existing handle.

long int MCReopen(

HCTRLR hCtlr, // controller handle
WORD mode // new mode
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
mode New mode flags:
Value Description
MC_OPEN_ASCII Open controller for ASCII (character) 1/0.
MC_OPEN_BINARY Open the binary command interface of the controller.
MC_OPEN_EXCLUSIVE May be combined with MC_OPEN_ASCII or
MC_OPEN_BINARY using the binary or operator '|' to
reguest exclusive access.
Returns

M CReopen() returns the value MCERR_NOERROR, if the function completed without errors. If there was an error, one
of the MCERR_xxxx error codes is returned.

Comments

The most likely cause for failureis that another open handle exists for the same controller. M CReopen() cannot change a
controller’s open mode if there are multiple handles, asthereis no way to notify the owners of those other handles that a
mode switch has occurred. If you plan on using this function in an application, it is suggested that you open the controller in
exclusive mode to prevent any additional handles from being opened.

If you are using a DCX-PCI or DCX-AT in multi-interface mode, the above restrictions do not apply.

Compatibility

There are no compatibility issues with this function.

DCX-PCI100 User’'s Manual 301

MCAPI OEM Low Level Functions

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCReopen(hCtlr: HCTRLR; mode: Word): Longint; stdcall;
VB: Function MCReopen(ByVal hCtrlr As Integer, ByVal mode As Integer) As Long

LabVIEW: Not Supported

MCCL Reference

None

See Also
M CClose(), MCOpen()

MCSetTimeoutEx

M CSetTimeoutEx() sets the timeout period for 1/O to a particular controller.

long int MCSetTimeoutEx(

HCTRLR hCtlr, // controller handle
double timeout, // new timeout value
double* pOldTimeout // old timeout value
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
timeout New timeout period, in seconds.
pOIldTimeout Pointer to a double precision floating point variable that will hold the old timeout
setting for the specified axis. If the pointer is NULL, no value is returned.
Returns

If there were no errors, the previous timeout setting is placed in the variable specified by the pointer pOldTimeout, and
MCERR_NOERROR isreturned. If there was an error, one of the MCERR_xxxx error codes is returned, and the variable
pointed to by pOldTimeout is left unchanged. If the pointer pOldTimeout is NULL, the old timeout value is not returned.

Comments

The timeout period is the maximum amount of time, in seconds, that the MCAPI device driver will wait to send a command
and/or receive areply. The default setting for timeout for all controllersis zero seconds. A timeout setting of zero will cause
the controller to wait forever (i.e. no timeout) for 1/O to complete.

Note that atimeout value that is acceptable for most functions may fail (i.e. timeout) if the controller is asked to perform a
lengthy operation (along wait, areset, etc.). One option in these cases is to change the timeout value for the duration of the
long operation, then change the timeout value back.

Compatibility

There are no compatibility issues with this function.

302 Precision MicroControl

MCAPI Driver Functions

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.3 or higher

Prototypes
Delphi: function MCSetTimeoutEx(hCtlr: HCTRLR; timeout: Double; var pOldTimeout: Double): Longint; stdcall;
VB: Function MCSetTimeoutEx(ByVal hCtrlr As Integer, ByVal timeout As Double, oldTimeout As Double) As Long

LabVIEW: Not Supported

MCCL Reference

None

DCX-PCI100 User’'s Manual 303

MCAPI OEM Low Level Functions

Chapter Contents

304 Precision MicroControl

MCAPI OEM Low Level Functions

The OEM low level commands provide direct access to controller functionality. The functionsin this group are not part of
the forma Motion Control API.

These functions have been implemented in away that is consistent with DOS mode libraries for these controllers. This
consistency is designed to simplify the task of porting existing DOS applications to Windows.

To see examples of how the functionsin this chapter are used, please refer to the online Motion Control APl Reference.

pmccmd

pmccemd() downloads a formatted binary command buffer directly to the PMC controller. Programmers should use the
more advanced pmccmdex() instead of this function when possible.

long int pmccmd(

HCTRLR hCtlr, // controller handle

short int bytes, // length of buffer

void* pBuffer // pointer to command buffer
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
bytes Length of buffer, in bytes.
pBuffer Pointer to command buffer.
Returns

The return value from this function is the actual number of bytes downloaded. Because of the nature of the binary interface,
the return value will be equal to the buffer size (value of the bytes argument), indicating the command buffer was
successfully downloaded, or zero, indicating a problem communicating with the controller.

DCX-PCI100 User’'s Manual 305

MCAPI OEM Low Level Functions

Comments

The binary interface is described in detail in the hardware manual that accompanied your controller. The user of this
function is responsible for correctly formatting the buffer - no checking is performed by the function. To send binary
commands to the motion controller the hCtlr handle must have opened in binary mode.

This function may be used within an M CBlockBegin() / M CBlockEnd() pair to create Macros, Compound commands, or
Tasks.

This command function may also be used in ASCII mode; in this case the command buffer should contain a correctly
formatted ASCIl command (including the terminating carriage return "\r").

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcemd(hCtir: HCTRLR; bytes: Smallint; pBuffer: PChar): Smallint; stdcall;
VB: Function pmcemd(ByVal hCtrlr As Integer, ByVal bytes As Integer, ByVal buffer As String) As Integer

LabVIEW: Not Supported

MCCL Reference

None

See Also
pmcrdy(), pmerpy()

pmccmdex

pmccmdex() downloads a formatted binary command buffer directly to the PMC controller.

long int pmccmdex(

HCTRLR hCtlr, // controller handle
WORD axis, // Axis number for this command
WORD cmd, // MCCL command
void* pArgument, // pointer to command argument
long int type // type of argument
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
axis Axis number for this command.
cmd MCCL command to execute - see MCCL.H and the User's Manual for your
motion controller.
pArgument Pointer to a variable that has the argument for this command.

306 Precision MicroControl

MCAPI OEM Low Level Functions

type Type of data pointed to by pArgument:
Value Description
MC _TYPE_LONG Indicates pArgument points to a variable of type long integer.
MC_TYPE _DOUBLE Indicates pArgument points to a variable of type double
precision floating point.
MC_TYPE_FLOAT Indicates pArgument points to a variable of type single
precision floating point.
MC_TYPE_REG Indicates pArgument points to a variable of the format of a 32
bit integer with register number.
MC_TYPE_NONE Indicates pArgument points to a variable of type which is
NULL.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments

The binary interface is described in detail in the hardware manual that accompanied your controller. To send binary
commands to the motion controller the hCtlr handle must have opened in binary mode.

This function may be used within an M CBlockBegin() / M CBlockEnd() pair to create Macros, Compound commands, or
Tasks.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.2 or higher

Prototypes

Delphi: function pmcemdex(hCtlr: HCTRLR; axis: Word; cmd: Word; var pArgument: Pointer; type: Longint): Longint; stdcall;

VB: Function pmccmdex(ByVal hCtrlr As Integer, ByVal axis As Integer, ByVal cmd As Integer, argument As Any, ByVal
argtype As Long) As Long

LabVIEW: Not Supported

MCCL Reference

None

See Also
pmcrdy(), pmcrpyex()

pmcgetc

pmcgetc() reads a single character from the controller ASCII interface.

DCX-PCI100 User’'s Manual 307

MCAPI OEM Low Level Functions

short int pmcgetc(

HCTRLR hCtlr // controller handle
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
Returns

The return value from this function is number of bytes actually read from the controller (1 or 0).

Comments
Thisfunction will return immediately if there is no character available. Use the string get command, pmcgets(), if you
want to wait for a character, or place pmcgetc() in aloop.

Y ou must open the controller in ASCII mode (MC_OPEN_ASCII) in order to use this
command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Pr ototypes
Delphi: function pmcgetc(hCtir: HCTRLR): Smallint; stdcall;
VB: Function pmcgetc(ByVal hCtrlr As Integer) As Integer

LabVIEW: Not Supported

MCCL Reference

None

See Also
pmcgetc(), pmcputc(), pmcputs()

pmcgetram

pmcgetram() reads bytes from controller memory beginning at location offset.

308 Precision MicroControl

MCAPI OEM Low Level Functions

short int pmcgetram(

HCTRLR hCtlr, // controller handle
WORD offset, // memory offset to read from
void* pBuffer, // buffer to hold ram value
short int bytes // number of bytes of memory to read
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
offset Starting memory location, relative to the beginning of controller dual ported ram,
to read from.
pBuffer Buffer to hold read in controller memory, must be at least bytes long.
bytes Number of bytes of memory to read.
Returns

This function does not return a value.

Comments

No range checking is performed on offset or bytes - it is the caller's responsibility to supply valid values for these
arguments. Consult the controller hardware manual for details on the controller memory map.

& Do not use this command within an M CBlockBegin() / M CBlockEnd() block.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure pmcgetram(hCtlr: HCTRLR; offset: Word; pBuffer: PChar; bytes: Smallint); stdcall;
VB: Sub pmcgetram(ByVal hCtrlr As Integer, ByVal offset As Integer, ByVal buffer As String, ByVal bytes As Integer)

LabVIEW: Not Supported

MCCL Reference

None

See Also
pmcputram()

DCX-PCI100 User’'s Manual 309

MCAPI OEM Low Level Functions

pmcgets
pmcgets() reads a null-terminated ASCII string of up to bytes characters from the controller ASCII interface.

short int pmcgets(

HCTRLR hCtlr, // controller handle
void* pBuffer, // pointer to buffer
short int bytes // length of buffer
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pBuffer Pointer to reply buffer.
bytes Length of buffer, in bytes.
Returns

The return value from this function is number of bytes actually read from the controller.

Comments

This function will wait for areply for aslong as the controller is busy processing command. A zero will be returned when
the controller isidle and there are no reply characters. However, a non-zero timeout value will force the function to return
the number of charactersit has received prior to the timeout.

Y ou must open the controller in ASCII mode (MC_OPEN_ASCII) in order to use this
command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcgets(hCtir: HCTRLR; pBuffer: PChar; bytes: Smallint): Smallint; stdcall;
VB: Function pmcgets(ByVal hCtrir As Integer, ByVal buffer As String, ByVal bytes As Integer) As Integer

LabVIEW: Not Supported

MCCL Reference

None

See Also
MCSetTimeoutEx(), pmcgetc(), pmcputc(), pmcputs()

310 Precision MicroControl

MCAPI OEM Low Level Functions

pmcputc
pmcputc() writes a single character to the controller ASCII interface.

short int pmcputc(

HCTRLR hCtlr, // controller handle
short int char // output char
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
char Character to output.
Returns

Thisfunction returns aone if the character is successfully written or a zero if it is unable to write to the controller.

Comments
Remember to terminate all command strings with a carriage return "\r" in order for the command to be executed. This
command does not wait for the controller - if it is unable to write the character it returns immediately with areturn value of

zero.
Y ou must open the controller in ASCIl mode (MC_OPEN_ASCII) in order to use this
command.
Do not use this command within an M CBlockBegin() / MCBlockEnd() block. This
function attempts to write immediately to the motion controller.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Pr ototypes
Delphi: function pmcputc(hCtlr: HCTRLR; char: Smallint): Smallint; stdcall;
VB: Function pmcputc(ByVal hCtrlr As Integer, ByVal char As Integer) As Integer

LabVIEW: Not Supported

MCCL Reference

None

See Also
pmcgetc(), pmegets(), pmeputs()

DCX-PCI100 User’'s Manual 311

MCAPI OEM Low Level Functions

pmcputram

pmcputram() writes bytes directly into the controller's memory beginning at location offset.

void pmcputram(

HCTRLR hCtlr, // controller handle
WORD offset, // memory offset to write to
void* pBuffer, // buffer to hold ram value
short int bytes // number of bytes of memory to write
);
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
offset Starting memory location, relative to the beginning of controller dual ported ram,
to write to.
pBuffer Buffer of data to write into controller memory.
bytes Number of bytes of memory to write.
Returns

This function does not return a value.

Comments

No range checking is performed on offset or bytes. It is the caller’s
responsibility to supply valid values for these arguments. Writing directly

& to dual ported ram can cause unpredictable results. USE THIS
FUNCTION WITH EXTREME CAUTION!

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: procedure pmcputram(hCtlr: HCTRLR; offset: Word; pBuffer: PChar; bytes: Smallint); stdcall;
VB: Sub pmcputram(ByVal hCtrlr As Integer, ByVal offset As Integer, ByVal buffer As String, ByVal bytes As Integer)

LabVIEW: Not Supported

MCCL Reference

None

See Also
pmcgetram()

312 Precision MicroControl

MCAPI OEM Low Level Functions

pmcputs
pmcputs() writesaNULL terminated command string to the controller ASCII interface.

short int pmcputs(

HCTRLR hCtlr, // controller handle
char* pBuffer // output string
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pBuffer Output string.
Returns

This function returns the number of characters actually written to the controller. This number may be less than the length of
the string if the controller becomes busy and stops accepting characters.

Comments
Remember to terminate all command strings with a carriage return "\r" in order for the command to be executed. This
function consumes any reply characters from the controller while it is writing (this may change in future implementations).

Y ou must open the controller in ASCIl mode (MC_OPEN_ASCII) in order to use this
command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmcputs(hCtlir: HCTRLR; pBuffer: PChar): Smallint; stdcall;
VB: Function pmcputs(ByVal hCtrlr As Integer, ByVal buffer As String) As Integer

LabVIEW: Not Supported

MCCL Reference

None

See Also
pmcgetc(), pmegets(), pmeputs()

DCX-PCI100 User’'s Manual 313

MCAPI OEM Low Level Functions

pmcrdy

pmcrdy() checksthe specified controller to seeif it isready to accept a binary command buffer.

short int pmcrdy(

HCTRLR hCtlr // controller handle
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
Returns

The return value from this function is TRUE (+1) if the controller is ready to accept commands. The controller will return
FALSE if it is busy. For the AT200 controller, avalue of -1 isreturned if the controller is ready to accept datain file
download mode.

Comments

Basic language users are cautioned that Visual Basic defines TRUE as -1, while Windows defines TRUE to be +1 (the AP
uses the Windows value for TRUE and returns a +1 if the controller is ready). Therefore, code such as:

it pmcrdy(hCtlr) = True then

will not work as expected in Visual Basic.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h, mcapi.pas, or mcapi32.bas
Library: mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmerdy(hCtlr: HCTRLR): Smallint; stdcall;
VB: Function pmcrdy(ByVal hCtrlr As Integer) As Integer

LabVIEW: Not Supported

MCCL Reference

None

See Also
pmcemd(), pmerpy()

pmcrpy

pmcrpy() reads a binary reply of up to bytes bytes from the controller. Programmers should use the more advanced
pmcrpyex() instead of this function when possible.

314 Precision MicroControl

MCAPI OEM Low Level Functions

long int pmcrpy(

HCTRLR hCtlr, // controller handle
short int bytes, // length of buffer
void* pBuffer // pointer to buffer
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
bytes Length of buffer, in bytes.
pBuffer Pointer to reply buffer.
Returns

Thereturn value from this function is the actual number of bytes read. This value may be less than the argument bytes, but
will never exceed bytes. If the controller has no reply ready, the return value will be zero.

Comments
This function waits for areply for aslong as the controller is busy - it returns with areturn value of zero if no reply is (or
will be) available.

Y ou must open the controller in ASCII mode (MC_OPEN_ASCII) in order to use this
command.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 1.0 or higher

Prototypes
Delphi: function pmerpy(hCtlr; HCTRLR; bytes: Smallint; pBuffer: PChar): Smallint; stdcall;
VB: Function pmcrpy(ByVal hCtrlr As Integer, ByVal bytes As Integer, ByVal buffer As String) As Integer

LabVIEW: Not Supported

MCCL Reference

None

See Also
pmcemd(), pmcrdy(), pmcrpyex()

pmcrpyex

pmcrpyex() reads a binary reply of up to bytes bytes from the controller.

DCX-PCI100 User’'s Manual 315

MCAPI OEM Low Level Functions

long int pmcrpyex(

HCTRLR hCtlr, // controller handle
void* pReply, // pointer to command reply
long int type // type of argument
)
Parameters
hCtlr Controller handle, returned by a successful call to MCOpen().
pReply Pointer to a variable to hold the reply value.
type Type of data pointed to by pReply:
Value Description
MC _TYPE_LONG Indicates pReply points to a variable of type long integer.
MC_TYPE _DOUBLE Indicates pReply points to a variable of type double precision
floating point.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was a problem.

Comments
The binary interface is described in detail in the hardware manual that accompanied your controller.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcapi.h and mccl.h, mcapi.pas, or mcapi32.bas
Library: use mcapi32.lib

Version: MCAPI 2.2 or higher

Prototyp es
Delphi: function pmerpyex(hCtlr: HCTRLR; var pReply: Pointer; type: Longint): Longint; stdcall;
VB: Function pmcrpyex(ByVal hCtrlr As Integer, reply As Any, ByVal argtype As Long) As Long

LabVIEW: Not Supported

MCCL Reference

None

See Also
pmccemdex(), pmcrdy(), pmerpy()

316 Precision MicroControl

MCAPI OEM Low Level Functions

DCX-PCI100 User’'s Manual 317

MCAPI Common Motion Dialog Functions

Chapter Contents

318 Precision MicroControl

MCAPI Common Motion Dialog Functions

The Common Motion Dialog library includes easy-to-use high-level functions for the control and configuration of your
motion controller. By combining these functionsin asingle library we've made it easy for programmers to include the
Common Motion Dialog functionality in their application programs. Functions are provided for the configuration of servo
and stepper axes, scaling setup, controller selection, file download, and save/restore of motor settings.

To see examples of how the functionsin this chapter are used, please refer to the online Motion Control APl Reference.

MCDLG_AboutBox

MCDL G_AboutBox() displays asimple About dialog box that includes version information about both the application
and the Motion Control API.

long int MCDLG_AboutBox(

HWND hWnd, // handle to parent window
LPCSTR title, // title string for the dialog box
long int bitmaplD // bitmap ID for the dialog box
)
Parameters
hwnd Handle to parent window of About Box. This handle is used by
MCDLG_AboutBox() to retrieve VERSIONINFO strings from the application.
title An optional title string for the About dialog box. If this pointer is NULL or points
to a zero length string the default title of “About” is used.
bitmapID An optional Bitmap resource identifier. If greater than zero, the specified bitmap
will be displayed in the About dialog box. If zero, MCDLG_AboutBox() will
display the default bitmap. Bitmaps should be no larger than 240 (width) by 80
(height) pixels, 16 colors.
Returns

This function returns MCERR_NOERROR if there were no errors, or it returns one of the MCERR_xxxx defined error
codesif there was an error creating the dialog box.

DCX-PCI100 User’'s Manual 319

MCAPI Common Motion Dialog Functions

Comments

Version information is obtained by retrieving VERSIONINFO values from the executable module. The specific strings
gueried for are “ CompanyName”, “FileDescription”, “FileVersion”, and “Legal Copyright”. It isa good ideato include a
VERSIONINFO resource in any application as it permits Windows to accurately determine the version of any executable
fileor DLL. Applications and DLLs supplied with the Motion Control API include aVERSIONINFO resource.

The dialog box displays adefault logo bitmap above the version information. By specifying avalid bitmap resource ID for
the bitmapl D parameter you may change the bitmap displayed. If this parameter is greater than zero the new bitmap will
replace the default in the About dialog box. Bitmaps should be no larger than 240 (width) by 80 (height) pixels, 16 colors.

If aNULL pointer or apointer to a zero length string is passed as the title argument the default title will be used.
Acceptance of apointer to a zero length string was included to support programming languages that have difficulty with
NULL pointers (e.g. Visua Basic). To eliminate the title pass a pointer to a string with asingle space (i.e. ").

Note that MCDL G_AboutBox() uses the HWND argument passed to it to identify the executable file from which to read
the VERSIONINFO information. In some development environments, such as Visual Basic, window handles are owned by
aDLL supplied by the author of the development system, not the user's EXE file. In these situations,

MCDL G_AboutBox() isunable to correctly perform its VERSIONINFO query and should not be used.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcdlg.h, mccdlg.pas, or mecdig32.bas
Library: use mcdlg32.lib and mcapi32.lib

Version: MCAPI 2.1 or higher

Prototypes
Delphi: function MCDLG_AboutBox(hWnd: HWnd: title: PChar; bitmapID: Longint): Longint; stdcall;
VB: Function MCDLG_AboutBox(ByVal hWnd As Long, ByVal title As String, ByVal bitmapID As Long) As Long

LabVIEW: Not Supported

MCDLG_CommandFileExt

M CDL G_CommandFileExt() returns the file extension for MCCL command files for a particular motion controller type.

long int MCDLG_ CommandFi leEXt(

long iInt type, // controller type identifier
long int flags, // flags
LPCSTR buffer, // buffer for file extension string
long int length // length of string buffer, in bytes
)
Parameters
type Motion Controller type, must be equal to one of the predefined motion controller
types (see MCAPI.H).
flags Reserved for future use (set to zero).

320 Precision MicroControl

MCAPI Common Motion Dialog Functions

buffer Pointer to a string buffer that will hold the file extension (should be _MAX_FILE
long).

length Size of buffer, in bytes.

Returns

This function returns a pointer to the file extension string for the specified motion controller type. It returns NULL if type
does not specify avalid controller type.

Comments

The Motion Control API registers a separate file extension for each controller type. The MCAPI tools, such as Win Control,
use these file extensions when they open MCCL command files. Y ou can use this function to get the registered file
extension for any controller type.

See the MCAPI sample program Win Control for an example.

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcdlg.h, mccdlg.pas, or mecdig32.bas
Library: use mcdlg32.lib and mcapi32.lib

Version: MCAPI 3.0 or higher

Prototypes

Delphi: function MCDLG_CommandFileExt(type: Longint; flags: Longint; buffer: PChar; length: Longint): PChar; stdcall;

VB: Function MCDLG_CommandFileExt(ByVal argtype As Long, ByVal flags As Long, ByVal buffer As String, ByVal length
As Long) As String

LabVIEW: Not Supported

MCDLG_ConfigureAxis

MCDLG_ConfigureAxis() displays a servo or stepper axis setup dialog that permits user configuration of the axis.

long int MCDLG ConfigureAxis(

HWND hWnd, // handle to parent window
HCTRLR hCtlr, // handle to a motion controller
WORD axis, // axis number to configure
long int flags, // configuration flags
LPCSTR title // optional axis title for the dialog box
):
Parameters
hwnd Handle to parent window. May be NULL.
hCtlr Motion Controller handle, returned by a successful call to MCOpen().
axis Axis number of axis to be configured.
flags Flags to control the operation (multiple flags may be OR'ed together):

DCX-PCI100 User’'s Manual 321

MCAPI Common Motion Dialog Functions

Value Description

MCDLG_CHECKACTIVE Checks if an axisis moving before the new settings are
written to the controller and skips if the axisis moving.
Combine with MCDLG_PROMPT to prompt user whether or
not to proceed.

MCDLG_PROMPT Combine with MCDLG_CHECKACTIVE to prompt user
whether or not to proceed if a motor is moving and the user
has dismissed the dialog box with OK.

title An optional title string for the axis. If this pointer is NULL or points to a zero
length string the default title, which includes the axis number and a description
of the axis type is used.

Returns

This function returns MCERR_NOERROR if the user pressed OK button to dismiss the dialog box. It returns
MCERR_CANCEL if the user pressed the CANCEL button to dismiss the dialog box. It returns one of the other
MCERR_xxxx error codesif there was an error creating the dialog box.

Comments

This function provides comprehensive, ready-to-use setup dialogs for stepper and servo motor axis types. The motion
controller is queried for the current axis settings to initialize this dialog box. Any changes the user makes are sent to the
motion controller if the user dismisses the dialog by pressing the OK button.

Changing the parameters of an axis while it is moving may result in erratic behavior (such as when you choose to include
the motor position in the changed parameters). The flag MCDLG_CHECKACTIVE forces this function to check the axisto
seeif it isactive before it proceeds. By default MCDLG_CHECKACTIVE will skip the changing of an active axis, but if
you aso include the flag MCDLG_PROMPT the user will be prompted for how to proceed. The programming samples are
all built with MCDLG_CHECKACTIVE and MCDLG_PROMPT set.

If aNULL pointer or apointer to a zero length string is passed as the title argument, the default title will be used.
Acceptance of a pointer to a zero length string was included to support programming languages that have difficulty with
NULL pointers (e.g. Visual Basic). To eliminate the title pass a pointer to a string with asingle space (i.e. ").

Compatibility

There are no compatibility issues with this function.

Requirements

Header: include mcdlg.h, mccdlg.pas, or mecdig32.bas
Library: use mcdlig32.lib and mcapi32.lib

Version: MCAPI 2.1 or higher

Prototypes

Delphi: function MCDLG_ConfigureAxis(hWnd: HWnd; hCtlr: HCTRLR; axis: Word; flags: Longint; title: PChar): Longint;
stdcall;

VB: Function MCDLG_ConfigureAxis(ByVal hWnd As Long, ByVal hCtir As Integer, ByVal axis As Integer, ByVal flags As

Long, ByVal title As String) As Long
LabVIEW: Execute [T] -y

Handle In Handle Out
Az In [1] - Az Out
F