

Motion VI Library

LabVIEW Programming Manual
Revision 2.1

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

LIMITED WARRANTY

All products manufactured by PRECISION MICROCONTROL CORPORATION are guaranteed to be
free from defects in material and workmanship, for a period of five years from the date of shipment.
Liability is limited to FOB Factory repair, or replacement, of the product. Other products supplied as
part of the system carry the warranty of the manufacturer.

PRECISION MICROCONTROL CORPORATION does not assume any liability for improper use or
installation or consequential damage.

(c)Copyright Precision MicroControl Corporation, 1994-2001. All rights reserved.

Information in this document is subject to change without notice.

IBM and IBM-AT are registered trademarks of International Business Machines Corporation.
Intel and is a registered trademark of Intel Corporation.
Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.
Acrobat and Acrobat Reader are registered trademarks of Adobe Corporation.

Precision MicroControl
2075-N Corte del Nogal
Carlsbad, CA 92009-1415

Phone: (760)930-0101
Fax: (760)930-0222
World Wide Web: www.pmccorp.com
Email:
 Information: info@pmccorp.com
 Technical support: support@pmccorp.com
 Sales: sales@pmccorp.com

 Table of Contents

Prologue .. iv
Introduction...1

First Time Users ..1
Required Software...1
Install LabVIEW First...3
Online Help..4

Low-Level Communication ...9
Win Control and MCCL Commands ..9

Understanding LabVIEW ..15
Samples ..16
The Execute Input ...17
Cascading VIs ...17
Self-Documenting Constants...18

Motion VI Library Introduction...21
VI Listing Introduction..21

Parameter Setup VIs ..25
MCEnableBacklash ...26
MCEnableGearing...28
MCEnableSync..30
MCSetAcceleration..31
MCSetAuxEncPos...32
MCSetDeceleration ...34
MCSetFilterConfig ...35
MCSetGain..37
MCSetLimits ..38
MCSetOperatingMode...40
MCSetPosition...42
MCSetRegisterDouble...43
MCSetRegisterLong ..44
MCSetScale ..45
MCSetServoOutputPhase ...47
MCSetTorque ..48
MCSetVelocity...49

Motion VIs...51
MCAbort ..52
MCDirection...54
MCEnableAxis...55
MCGo ..57
MCGoHome ..58
MCMoveAbsolute ..59
MCMoveRelative ...60
MCStop ...61
MCWait..63
MCWaitForStop...64

Reporting VIs ..67
MCDecodeStatus ..68
MCGetAccelerationEx ...69
MCGetAuxEncPosEx ..70
MCGetBreakpointEx..72

LabVIEW Programming Manual i

MCGetDecelerationEx...73
MCGetFilterConfig...75
MCGetFollowingError..77
MCGetGain ...79
MCGetIndexEx ..80
MCGetLimits..82
MCGetOptimalEx ..84
MCGetPositionEx ..86
MCGetRegisterDouble ..87
MCGetRegisterLong..88
MCGetScale ..89
MCGetStatus...91
MCGetTargetEx ..92
MCGetTorque..94
MCGetVelocityEx ..96

Analog & Digital I/O VIs ..99
MCConfigureDigitalIO ...100
MCEnableDigitalIO..102
MCGetAnalog..103
MCGetDigitalIO ...105
MCSetAnalog ..106
MCWaitForDigitalIO ..108

System VIs..111
MCClose..112
MCGetError ...113
MCMacroCall...114
MCOpen ..115
MCReset ...116
MCTranslateErrorEx..118

Low-Level OEM VIs ..121
MCCommand ..122
MCGetRam ...123
MCGets ...124
MCPutRam..125
MCPuts..126
MCReply..127

Motion Dialog VIs..131
MCDLG_ConfigureAxis ...132
MCDLG_ControllerInfo..133
MCDLG_DownloadFile..134
MCDLG_Initialize ..135
MCDLG_RestoreAxis ..136
MCDLG_RestoreDigitalIO ...138
MCDLG_SaveAxis ..139
MCDLG_SaveDigitalIO ...141
MCDLG_Scaling..142
MCDLG_SelectController ..144

Error Codes ..145
Printing a PDF Document ...149
Index...151

ii Precision MicroControl

User manual revision history
Revision Date Description

2.0 3/25/2002 Initial release
2.1 5/7/2002 Updated to reflect Motion VI Library 2.1

LabVIEW Programming Manual iii

Prologue

This manual has been written as a reference manual for the Motion VI Library. However, this is not
meant to be the only document you should reference regarding the use of the Motion VI Library. You
will find more application specific information on how to use your motion control card in your User's
Manual. Although most of the application examples are written in C++ code, the function names
correspond to equivalent VIs, and the examples should give you a good deal of insight as to how the
VIs should be used.

Also, you will find other valuable information on how to use your motion control card on your
MotionCD. There, you will find the following information:

• Tutorials (PowerPoint presentations)
 An Introduction to PMC Motion Control
 Installing a PMC Motion Controller (Does not Address PCI bus controllers)
 Introduction to Motion Control Programming with the Motion Control API
 Servo Systems Primer
 Servo Tuning

• PMC AppNOTES – detailed descriptions of specific motion control applications

• PMC TechNOTES – one page technical support documents

• PMC Product catalogs and brochures

iv Precision MicroControl

Chapter Contents

• First Time Users

• Required Software

• Online Help

vi Precision MicroControl

Introduction

First Time Users
If this is your first time using one of PMC’s motion control cards, we would like to w
unique approach to motion control. We would also like to thank you for reading this
section. Here we would like to acquaint you with the steps to properly setup the sof
control card with minimal confusion and frustration.

Being Engineers ourselves, we know the excitement of playing with new toys. We d
to read the entire manual prior to using our product, no matter how happy that woul
However, we would be rather pleased if you would take the time to finish reading th
understand some of tools we provide you with to help you reduce the learning curve
Remember, all of our software is provided at no charge, and upgrades can be foun
on our website, www.pmccorp.com.

You should have received a Quick Start Card with your motion controller. This has
physical installation as well as software installation nicely numbered with pretty pict
you quickly through the setup process. You may find an electronic copy of this on th
Please take a moment to review this card if you have not done so already. This will
much easier!

Required Software
Obviously, you will need software to make our product work, but what software do y
this is a manual about the Motion VI Library, you probably already correctly guesse
However, this is only part of the story. Please take a moment to look at figure 1.

LabVIEW Programming Manual
Chapter

1

elcome you to our
 introduction
tware for a motion

o not expect you
d make us.
is chapter to
 dramatically.

d only a click away

all the steps for
ures that will guide
e MotionCD.

 make your life so

ou need? Since
d LabVIEW.

1

http://www.pmccorp.com/

Introduction

Figure 1: MCAPI and motion control card architectural diagram

You will notice that there are several layers of software between LabVIEW and the motion control
card. Each layer provides a level of abstraction which allows the layer above it to be that much
simpler. In this way, we can hide low-level details from the programmer, keeping the higher-level code
the same across multiple products. The look and feel of the code which you are about to learn will not
change from product to product or generation to generation. This approach allows for product
developments and enhancements without breaking existing code that our customers have already
written.

Figure 1 shows that you will need to install two pieces of software other than LabVIEW. The Motion
Control Application Programming Interface (MCAPI) includes the low-level device driver and
configuration for each of our products. The Motion VI Library contains the familiar VI programming
interface.

LabVIEW and the Motion VI Library are only part of what is needed to interface to one of our motion
control cards. You will also need to install our Motion Control API (MCAPI). When you install the
MCAPI, the necessary DLL will also be installed. Without the MCAPI installed, you will not be able to
communicate with your motion control card.

The MCAPI should be conveniently installed from the MotionCD that we shipped with the first motion
control card, however, you may download the latest MCAPI from our website, www.pmccorp.com.
The version numbers between the MCAPI and the Motion VI Library need not match. If you are
concerned about the version of the MCAPI that you should install, each VI listing has a category for
which version of MCAPI is required. The 2.1 version of the Motion VI Library will require the MCAPI
version 2.1c or higher for full functionality.

2 Precision MicroControl

http://www.pmccorp.com/

Introduction

Install LabVIEW First
Before you install the Motion VI Library you must first install LabVIEW version 5.x or 6.x. This is
necessary so that when you install the Motion VI Library its function and control palettes can be added
to the LabVIEW menu system, and the online help is placed where LabVIEW can locate it.

When you install the Motion VI Library, please verify that you install into the root of the LabVIEW
directory for your installation. The InstallShield will select the proper default directory even if you
choose a custom installation. However, if you choose a custom installation, you must be careful not
to alter this directory, or you will not have easy access to the installed components. For instance,
LabVIEW 5.0 has the following default directory path for installation.

 C:\Program Files\National Instruments\LabVIEW

LabVIEW 6.1 will install into the following directory.

 C:\Program Files\National Instruments\LabVIEW 6.1

LabVIEW Programming Manual 3

Introduction

Online Help
Although this manual includes most of the information found in the Motion VI Library Help file, the
online version will be a quicker method of understanding a function when you are sitting at your
computer. When the Motion VI Library is properly installed, this help file will be seamlessly integrated
into LabVIEW’s online help. By right clicking on a Motion VI in the diagram window, you may select
Online Help from the menu to bring up the appropriate page on the Motion VI in question. You may
also view this help at anytime by running the Motion VI Library Help (MCLV.HLP) file.

You will a
MCAPI co
adding Mo
to incorpo

4

The online
Reference provid
descri

Motion

ptions of av
lso find online help for the Motion Control Application P
ntains all the possible functions that may be command
tion VIs to our Library, however, you may find function
rated into your own VIs.
es detailed
 VI Library

ailable VI’s.
rogramming Interface (MCAPI). The
ed of the board. We are continually
ality in the MCAPI that you would like

Precision MicroControl

Introduction

LabVIEW

 The
com
MCA
grou
func
Rep
exam
Basi

P

rogramming Manual
The online MCAPI Users Guide
describes the basics of PMC’s MCAPI.
This should be the ‘first stop’ for any
questions about the MCAPI.

online MCAPI Reference provides a
plete listing and description of all
PI functions. Function calls are
ped both alphabetically and by
tional groups (Motion, Setup,
orting, Gearing, etc...). Source code

ples are provided for C++, Visual
c, and Delphi.
5

Introduction

The online MCAPI Common Dialog
Reference describes the high level
MCAPI Dialog functions. These
operations include: Save and Restore
axis configurations (PID and Trajectory),
Windows Class Position and Status
displays, Scaling, and I/O configuration.

6 Precision MicroControl

Chapter Contents

• Win Control and MCCL Commands

8 Precision MicroControl

Low-Level Communication

At its lowest level the operation of the motion control card is similar to that of a micr
a predefined instruction set of operations which it can perform. This instruction set,
Control Command Language (MCCL), consists of over 200 operations which incl
conditional (if/then), mathematical, and I/O operations.

The typical PC based application will never call these low-level commands directly.
programmer will call higher-level language functions (in C++, Visual Basic, Delphi,
pass the appropriate native, board-level MCCL command(s) through the use of the
driver. However, an understanding of how the low-level commands work allows bet
the Motion Library VIs, especially the Low-Level OEM VIs.

Win Control and MCCL Commands
The Win Control utility allows the user to communicate with the motion control card
language (MCCL). This utility communicates with the controller via the PCI ASCII i
commands are described in detail in the Motion Control Command Language (M
Manual specific to your controller.

MCCL commands are two character alphanumeric mnemonics built with two key ch
description of the operation (i.e.. "MR" for Move Relative). When the command, foll
return, is received by the motion control card, it will be executed. The following grap
result of executing the VE command. This command causes the motion control car
firmware version and the amount of installed memory.

LabVIEW Programming Manual
Chapter

2

oprocessor, it has
known as Motion
ude motion, setup,

 Instead, the
or LabVIEW) which
 MCAPI device
ter command of

 in its native
nterface. All MCCL
CCL) Reference

aracters from the
owed by a carriage
hic shows the

d to report

9

Low Level Communication

All axis related MCCL commands will be preceded by an axis number, identifying to which axis the
operation is intended. The following graphic shows the result of issuing the Tell Position (aTP)
command to axis number one.

Note that each character typed at the keyboard should be echoed to your display. If you enter an
illegal character or an illegal series of valid characters, the motion control card will return a question
mark character, followed by an error code. The MCCL Error Code listing can be found in the Motion
Control Command Language (MCCL) Reference Manual specific to your controller. On receiving
this response, you should re-enter the entire command/command string. If you make a mistake in
typing, the backspace can be used to correct it. The motion control card will not begin to execute a
command until a carriage return is received.

Once you are satisfied that the communication link is correctly conveying your commands and
responses, you are ready to check the motor interface. When the motion control card is powered up
or reset, each motor control module is automatically set to the "motor off" state. In this state, there
should be no drive current to the motors. For servos it is possible for a small offset voltage to be
present. This is usually too small to cause any motion, but some systems have so little friction or such

10 Precision MicroControl

Low Level Communication

high amplifier gain, that a few millivolts can cause them to drift in an objectionable manner. If this is
the case, the "null" voltage can be minimized by adjusting the offset adjustment potentiometer on the
respective servo control module.

Before a motor can be successfully commanded to move certain parameters must be set by issuing
commands to the motion control card. These include; PID filter gains, trajectory parameters
(maximum velocity, acceleration, and deceleration), allowable following error, configuring motion limits
(hard and soft).

At this point the user should refer to the Motion Control chapter and the sections that deal with Theory
of Motion Control, Servo Basics and Stepper Basics in the appropriate User’s Manual for the motion
control card you are using. There the you will find more specific information for each type of motor,
including which parameters must be set before a motor should be turned on and how to check the
status of the axis.

Assuming that all of the required motor parameters have been defined, the axis is enabled with the
Motor oN (aMN) command. Parameter ‘a’ of the Motor oN command allows the user to turn on a
specific axis or all axes. To enable all, enter the Motor oN command with parameter ‘a’ = 0. To enable
a single axis issue the Motor oN command where ‘a’ = the axis number to be enabled.

After turning a particular axis on, it should hold steady at one position without moving. The Tell Target
(aTT) and Tell Position (aTP) commands should report the same number. There are several
commands which are used to begin motion, including Move Absolute (MA) and Move Relative (MR).
To move axis 2 by 1000 encoder counts, enter 2MR1000 and a carriage return. If the axis is in the
"Motor oN" state, it should move in the direction defined as positive for that axis. To move back to the
previous position enter 2MR-1000 and a carriage return.

With the any of PMC’s motion controllers, it is possible to group together several commands. This is
not only useful for defining a complex motion which can be repeated by a single keystroke, but is also
useful for synchronizing multiple motions. To group commands together, simply place a comma
between each command, pressing the return key only after the last command.

A repeat cycle can be set up with the following compound command:

2MR1000,WS0.5,MR-1000,WS0.5,RP6 <return>

This command string will cause axis 2 to move from position 1000 to position –1000 7 times. The
RePeat (RP) command at the end causes the previous command to be repeated 6 additional times.
The Wait for Stop (WS) commands are required so that the motion will be completed (trajectory
complete) before the return motion is started. The number 0.5 following the WS command specifies
the number of seconds to wait after the axis has ceased motion to allow some time for the mechanical
components to come to rest and reduce the stresses on them that could occur if the motion were
reversed instantaneously. Notice that the axis number need be specified only once on a given
command line.

A more complex cycle could be set up involving multiple axes. In this case, the axis that a command
acts on is assumed to be the last one specified in the command string. Whenever a new command
string is entered, the axis is assumed to be 0 (all) until one is specified.

Entering the following command:

2MR1000,3MR-500,0WS0.3,2MR1000,3MR500,0WS0.3,RP4 <return>

LabVIEW Programming Manual 11

Low Level Communication

will cause axis 2 to move in the positive direction and axis 3 to move in the negative direction. When
both axes have stopped moving, the WS command will cause a 0.3 second delay after which the
remainder of the command line will be executed.

After going through this complex motion 5 times, it can be repeated another 5 times by simply
entering a return character. All command strings are retained by the controller until some character
other than a return is entered. This comes in handy for observing the position display during a move.
If you enter:

1MR1000 <return>
1TP <return>
(return)
(return)
(return)
(return)

The motion control card will respond with a succession of numbers indicating the position of the axis
at that time. Many terminals have an "auto-repeat" feature which allows you to track the position of the
axis by simply holding down the return key.

Another way to monitor the progress of a movement is to use the RePeat command without a value. If
you enter:

1MR10000 <return>
1TP,RP <return>

The position will be displayed continuously. These position reports will continue until stopped by the
operator pressing the Escape key.

While the motion control card is executing commands, it will ignore all alphanumeric keys that are
pressed. The user can abort a currently executing command or string by pressing the escape key. If
the user wishes only to pause the execution of commands, the user should press the space bar. In
order to restart command execution press the space bar again. If after pausing command execution,
the user decides to abort execution, this can be done by pressing the escape key.

12 Precision MicroControl

Chapter Contents

• Samples

• The Execute Input

• Cascading VIs

• Self-Documenting Constants

14 Precision MicroControl

Understanding LabVIEW

Obviously we cannot hope to teach you LabVIEW in a single chapter. Instead, you
to supplement what you already know. We provide samples as part of the Motion V
installation that will give you working code from which you may build upon. We wou
you that the Motion VI Library was built with commonality in mind. The execute VI a
of VIs sections will show you how to streamline your code for performance and clar
documenting constants section may be review, however, the example shows that w
prudent programming practices.

LabVIEW Programming Manual
Chapter

3

will find information
I Library
ld also like to show
nd the cascading
ity. The self-
e do support such

15

Understanding LabVIEW

Samples
Four sample programs are now included with the Motion VI library. The first, SIMPLE.VI, shows how
to execute a simple move. The SAMPLE.VI sample provides an interactive panel for moving an axis
and monitoring the status of that axis. CYCLE.VI demonstrates how to implement a state machine
and execute multiple moves under program control (the state machine approach makes it easy to
monitor the status of axes while the motions are executed). Finally, ANALOG.VI demonstrates the
use of the auxiliary analog inputs available on most PMC motion controllers.

The Motion VIs are installed in the Instrument Drivers function palette in a number of logically
arranged sub-palettes. To better see how the VIs are used, open the SAMPLE.VI from the file menu
(select File | Open, select the INSTR.LIB directory, then the MOTION CONTROL directory, and finally
SAMPLE.VI).

The first step in any motion program is to obtain a handle to the controller, using the MCOpen VI. This
handle is used in all subsequent calls to the Motion VIs. When the program completes the handle
should be passed to the MCClose VI to ensure the motion controller is properly closed. Failure to
properly close the handle is the primary source of errors when using the Motion VI Library. The
following wiring diagram, from the SIMPLE.VI sample program, demonstrates how to open the motion
controller, perform a simple move, and close the motion controller:

A common question is how best to wait for a motion to complete. The preferred method is to use
MCGetStatus.vi and MCDecodeStatus.vi to test each axis involved in the motion for trajectory
complete. By placing the testing in a loop you are able to perform other processing while waiting for
the motion to complete (such as updating front panel displays). The CYCLE.VI sample demonstrates
this technique.

16 Precision MicroControl

Understanding LabVIEW

The Execute Input

When working with a complex motion control card, there are often times when a particular VI only
needs to execute in response to a change of settings, such as the user pressing the STOP button.
This is often accomplished by surrounding the VI with control logic. The Motion Control VIs have this
logic built in! Default behavior is to execute immediately, but if the user chooses a Boolean control
may be wired to the Execute input to control execution of the VI.

The Sample VI included with the Motion VI Library demonstrates the use of the Execute input, where
the On, Off, Stop, Abort, Home, and Zero front panel controls are connected directly to Execute inputs
on their respective Motion VI Library VIs.

Cascading VIs

In many cases, you will find it necessary to wire together several of the Motion Control VIs in order to
achieve a particular level of control. To simplify wiring, the Motion Control VIs support cascading,
where common inputs (the controller handle and axis number) are echoed back out of the VI and may
be used to provide those some signals to the next VI in the chain.

One useful side effect of this design is that it may be used to control order of execution. Since
LabVIEW will not start a VI executing until all of its inputs are available cascaded VIs will execute in
order. If the same VIs were wired in parallel it would not be possible to determine the order of
execution.

The SAMPLE.VI included with the Motion VI Library demonstrates the use of cascaded VIs for most
of the controls and displays on the front panel.

LabVIEW Programming Manual 17

Understanding LabVIEW

Self-Documenting Constants
Many of the VIs have one input that will take several different constants to yield different output. For
instance, the MCDecodeStatus VI's Flag Selector will take different values, and turn on the
corresponding LED on the front panel depending on the state of that flag chosen by Flag Selector.

By double clicking on the MCDecodeStatus VI you will see the following panel appear on your
screen.

You may choose the status you are interested in by clicking on the Flag Selector box with the
LabVIEW hand tool. In this case, we would like to monitor whether or not we have exceeded the
preset following error. By using the LabVIEW arrow tool, you may drag and drop the Flag Selector box
into the wiring diagram where you may then wire the value to the MCDecodeStatus VI.

Instead of hard coding in the value of 11, you will now have descriptive text that will be much more
meaningful in the unfortunate event that someone would need to debug your code. Just remember,
that unfortunate someone may be you several months after it was written.

18 Precision MicroControl

Chapter Contents

• VI Listing Introduction

20 Precision MicroControl

Motion VI Library Introduction

This brief chapter gives an example of a VI listing and will hopefully familiarize you
information each of the sections gives. Not all sections will be listed under each VI,
example are each of the section headings that can be found. A description follows t
informing what information you may be likely to find.

VI Listing Introduction
An example of a VI listing is shown below. What follows the example is a brief desc
should be found in each of the respective headings.

MCEnableAxis

MCEnableAxis turns the specified axis on if Enable is TRUE, or off if Enable is FA
axis must be enabled before any motion will take place.

Parameters
 Execute specifies whether the VI should execute or skip execution.

for execute is TRUE, allowing the VI to execute normally. This input
Boolean switch to control the VI's execution. See the discussion of th
Chapter 3 for more information.

LabVIEW Programming Manual
Chapter

4

with what
 but following the
he section heading

ription of what

LSE. Note that an

The default value
may be wired to a
e Execute Input in

21

Motion VI Library Introduction

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to enable/disable.

 Enable enables the selected axis if it is TRUE, or disables the axis if it is FALSE.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
This VI does much more than just enable or disable Axis In. However, as the name implies, the
selected axis(axes) will be turned on or off depending upon the value of Enable. Note that an axis
must be enabled before any motion will take place. Issuing this command with Axis In set to ALL
AXES (a value of zero) will enable or disable all axes installed on Handle In.

If Axis In is off and then turned on, the following events will occur.

• The target and optimal positions are set to the present encoder position.
• The data passed by MCSetScale are applied.
• MC_STAT_AMP_ENABLE will be set.
• MC_STAT_AMP_FAULT, if present, will be cleared.
• MC_STAT_ERROR, if present, will be cleared.
• MC_STAT_FOLLOWING, if present, will be cleared.
• MC_STAT_MLIM_TRIP, if present, will be cleared.
• MC_STAT_MSOFT_TRIP, if present, will be cleared.
• MC_STAT_PLIM_TRIP, if present, will be cleared.
• MC_STAT_PSOFT_TRIP, if present, will be cleared.

If Axis In is on and then turned on again, the following events will occur.

• The data passed by MCSetScale are applied.

!

Calling this function to enable or disable an axis while it is in motion is
not recommended. However, should it be done, Axis In will cease the
current motion profile, and MC_STAT_AT_TARGET will be set.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
MF, MN

See Also
MCAbort, MCStop

22 Precision MicroControl

 Motion VI Library Introduction

Each VI listing begins with a picture of the VI and a brief introductory description that explains for what
the VI is used.

Parameters then further explains in detail the purpose of each parameter. If one of the parameters is
a cluster, a following table holds all of the members and a brief description for each member.

Comments describes the VI in more detail. Explanation will range from why the VI is used, to how it is
used, where it could cause problems and potential alternatives.

Occasionally, the following two boxes can be found in the comments section and contain relevant
information that needs to be emphasized. The first box aids in the understanding of the function. The
second box warns of scenarios that will more than likely cause problems.

i
Information to assist the programmer.

!
Warning to help the programmer avoid potential problems.

Compatibility gives information as to which motion control cards or modules will not work with the
function. Generally, only exceptions will be listed, as to provide a more concise listing.

Requirements lists the earliest version of the MCAPI and the Motion VI Library that are necessary to
use this VI.

MCCL Reference lists the MCCL level commands that comprise the high level function. More
information can be found in the Motion Control Command Language (MCCL) Reference Manual
specific to your controller on how each of these commands works. Not all functions will be comprised
of speaking to the board with MCCL commands, in which cases there will be no equivalent
commands.

See Also lists related VIs. Some of these VIs may be alternatives to be used, while others may be the
corresponding get VI to a set VI. Yet there will be other VIs that must be used as in tandem with
another VI.

LabVIEW Programming Manual 23

Chapter Contents

MCEnableBacklash MCSetOperatingMode

MCEnableGearing MCSetPosition

MCEnableSync MCSetRegisterDouble

MCSetAcceleration MCSetRegisterLong

MCSetAuxEncPos MCSetScale

MCSetDeceleration MCSetServoOutputPhase

MCSetFilterConfig MCSetTorque

MCSetGain MCSetVelocity

24 Precision MicroControl

Parameter Setup VIs

Parameter setup VIs allow the program to consistently configure the motion control
individual modules to behave in an appropriate manner for a given application. Alth
parameters, PID loop gains, and end of travel limits should be set prior to command
and other parameters may be changed during a move. However, certain parameter
the card will not alter behavior until MCEnableAxis is called, which allows the spec
implement several queued parameters at once in a logical and safe fashion. For firs
development tool like Motion Integrator should be used to determine the proper tu
that can be passed by the functions in this chapter.

LabVIEW Programming Manual
Chapter

5

 card and
ough trajectory
ing motion, these
s once passed to
ific axis to then
t time setup, a
ning parameters

25

Parameter Setup VIs

MCEnableBacklash

The MCEnableBacklash VI sets the backlash compensation distance and turns backlash
compensation on or off, depending upon the value of Enable.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to enable/disable the backlash of.

 Backlash is the amount of backlash compensation to apply.

 Enable set to TRUE to enable backlash compensation, FALSE to disable.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
In applications where the mechanical system is not directly connected to the motor, it may be required
that the motor move an extra amount to take up gear backlash. The Backlash parameter to this VI
sets the amount of this compensation, and should be equal to one half of the amount the axis must
move to take up the backlash when it changes direction.

Compatibility
Stepper axes, the DC2, DCX-PC, and DCX-PCI100 controllers do not support backlash
compensation.

Requirements
MCAPI: version 2.0 or higher
Motion VI Library: version 2.0 or higher

26 Precision MicroControl

 Parameter Setup VIs

MCCL Reference
BD, BF, BN

LabVIEW Programming Manual 27

Parameter Setup VIs

MCEnableGearing

The MCEnableGearing VI enables or disables electronic gearing for the specified Axis In / Master
Axis pair.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to enable/disable gearing for.

 Master Axis selects the controlling axis (i.e. master) for this axis.

 Ratio the gearing ratio between this axis and the master.

 Enable set to TRUE to enable gearing, FALSE to disable.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
This function permits you to configure one axis to automatically reproduce the motions of a master
axis. In addition, by using a ratio of other than 1.0, the reproduced motion can be scaled as desired.

DC2 users should express the ratio as a floating point value (i.e. 0.5 for 2:1, 2.0 for 1:2, etc.).
MCEnableGearing automatically converts this ratio to the 32 bit fixed point fraction the DC2 requires.
The DCX-PC100 controller supports only a fixed ration of 1:1, the Ratio parameter is ignored for this
controller.

28 Precision MicroControl

 Parameter Setup VIs

Compatibility
The DCX-PCI100 controller, DC2 stepper axes, the MC150, MC160, MC200, and MC260 modules
when placed on the DCX-PC100 controller do not support gearing.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: Version 2.0 or higher

MCCL Reference
SM, SS

LabVIEW Programming Manual 29

Parameter Setup VIs

MCEnableSync

The MCEnableSync VI enables or disables synchronized motion for contour path motion for the
specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to enable/disable synchronized motion for.

 Enable set to TRUE to enable synchronized motion, FALSE to disable.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
This function is issued to the controlling axis of a contour path motion, prior to issuing any contour
path motions, to inhibit any motion until a call to MCGo is made.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 2.0 or higher

MCCL Reference
NS, SN

30 Precision MicroControl

 Parameter Setup VIs

MCSetAcceleration

The MCSetAcceleration VI sets the programmed acceleration value for the selected axis to
Acceleration, where Acceleration is specified in the current units for the axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the acceleration of.

 Acceleration is the new acceleration value for axis.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
A value of zero may be specified for Axis In to set the acceleration for all axes installed on a
controller.

Compatibility
The DC2 stepper axes do not support ramping.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
SA

See Also
MCGetAccelerationEx

LabVIEW Programming Manual 31

Parameter Setup VIs

MCSetAuxEncPos

MCSetAuxEncPos sets the current position of the auxiliary encoder.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the auxiliary encoder position of.

 Position is the new auxiliary encoder position value for axis.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
This VI sets the current position of the auxiliary encoder to the value given by the Position parameter.
A value of zero may be specified for Axis In to set the auxiliary encoders for all axes installed on a
controller.

i

DCX-AT200 firmware version 3.5a or higher, or DCX-PC100 firmware
version 4.9a or higher is required if you wish to set the position of the
auxiliary encoder to a value other than zero. Earlier firmware versions
ignore the value in the Position argument and zero the Auxiliary
Encoder.

Compatibility
The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support
auxiliary encoders. Closed-loop steppers do not support auxiliary encoder functions, since the
connected encoder is considered a primary encoder.

Requirements
MCAPI: version 1.0 or higher

32 Precision MicroControl

 Parameter Setup VIs

Motion VI Library: version 1.1 or higher

MCCL Reference
AH

See Also
MCGetAuxEncPosEx

LabVIEW Programming Manual 33

Parameter Setup VIs

MCSetDeceleration

The MCSetDeceleration VI sets the programmed deceleration value for Axis In to Deceleration,
where Deceleration is specified in the current units for the axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the deceleration of.

 Deceleration is the new deceleration value for axis.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
A value of ALL AXES (0) may be specified for Axis In to set the deceleration for all axes installed on a
controller.

Compatibility
The DCX-PCI100 controller, MC100, MC110, MC150, and MC160 modules do not support a separate
deceleration value. Instead, the acceleration value will also be used as the deceleration value. The
DC2 stepper axes do not support ramping.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
DS

See Also
MCGetDecelerationEx

34 Precision MicroControl

 Parameter Setup VIs

MCSetFilterConfig

MCSetFilterConfig sets the PID loop for axis to the configuration given by the Filter cluster.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the PID filter of.

 Filter is a cluster containing the new PID filter values for axis. The Filter cluster

contains the following values:

 Derivative Gain sets the derivative term of the PID loop.
 DerSample Period is the time interval, in seconds, between derivative

samples.

 Integral Gain sets the integral term of the PID loop.

 Integration Limit limits the power the integral gain can use to reduce error to
zero.

 Velocity Gain sets the feed-forward gain of the PID loop, volts per encoder
count per second.

 Acceleration Gain sets the feed-forward acceleration gain setting.

 Deceleration Gain sets the feed-forward deceleration gain setting.

 Following Error is the maximum position error, default units are encoder
counts.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

LabVIEW Programming Manual 35

Parameter Setup VIs

Comments
The easiest way to change filter settings is to first call MCGetFilterConfig to obtain the current PID
filter settings for Axis In, modify the values in the Filter cluster, and write the changed settings back
to Axis In with MCSetFilterConfig.

i

Closed-loop stepper operation requires firmware version 2.1a or higher
on the DCX-PCI300 and firmware version 2.5a or higher on the DCX-
AT300.

Compatibility
Velocity Gain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-
loop steppers. Acceleration Gain is not supported on the DC2, DCX-PC100, or DCX-PCI100
controllers. Deceleration Gain is not supported on the DC2, DCX-PC100, or DCX-PCI100 controllers.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
AG, DG, FR, IL, SD, SE, SI, VG

See Also
MCGetFilterConfig

36 Precision MicroControl

 Parameter Setup VIs

MCSetGain

The MCSetGain VI sets the proportional gain of a servo's feedback loop.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the gain of.

 Gain is the new gain value for axis.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
SG

See Also
MCGetGain

LabVIEW Programming Manual 37

Parameter Setup VIs

MCSetLimits

MCSetLimits sets the hard and soft limits for the selected axis. Motion controllers that do not support
soft limits ignore the soft limit settings.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the limits of.

 Hard Mode is a cluster containing the new hard limit settings for axis. The cluster

values are as follows:

 Low Limit set to TRUE enables the lower hard limit.

 High Limit set to TRUE enables the upper hard limit.

 Mode selects stop mode – Turn Off (0) / Abrupt (4) / Smooth (8)

 Soft Mode is a cluster containing the new soft limit settings for axis. The cluster values

are as follows:

 Low Limit set to TRUE enables the lower soft limit.

 High Limit set to TRUE enables the upper soft limit.

 Mode selects stop mode – Turn Off (0) / Abrupt (4) / Smooth (8)

 Low Set sets the lower soft limit value.

 High Set sets the upper soft limit value.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

38 Precision MicroControl

 Parameter Setup VIs

Comments

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Compatibility
The DC2 and DCX-PC100 controllers do not support soft limits.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.1 or higher

MCCL Reference
HL, LF, LL, LM, LN

See Also
MCGetLimits

LabVIEW Programming Manual 39

Parameter Setup VIs

MCSetOperatingMode

The MCSetOperatingMode VI sets the controller operating mode for Axis In.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the operating mode of.

 Master Axis selects the master axis for master/slave mode.

 Mode is the new operating mode for axis. Set to 0 for contour mode, 1 for gain mode, 2

for position mode (the default), 3 for torque mode, or 4 for velocity mode.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
This VI is used to switch between the main operating modes of the controller. All modes except
contouring are supported by all controllers.

!
This VI should not be called while Axis In is in motion.

Compatibility
The MCAPI does not does not support contouring on the DC2, DCX-PC100, or DCX-PCI100
controllers. Gain mode is not supported on stepper axes, MC100, or MC110 modules. Torque mode is
not supported on stepper axes, DCX-PCI100 controller, MC100, or MC110 modules.

Requirements
MCAPI: version 1.0 or higher

40 Precision MicroControl

 Parameter Setup VIs

Motion VI Library: version 1.0 or higher

MCCL Reference
CM, GM, PM, QM, VM

See Also
Controller hardware manual

LabVIEW Programming Manual 41

Parameter Setup VIs

MCSetPosition

The MCSetPosition VI sets the current position for the axis to Position.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the position of.

 Position is the new position value for axis.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
The current position of Axis In will be immediately updated to the value of Position.

This function may be called with Axis In set to ALL AXES (a value of zero) to set the position of all
axes at once. All axes will be set to the same value of Position.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
DH

See Also
MCGetPositionEx

42 Precision MicroControl

 Parameter Setup VIs

MCSetRegisterDouble

The MCSetRegisterDouble VI sets the value of a motion controller register to the specified double
precision floating point value.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Register selects the register to set the value of.

 Value is the new value for the register.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
When running background tasks on a multitasking controller the only way to communicate with the
background tasks is to pass parameters in the general purpose registers. You cannot write to the local
registers (registers 0 - 9) of a background task. When you need to communicate with a background
task be sure to use one or more of the global registers (10 - 255).

Requirements
MCAPI: version 2.0 or higher
Motion VI Library: version 2.0 or higher

MCCL Reference
AL, AR

See Also
MCGetRegisterDouble, MCGetRegisterLong, MCSetRegisterLong

LabVIEW Programming Manual 43

Parameter Setup VIs

MCSetRegisterLong

The MCSetRegisterLong VI sets the value of a motion controller register to the specified 32-bit
integer value.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Register selects the register to set the value of.

 Value is the new value for the register.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
When running background tasks on a multitasking controller the only way to communicate with the
background tasks is to pass parameters in the general purpose registers. You cannot write to the local
registers (registers 0 - 9) of a background task. When you need to communicate with a background
task be sure to use one or more of the global registers (10 - 255).

Requirements
MCAPI: version 2.0 or higher
Motion VI Library: version 2.0 or higher

MCCL Reference
AL, AR

See Also
MCGetRegisterDouble, MCGetRegisterLong, MCSetRegisterDouble

44 Precision MicroControl

 Parameter Setup VIs

MCSetScale

The MCSetScale VI sets scaling for the specified axis to the values contained in the Scaling cluster.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to abort the motion of.

 Scaling is a cluster containing the new scale factors for axis.

 Constant acts as a scale factor for servo analog outputs. By calibrating your
motor/amplifier combination, it is possible to scale the output with Constant so
that torque settings may be specified directly in ft-lbs.

 Offset represents an offset from a servo encoder’s index pulse to a zero
position.

 Rate acts as a multiplier for motion commands time values. The base
controller time unit is the second, to convert this to minutes set Rate to 60.0, to
convert to milliseconds rate should be set to 0.001

 Scale is applied to motion parameters to convert from encoder counts to real
world units.

 Zero specifies that a soft zero should be located this distance from actual zero.
By moving the soft zero around it is possible to have a series of position
commands repeated at various spots in the range of travel without modifying
the position commands. The actual zero position is not changed by this
command.

 Time is the time factor for controller level wait commands. See the discussion
of the Rate parameter above for more information on setting this value. Note
that a single Time value is maintained per controller (i.e. Time is axis
independent).

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

LabVIEW Programming Manual 45

Parameter Setup VIs

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily
cascaded.

Comments
Setting scaling factors allows application programs to talk to the controller in real world units, as
opposed to arbitrary "encoder counts".

This function may be called with Axis In set to ALL AXES (a value of zero) to set the scaling of all
axes at once. All axes will be set to the same value.

!

When you set Scale of the Scaling cluster to a value other than one,
Low Set and High Set of the Soft Mode cluster should be changed to
accommodate the new "real world" units.

Compatibility
The DC2 and the DCX-PC100 do not support any scaling members. The DCX-PCI100 does not
support Offset or Constant.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
UK, UO, UR, US, UT, UZ

See Also
MCGetScale

46 Precision MicroControl

 Parameter Setup VIs

MCSetServoOutputPhase

The MCSetServoOutputPhase VI sets the output phasing for the specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the phase of.

 Phase selects the phasing mode for this axis. On power up all axes have their phasing

set to STANDARD (Phase = 1). Setting Phase = 2 (the default for this VI) will select
REVERSE phasing.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
This function may be called with Axis In set to ALL AXES (a value of zero) to set the phase of all axes
at once. All axes will be set to the same value of Phase.

Compatibility
The MC100 and MC110 modules do not support phase reverse.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 2.0 or higher

MCCL Reference
PH

LabVIEW Programming Manual 47

Parameter Setup VIs

MCSetTorque

The MCSetTorque VI sets maximum torque level for servos.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the torque of.

 Torque is the new torque value for axis.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Compatibility
Torque mode is not supported on stepper axes, DCX-PCI100 controller, MC100, or MC110 modules.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
SQ

See Also
MCGetTorque

48 Precision MicroControl

 Parameter Setup VIs

MCSetVelocity

The MCSetVelocity VI sets programmed velocity for the selected axis to Velocity, where Velocity is
specified in the current units for axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the velocity of.

 Velocity is the new velocity value for axis.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
SV

See Also
MCGetVelocityEx

LabVIEW Programming Manual 49

Chapter Contents

MCAbort MCMoveAbsolute

MCDirection MCMoveRelative

MCEnableAxis MCStop

MCGo MCWait

MCGoHome MCWaitForStop

50 Precision MicroControl

Motion VIs

Motion VIs range in use from allowing the program to commence or cease motion t
of sequencing to altering operation of axes during motion.

A word of caution must be given regarding the use of board-level sequencing comm
though each of these functions includes a warning in this chapter, it should be stres
command containing the word “Wait” or “Find” in the VI name is executed, no other
communicate until the board has completed what it was initially told to do. This can
where the calling program has absolutely no control during potentially dangerous o
expensive situations.

LabVIEW Programming Manual
Chapter

6

o permitting control

ands. Even
sed that once a
 VIs will be able to
 lead to scenarios
r otherwise

51

Motion VIs

MCAbort

MCAbort aborts the current motion for the axis specified.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to abort the motion of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
The selected Axis In will execute an emergency stop following this command. Issuing this command
with Axis In set to ALL AXES (a value of zero) will abort motion for all axes installed on the motion
controller.

Servo axes will stop abruptly, and the servo control loop will remain energized.

For stepper motors, pulses from the motion controller will be disabled immediately. The state of the
axis (enabled or disabled) following the call to MCAbort will depend upon the type of controller (see
your controller hardware manual).

i

Following a call to MCAbort, verify that the axis has stopped using
MCWaitForStop. Then call MCEnableAxis prior to issuing another
motion command.

i

Following a call to MCAbort on the DCX-PC100 controller when in
velocity mode, call MCSetOperatingMode prior to issuing another
motion command.

52 Precision MicroControl

 Motion VIs

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
AB

See Also
MCEnableAxis, MCSetOperatingMode, MCStop, MCWaitForStop

LabVIEW Programming Manual 53

Motion VIs

MCDirection

The MCDirection VI sets the direction of motion when operating in velocity mode.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the direction of.

 Direction selects the direction of travel for the axis. Set this parameter to 1 for

FORWARD, or 2 for REVERSE.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
This command may be used to change the direction of travel when an axis is operating in Velocity
Mode. The actual direction of travel for FORWARD and REVERSE and will depend upon your
hardware configuration.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
DI

See Also
MCSetOperatingMode

54 Precision MicroControl

 Motion VIs

MCEnableAxis

MCEnableAxis turns the specified axis on if Enable is TRUE, or off if Enable is FALSE. Note that an
axis must be enabled before any motion will take place.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to enable/disable.

 Enable enables the selected axis if it is TRUE, or disables the axis if it is FALSE.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
This VI does much more than just enable or disable Axis In. However, as the name implies, the
selected axis(axes) will be turned on or off depending upon the value of Enable. Note that an axis
must be enabled before any motion will take place. Issuing this command with Axis In set to ALL
AXES (a value of zero) will enable or disable all axes installed on Handle In.

If Axis In is off and then turned on, the following events will occur.

• The target and optimal positions are set to the present encoder position.
• The data passed by MCSetScale are applied.
• MC_STAT_AMP_ENABLE will be set.
• MC_STAT_AMP_FAULT, if present, will be cleared.
• MC_STAT_ERROR, if present, will be cleared.
• MC_STAT_FOLLOWING, if present, will be cleared.
• MC_STAT_MLIM_TRIP, if present, will be cleared.
• MC_STAT_MSOFT_TRIP, if present, will be cleared.
• MC_STAT_PLIM_TRIP, if present, will be cleared.
• MC_STAT_PSOFT_TRIP, if present, will be cleared.

LabVIEW Programming Manual 55

Motion VIs

If Axis In is on and then turned on again, the following events will occur.

• The data passed by MCSetScale are applied.

!

Calling this function to enable or disable an axis while it is in motion is
not recommended. However, should it be done, Axis In will cease the
current motion profile, and MC_STAT_AT_TARGET will be set.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
MF, MN

See Also
MCAbort, MCStop

56 Precision MicroControl

 Motion VIs

MCGo

MCGo initiates a motion when operating in velocity mode. The axis must be configured for velocity
mode operation before using MCGo.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to trigger.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
The axis must be configured for velocity mode operation before issuing a MCGo call. All axes may be
instructed to move by setting the Axis In parameter to ALL AXES (a value of zero).

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
GO

See Also
MCSetOperatingMode, MCStop

LabVIEW Programming Manual 57

Motion VIs

MCGoHome

MCGoHome initiates a home motion for the specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to home.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
The home or zero position is relative to the position that was set using the MCSetPosition VI. This VI
effectively executes an MCMoveAbsolute with a target position of 0.0.

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
GH

See Also
MCMoveAbsolute, MCSetPosition

58 Precision MicroControl

 Motion VIs

MCMoveAbsolute

MCMoveAbsolute initiates an absolute position move for the specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to move.

 Position is the new absolute position for the axis to move to.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
The axis must be enabled prior to executing a move.

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
MA

See Also
MCMoveRelative, MCSetPosition

LabVIEW Programming Manual 59

Motion VIs

MCMoveRelative

MCMoveRelative initiates a relative position move for the specified axis. The axis must be enabled
prior to executing a move.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to move.

 Distance is the relative distance to for the axis to move to.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
The axis must be enabled prior to executing a move.

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
MR

See Also
MCMoveAbsolute, MCSetPosition

60 Precision MicroControl

 Motion VIs

MCStop

The MCStop VI stops the specified axis using the pre-programmed deceleration values.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to stop the motion of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
This function initiates a controlled axis stop, as compared with MCAbort which stops the axis
abruptly.

i

Following a call to MCStop verify that the axis has stopped using
MCWaitForStop. Then call MCEnableAxis prior to issuing another
motion command.

i

Following a call to MCStop on the DCX-PC100 controller when in
velocity mode, call MCSetOperatingMode prior to issuing another
motion command.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
ST

LabVIEW Programming Manual 61

Motion VIs

See Also
MCAbort, MCEnableAxis, MCSetOperatingMode, MCWaitForStop

62 Precision MicroControl

 Motion VIs

MCWait

MCWait waits the specified number of seconds before allowing the next Motion VI to execute.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Time selects the wait time, in seconds.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

Comments
The delay is specified in seconds, unless MCSetScale has been called to change the time scale.

!

Once this command is issued, no other VIs will be able to communicate
with the board until Time elapses. We recommend creating your own
time based looping structure.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
WA

See Also
MCWaitForStop

LabVIEW Programming Manual 63

Motion VIs

MCWaitForStop

MCWaitForStop waits for the specified axis to come to a stop. An optional dwell after the stop may
be specified within this VI to allow the mechanical system to come to rest.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to abort the motion of.

 Dwell selects the dwell time, in seconds.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
MCWaitForStop is necessary for synchronizing motions, and for making certain that a prior motion
has completed before beginning a new motion.

!

Once this VI is executed, no other VIs will be able to communicate with
the board until Axis In reaches its target. We recommend using
MCGetStatus / MCDecodeStatus to test for TRAJECTORY
COMPLETE.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
WS

64 Precision MicroControl

 Motion VIs

See Also
MCWait

LabVIEW Programming Manual 65

Chapter Contents

MCDecodeStatus MCGetOptimalEx

MCGetAccelerationEx MCGetPositionEx

MCGetAuxEncPosEx MCGetRegisterDouble

MCBreakpointEx MCGetRegisterLong

MCGetDecelerationEx MCGetScale

MCGetFilterConfig MCGetStatus

MCGetFollowingError MCGetTargetEx

MCGetGain MCGetTorque

MCGetIndexEx MCGetVelocityEx

MCGetLimits

66 Precision MicroControl

Reporting VIs

Reporting VIs allow the calling program to query the board to determine how param
configured, as well as getting information regarding the position and status of any g
VIs may be used to read motor position, programmed velocity, PID filter settings, sc
and more.

LabVIEW Programming Manual
Chapter

7

eters have been
iven axis. These
ale factors, status,

67

Reporting VIs

MCDecodeStatus

The MCDecodeStatus VI permits you to test flags in the controller status word in a way that is
independent of the type of controller being inspected.

Parameters
 Handle In is the controller handle returned by the MCOpen VI.

 Status In is the controller status word to decode.

 Flag Selector selects the status information to decode.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Status Out is an output copy of the status word.

Comments
Using this function to test the status word returned by MCGetStatus isolates the program from
controller dependent bit ordering of the status word. Please see the description of the
MCDecodeStatus function in the online Motion Control API (MCAPI) Reference for specific
information about the Flag Selector value.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

See Also
MCGetStatus, online help sample programs

68 Precision MicroControl

 Reporting VIs

MCGetAccelerationEx

The return value is the programmed acceleration of the axis selected.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the acceleration of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Acceleration is the current acceleration value for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Compatibility
The DC2 stepper axes do not support ramping.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

See Also
MCSetAcceleration

LabVIEW Programming Manual 69

Reporting VIs

MCGetAuxEncPosEx

This VI returns the current auxiliary encoder position, if the axis supports auxiliary encoders.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the auxiliary encoder position of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Position is the auxiliary encoder position for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
The auxiliary encoder's position may be set using the MCSetAuxEncPos VI.

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Compatibility
The DC2, DCX-PCI100 controllers, MC100, MC110, MC150, and MC320 modules do not support
auxiliary encoders. Closed-loop steppers do not support auxiliary encoder functions, since the
connected encoder is considered a primary encoder.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.1 or higher

70 Precision MicroControl

 Reporting VIs

MCCL Reference
AT

See Also
MCSetAuxEncPos

LabVIEW Programming Manual 71

Reporting VIs

MCGetBreakpointEx

This VI returns the current breakpoint position

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the breakpoint of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Breakpoint is the next breakpoint setting for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Compatibility
The DCX-PC100 controller and stepper axes do not support this command.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
TB

72 Precision MicroControl

 Reporting VIs

MCGetDecelerationEx

This VI returns the current programmed deceleration value for the given axis, in whatever units the
axis is configured for.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the deceleration of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Deceleration is the current deceleration value for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
Controller RAM Motor Tables

LabVIEW Programming Manual 73

Reporting VIs

See Also
MCSetDeceleration

74 Precision MicroControl

 Reporting VIs

MCGetFilterConfig

MCGetFilterConfig obtains the current PID filter configuration contained in the Filter cluster for the
specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the PID filter settings from.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Filter is a cluster containing the current PID filter settings for the axis. The Filter

cluster contains the following values:

 Derivative Gain sets the derivative term of the PID loop.
 DerSample Period is the time interval, in seconds, between derivative

samples.

 Integral Gain sets the integral term of the PID loop.

 Integration Limit limits the power the integral gain can use to reduce error to
zero.

 Velocity Gain sets the feed-forward gain of the PID loop, volts per encoder
count per second.

 Acceleration Gain sets the feed-forward acceleration gain setting.

 Deceleration Gain sets the feed-forward deceleration gain setting.

 Following Error is the maximum position error, default units are encoder
counts.

Comments

LabVIEW Programming Manual 75

Reporting VIs

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Compatibility
Velocity Gain is not supported on the DCX-PCI100 controller, MC100, MC110 modules, or closed-
loop steppers. Acceleration Gain is not supported on the DC2, DCX-PC100, and DCX-PCI100
controllers. Deceleration Gain is not supported on the DC2, DCX-PC100, and DCX-PCI100
controllers.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
TD, TF, TG, TI, TL, Controller RAM Motor Tables

See Also
MCSetFilterConfig

76 Precision MicroControl

 Reporting VIs

MCGetFollowingError

MCGetFollowingError returns the current following error (difference between the actual and the
optimal positions) for the specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the following error of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Following Error is the current following error value for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
TF

LabVIEW Programming Manual 77

Reporting VIs

See Also
MCGetOptimalEx, MCGetPositionEx

78 Precision MicroControl

 Reporting VIs

MCGetGain

MCGetGain returns the current gain setting for the specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the gain of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Gain is the current gain value for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
TG

See Also
MCSetGain

LabVIEW Programming Manual 79

Reporting VIs

MCGetIndexEx

The return value is the index position of the axis selected.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the index of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Index is the current index value for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
Controller resets and the MCSetPosition VI may change the position reading of the primary encoder.

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Compatibility
The MC100, MC110 modules, and all stepper axes do not support this function.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

80 Precision MicroControl

 Reporting VIs

MCCL Reference
TZ

See Also
MCSetPosition

LabVIEW Programming Manual 81

Reporting VIs

MCGetLimits

MCGetLimits obtains the current limit settings for the specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the limit settings from.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Hard Mode is a cluster containing the current hard limit settings for the axis. The

cluster values are as follows:

 Low Limit set to TRUE enables the lower hard limit.

 High Limit set to TRUE enables the upper hard limit.

 Mode selects stop mode – Turn Off (0) / Abrupt (4) / Smooth (8)

 Soft Mode is a cluster containing the current soft limit settings for the axis. The cluster

values are as follows:

 Low Limit set to TRUE enables the lower soft limit.

 High Limit set to TRUE enables the upper soft limit.

 Mode selects stop mode – Turn Off (0) / Abrupt (4) / Smooth (8)

 Low Set sets the lower soft limit value.

 High Set sets the upper soft limit value.

Comments

82 Precision MicroControl

 Reporting VIs

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Compatibility
The DC2 and DCX-PC100 controllers do not support soft limits.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.1 or higher

MCCL Reference
HL, LF, LL, LM, LN, Controller RAM Motor Tables

See Also
MCSetLimits

LabVIEW Programming Manual 83

Reporting VIs

MCGetOptimalEx

Optimal returns the optimal position of the axis selected.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the optimal position from.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Optimal is the current optimal position value for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
The trajectory generator generates an optimal position based upon an ideal (i.e. error free) motor. The
PID loop then compares the actual position to the optimal position to calculate a correction to the
actual trajectory. The maximum difference allowed between the optimal and actual positions is set
with Following Error cluster member of the MCSetFilterConfig VI.

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Compatibility
The DC2 stepper axes do not support this command.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

84 Precision MicroControl

 Reporting VIs

MCCL Reference
TO

See Also
MCGetFilterConfig, MCSetFilterConfig, MCSetPosition

LabVIEW Programming Manual 85

Reporting VIs

MCGetPositionEx

Position returns the value of the current position of the axis specified.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the position of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Position is the current position value for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
TP

See Also
MCSetPosition, MCSetScale

86 Precision MicroControl

 Reporting VIs

MCGetRegisterDouble

The MCGetRegisterDouble VI reads the value of a motion controller double precision floating point
register.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Register selects the register to read the value of.

 Value is the value read from the register.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
When running background tasks on a multitasking controller the only way to communicate with the
background tasks is to pass parameters in the general purpose registers. You cannot write to the local
registers (registers 0 - 9) of a background task. When you need to communicate with a background
task be sure to use one or more of the global registers (10 - 255).

Requirements
MCAPI: version 2.0 or higher
Motion VI Library: version 2.0 or higher

MCCL Reference
TR

See Also
MCGetRegisterLong, MCSetRegisterDouble, MCSetRegisterLong

LabVIEW Programming Manual 87

Reporting VIs

MCGetRegisterLong

The MCGetRegisterLong VI reads the value of a motion controller 32-bit integer register.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Register selects the register to read the value of.

 Value is the value read from the register.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
When running background tasks on a multitasking controller the only way to communicate with the
background tasks is to pass parameters in the general purpose registers. You cannot write to the local
registers (registers 0 - 9) of a background task. When you need to communicate with a background
task be sure to use one or more of the global registers (10 - 255).

Requirements
MCAPI: version 2.0 or higher
Motion VI Library: version 2.0 or higher

MCCL Reference
TR

See Also
MCGetRegisterDouble, MCSetRegisterDouble, MCSetRegisterLong

88 Precision MicroControl

 Reporting VIs

MCGetScale

MCGetScale obtains the current scaling factors for the specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the acceleration of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Scaling is a cluster containing the current scale factors for the axis.

 Constant acts as a scale factor for servo analog outputs. By calibrating your
motor/amplifier combination, it is possible to scale the output with Constant so
that torque settings may be specified directly in ft-lbs.

 Offset represents an offset from a servo encoder’s index pulse to a zero
position.

 Rate acts as a multiplier for motion commands time values. The base
controller time unit is the second, to convert this to minutes set Rate to 60.0, to
convert to milliseconds rate should be set to 0.001

 Scale is applied to motion parameters to convert from encoder counts to real
world units.

 Zero specifies that a soft zero should be located this distance from actual zero.
By moving the soft zero around it is possible to have a series of position
commands repeated at various spots in the range of travel without modifying
the position commands. The actual zero position is not changed by this
command.

LabVIEW Programming Manual 89

Reporting VIs

 Time is the time factor for controller level wait commands. See the discussion
of the Rate parameter above for more information on setting this value. Note
that a single Time value is maintained per controller (i.e. Time is axis
independent).

Comments
Scaling allows the application to communicate with the controller in real world units such as inches,
meters, and radians; as opposed to low level (i.e. un-scaled) values such as raw encoder counts, etc.

i
You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Compatibility
The DC2 and DCX-PC controllers do not support scaling.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetScale

90 Precision MicroControl

 Reporting VIs

MCGetStatus

MCGetStatus returns the controller dependent status word for the specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the status of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Status is the current status word for axis.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
Use the MCDecodeStatus VI to test specific flags in the status word.

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
TS

See Also
MCDecodeStatus, Controller hardware reference manual

LabVIEW Programming Manual 91

Reporting VIs

MCGetTargetEx

Target returns the value of the target position of the axis selected.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the target position of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Target is the current target position value for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
The VIs MCMoveAbsolute and MCMoveRelative update the target position for an axis. The
controller will then generate an optimal trajectory to the target position, and the PID loop will seek to
minimize the error (difference between actual and optimal trajectories).

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
TT

92 Precision MicroControl

 Reporting VIs

See Also
MCMoveAbsolute, MCMoveRelative

LabVIEW Programming Manual 93

Reporting VIs

MCGetTorque

MCGetTorque returns the current torque setting for the specified axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the torque of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Torque is the current torque value for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Compatibility
Torque mode is not supported on stepper axes, DCX-PCI100 controller, MC100, or MC110 modules.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
TQ

94 Precision MicroControl

 Reporting VIs

See Also
MCSetTorque

LabVIEW Programming Manual 95

Reporting VIs

MCGetVelocityEx

The return value is the programmed velocity of the axis selected.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to get the velocity of.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Velocity is the current velocity value for axis.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments

i

You may not set the Axis In parameter to ALL AXES (a value of zero)
for this VI.

Requirements
MCAPI: version 1.3 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
Controller RAM Motor Tables

See Also
MCSetVelocity

96 Precision MicroControl

 Reporting VIs

LabVIEW Programming Manual 97

Chapter Contents

MCConfigureDigitalIO MCGetDigitalIO

MCEnableDigitalIO MCSetAnalog

MCGetAnalog MCWaitForDigitalIO

98 Precision MicroControl

Analog & Digital I/O VIs

This section describes the VIs for control of the on-board, undedicated digital and a
channels. These VIs configure the operation of, check the state of, and change the
board I/O channels. The number and type of I/O channels varies with the type of co
the number and type of installed modules.

Digital I/O VIs allow configuration of high or low “true” states, reading of inputs, seq
input, and setting outputs. Analog I/O VIs control the input and output of analog val
and D/A ports if installed on the controller.

A word of caution must be given regarding the use of board-level sequencing comm
though a warning is included with MCWaitForDigitalIO, it should be stressed that o
executes, no other VI will be able to communicate with the motion control card nor
until it has completed what it was initially told to do. This can lead to scenarios whe
program has absolutely no control during potentially dangerous or otherwise expen

LabVIEW Programming Manual
Chapter

8

nalog I/O
 state of the on-
ntroller, and with

uencing based on
ues through A/D

ands. Even
nce this VI

will card respond
re the calling
sive situations.

99

Analog & Digital I/O VIs

MCConfigureDigitalIO

Configures a digital channel for input or output, and sets the logic level to high true logic or low true
logic.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Channel is the channel number (between 1 and the total number of installed digital I/O

channels) to configure.

 Level sets the logic level to high true logic if TRUE (the default), or low true logic if

FALSE.

 I/O should be set to TRUE (the default) to configure the channel for output, or FALSE

to configure the channel for input.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

Comments
Most of the digital I/O channels may be configured for input or for output. The logic level maps the
logical "on" and "off" states of the channel to the physical input and output voltages for that channel. If
the channel is set to MC_DIO_LOW (negative logic) the "on" state of a channel will represent a low
voltage (<0.4VDC) and "off" a high voltage (>2.4VDC). When set to MC_DIO_HIGH (positive logic)
the "on" state of a channel will represent a high voltage (>2.4VDC) and "off" a low voltage (<.0.4VDC).

The DCX-PCI motherboard has 16 general I/O, consisting of 8 fixed inputs and 8 fixed outputs. Since
these digital I/O are fixed, they may not be configured for input or output. A program may verify the
functionality (input or output) of a channel by using MCGetDigitalIOConfig to check the current
configuration.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

100 Precision MicroControl

 Analog & Digital I/O VIs

MCCL Reference
CH, CI, CL, CT

See Also
MCEnableDigitalIO, MCGetDigitalIO

LabVIEW Programming Manual 101

Analog & Digital I/O VIs

MCEnableDigitalIO

This VI function turns the specified digital I/O channel on or off, depending upon the value of State.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Channel is the channel number (between 1 and the total number of installed digital I/O

channels) to enable or disable.

 State should be set to TRUE (the default) to enable the channel, or FALSE to disable

the channel.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

Comments
The I/O channel selected must have previously been configured for output using the
MCConfigureDigitalIO VI. Note that depending upon how a channel has been configured "on" (and
conversely "off") may represent either a high or a low voltage level.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
CF, CN

See Also
MCConfigureDigitalIO, MCGetDigitalIO

102 Precision MicroControl

 Analog & Digital I/O VIs

MCGetAnalog

MCGetAnalog reads the current input state of the specified input Channel.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Channel is the channel number (between 1 and the total number of installed analog

input channels) to read from.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Value is the digitized reading from the analog input channel.

Comments
The DC2, DCX-AT, and DCX-PC controllers all include four undedicated 8-bit analog input channels.
By default these channels are assigned channel numbers 1 to 4. Each analog input accepts an input
voltage between 0 and +5 volts. The value read in from the channel will be the ratio of the input
voltage to the reference voltage times 255. An internal 5.0 volt reference is supplied by the controller;
an external reference may be supplied in place of the internal reference if desired.

value =
V

V
 x 255Input

Reference

Additional analog input/output channels supplied by MC500 modules will occupy sequential channel
numbers beginning with channel 5.

Compatibility
There are no compatibility issues with this function, however, please note that the DCX-PCI
controllers have no built-in analog inputs.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

LabVIEW Programming Manual 103

Analog & Digital I/O VIs

MCCL Reference
TA

See Also
MCSetAnalog

104 Precision MicroControl

 Analog & Digital I/O VIs

MCGetDigitalIO

The MCGetDigitalIO VI returns the current state of the specified digital I/O channel.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Channel is the channel number (between 1 and the total number of installed digital I/O

channels) to read from.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Value is TRUE if the specified channel is on, or FALSE if the channel is off.

Comments
This function will read the current state of both input and output digital I/O channels. Note that this
function simply reports if the channel is "on" or "off"; depending upon how a channel has been
configured "on" (and conversely "off") may represent either a high or a low voltage level.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
TC

See Also
MCConfigureDigitalIO, MCEnableDigitalIO

LabVIEW Programming Manual 105

Analog & Digital I/O VIs

MCSetAnalog

MCSetAnalog sets the output level of an analog channel.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Channel is the channel number (between 1 and the total number of installed analog

output channels) to set.

 Value is the new output value for the specified output channel.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

Comments
Analog output ports on MC500 and MC520 Analog Modules accept values in the range of 0 to 4095
counts (12 bits). This range of values corresponds to an output voltage of 0 to 5V or -10 to +10V,
depending upon how the output is configured (see your controller's hardware manual). Each digital bit
corresponds to a voltage level as follows:

Output Used Volts per Count
0 to 5V 0.0012V
-10 to +10V 0.0049V

Compatibility
Analog output channels are not supported by the DC2-PC100 dedicated 2 axis controllers.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
OA

106 Precision MicroControl

 Analog & Digital I/O VIs

See Also
MCGetAnalog

LabVIEW Programming Manual 107

Analog & Digital I/O VIs

MCWaitForDigitalIO

MCWaitForDigitalIO waits for the specified digital I/O channel to go on or off, depending upon the
value of State.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Channel is the channel number (between 1 and the total number of installed digital I/O

channels) to wait on.

 State should be set to TRUE (the default) to wait for the channel to go on, or FALSE to

wait for the channel to go off.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

Comments
Digital channels 1 to 16 are built into each controller. Additional digital channels, beginning with
channel 17, may be added in blocks of 16 channels using MC400

!

Once this VI is executed, no other VIs will be able to communicate with
the board until the digital I/O is equal to State. We recommend creating
your own looping structure based on MCGetDigitalIO instead.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

MCCL Reference
WF, WN

See Also
MCConfigureDigitalIO, MCEnableDigitalIO, MCGetDigitalIO

108 Precision MicroControl

Chapter Contents

MCClose MCOpen

MCGetError MCReset

MCMacroCall MCTranslateErrorEx

110 Precision MicroControl

System VIs

These VI's handle system level functions, including the opening and closing of a pa
and error handling. This library also contains the MCAPI / LabVIEW controls (handl
in/out) used by the other VIs in that make up the MCAPI / LabVIEW components. Y
normally need to use these controls directly as they are already incorporated into th
They are available, however, if you wish to extend the library yourself.

LabVIEW Programming Manual
Chapter

9

rticular controller,
e in/out, axis
ou will not
e supplied VIs.

111

System VIs

MCClose

MCClose closes the specified motion controller handle, and is typically called at the end of a program.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

Comments
Following a call to MCClose, no further calls should be made to the Motion Control API functions with
this handle (the exception being MCOpen, which may be called to open or reopen the API at any
time).

By calling MCClose you notify Windows that you are done with the controller and device driver. When
the last user has closed the driver Windows is then free to unload the driver from memory. Failure to
call close leaves the handle open, reducing the number of available controller handles for other
applications.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

See Also
MCOpen

112 Precision MicroControl

 System VIs

MCGetError

The MCGetError VI returns the most recent error code for Handle In.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Error Code is the most recent numeric error code, or zero if there was no error.

Comments
The error is cleared after it has been read. Errors are maintained on a per-handle basis, calls to
MCGetError only return errors that occurred during function calls that used the same handle.

Requirements
MCAPI: version 1.2 or higher
Motion VI Library: version 1.0 or higher

See Also
MCTranslateErrorEx

LabVIEW Programming Manual 113

System VIs

MCMacroCall

MCMacroCall executes a previously stored macro.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Macro Number selects the macro number to execute.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

Comments
Macros are normally downloaded using the MCPuts ASCII interface command, using the Motion
Control Command Language (MCCL). These controller level macros are often the only efficient way to
implement hardware specific sequences, such as special homing routines, initializing encoder
positions, etc.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 2.0 or higher

MCCL Reference
MC

See Also
MCPuts, Controller hardware manual

114 Precision MicroControl

 System VIs

MCOpen

MCOpen returns a handle to a particular controller for use with subsequent VI calls.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Controller ID selects the controller to open. The ID selected must have been

previously configured using the MCSetup program supplied with the MCAPI.

 Mode specifies the open mode - ASCII. ASCII EXCLUSIVE, BINARY (the default) or

BINARY EXCLUSIVE.

 Handle Out is controller handle that is required by all other motion VIs.

Comments
This function returns handle to the specified controller for use in subsequent VIs. The handle will be
greater than zero if the open call succeeds, or less than zero if there is an error. Standard error codes
will be multiplied by -1 to make their values negative and returned in place of a handle if there is an
error.

Always wire the handle returned by MCOpen and use that value in subsequent VIs. MCOpen must be
executed before any other VIs are attempted. If MCOpen detects an error it will display an informative
dialog box and abort execution of the program (source for MCOpen is included with the Motion VI
Library so that you may modify this behavior). For details about specific error codes see the Error
Code cross-reference.

If it is necessary that no one else gains access to a controller while you are using it, you may set the
open mode to ASCII EXCLUSIVE or BINARY EXCLUSIVE.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

See Also
MCClose

LabVIEW Programming Manual 115

System VIs

MCReset

MCReset performs a complete reset of the axis or controller, leaving the specified axis (or axes) in
the disabled state.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to reset.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

Comments
Setting the Axis In parameter to ALL AXES (a value of zero) will cause the specified controller to be
reset (including all installed axes).

If you have enabled the hardware reset feature of the DCX-AT, or DCX-PC100 controllers MCReset
will perform a hard reset when Axis In is equal to ALL AXES (a value of zero), or a soft reset when
Axis In specifies a particular axis. If this feature is off (the default state), MCReset issues the “RT”
command to the board to perform any reset (this is a "soft" reset). On the DCX-AT200 and DCX-
AT300 you must set jumper JP2 to connect pins 1 and 2 if Hard Reset is enabled, or connect pins 5
and 6 (factory default) if Hard Reset is disabled. On the DCX-PC100 you must set jumper JP4 to
connect pins 1 and 2 if Hard Reset is enabled, or connect pins 5 and 6 (factory default) if Hard Reset
is disabled. See the Motion Control Panel online help for how to enable the MCAPI Hardware Reset
feature. At this time, the DCX-PCI controllers only support soft resets.

Compatibility
The DC2 series, DCX-PC100, DCX-AT100, and DCX-AT200 (prior to firmware version 1.2a)
controllers do not support the resetting of individual axes. In these cases when this command is
executed, the Axis In parameter is ignored and a controller reset is performed.

116 Precision MicroControl

 System VIs

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 2.0 or higher

MCCL Reference
RT

See Also
MCAbort, MCStop

LabVIEW Programming Manual 117

System VIs

MCTranslateErrorEx

MCTranslateErrorEx translates the numeric error code returned by a Motion VI into a readable string
message.

Parameters
 Error Code is a numeric error code returned by one of the Motion VIs.

 Buffer In is the string buffer that will hold the error message string. It is recommended

that Buffer In be at least 64 characters long.

 Buffer Out contains the error message string,

Comments
For details about specific error codes see the Error Codes table in Appendix A.

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

See Also
MCGetError

118 Precision MicroControl

Chapter Contents

MCCommand MCPutRam

MCGetRam MCPuts

MCGets MCReply

120 Precision MicroControl

Low-Level OEM VIs

These VI's provide a low-level interface to the motion control card. They permit you
ASCII (text) or binary commands directly to the motion control card. See your contr
reference manual for more information.

LabVIEW Programming Manual
Chapter

10

 to read and write
ol card hardware

121

Low-Level OEM VIs

MCCommand

The MCCommand VI downloads a formatted binary command buffer directly to the controller.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Buffer In is a formatted binary command buffer. See your motion control card

hardware reference for more information.

 Size specifies the size of the command buffer, in bytes.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Count is the actual number of bytes transmitted.

Comments
The return value from this VI is the actual number of bytes downloaded. Because of the nature of the
binary interface, the return value will be equal to either the buffer size (value of the Size argument),
indicating the command buffer was successfully downloaded, or zero, indicating a problem
communicating with the controller.

The binary interface is described in detail in the hardware manual that accompanied your controller.
The user of this VI is responsible for correctly formatting the buffer - no checking is performed by the
VI.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

See Also
MCReply

122 Precision MicroControl

 Low-Level OEM VIs

MCGetRam

The MCGetRam function reads Length bytes from controller memory beginning at memory location
Offset.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Offset specifies the starting controller memory address to read from.

 Buffer In is a buffer for the values read from controller memory. This buffer must be at

least Length bytes long!

 Length specifies the size of the Buffer, in bytes.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Buffer Out is the filled buffer.

Comments
No range checking is performed on Offset or Length - it is the user’s responsibility to supply valid
values for these arguments. Consult your controller hardware manual for details on the controller
memory map.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

See Also
MCPutRam

LabVIEW Programming Manual 123

Low-Level OEM VIs

MCGets

The MCGets VI reads a null-terminated ASCII string of up to Size characters from the controller
ASCII interface.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Buffer In is pre-allocated buffer, large enough to hold the reply from the control card.

 Size specifies the maximum number of characters allowed in the output buffer.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Buffer Out is the ASCII reply from the control card.

 Count is the actual number of bytes read.

Comments
The return value from this VI is number of bytes actually read from the controller. This VI will wait for a
reply for as long as the controller is busy processing commands and will only return a zero when the
controller is idle and there are no reply characters.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order
to use this command.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

See Also
MCPuts

124 Precision MicroControl

 Low-Level OEM VIs

MCPutRam

The MCPutRam VI writes Length bytes into controller memory beginning at memory location Offset.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Offset specifies the beginning location in controller memory to write the data to.

 Buffer In contains the data to be written into controller memory. This buffer must be at

least Length bytes long!

 Length specifies the size of the Buffer, in bytes.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

Comments
Consult your controller hardware manual for details on the controller memory map.

!

No range checking is performed on Offset or Length. It is the caller’s
responsibility to supply valid values for these arguments. Writing directly
to dual ported ram can cause unpredictable results. USE THIS
FUNCTION WITH EXTREME CAUTION!

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

See Also
MCGetRam

LabVIEW Programming Manual 125

Low-Level OEM VIs

MCPuts

The MCPuts VI writes a NULL terminated command string to the controller ASCII interface.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Buffer In is a null-terminated ASCII command string. See your motion control card

hardware reference for more information.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Count is the actual number of bytes transmitted.

Comments
This VI returns the number of characters actually written to the controller. This number may be less
than the length of the string if the controller becomes busy and stops accepting characters.

Remember to include a carriage return "\r" in all command strings in order for the command to be
executed.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order
to use this command.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

See Also
MCGets

126 Precision MicroControl

 Low-Level OEM VIs

MCReply

The MCReply VI reads a binary reply of up to Size bytes from the controller.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Buffer In is a pre-allocated buffer for the reply.

 Size specifies the size of the reply buffer, in bytes.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Buffer Out is a buffer containing the binary reply from the control card.

 Count is the actual number of bytes received from the motion control card.

Comments
The return value from this VI is the actual number of bytes read. This value may be less than the
argument Size, but it will never exceed Size. If the controller has no reply ready the return value will
be zero.

This VI waits for a reply for as long as the controller is busy - it returns with a return value of zero if no
reply is (or will be) available.

i

You must open the controller in ASCII mode (MC_OPEN_ASCII) in order
to use this command.

Requirements
MCAPI: version 1.0 or higher
Motion VI Library: version 1.0 or higher

LabVIEW Programming Manual 127

Low-Level OEM VIs

See Also
MCCommand

128 Precision MicroControl

Chapter Contents

MCDLG_ConfigureAxis MCDLG_RestoreDigitalIO

MCDLG_ControllerInfo MCDLG_SaveAxis

MCDLG_DownloadFile MCDLG_SaveDigitalIO

MCDLG_Initialize MCDLG_Scaling

MCDLG_RestoreAxis MCDLG_SelectController

130 Precision MicroControl

Motion Dialog VIs

The Common Motion Dialog library includes easy-to-use VIs for the control and con
motion controller. By combining these functions in a single library we've made it eas
to include the Common Motion Dialog functionality in their application programs. VI
the configuration of servo and stepper axes, scaling setup, controller selection, file
save/restore of motor settings.

LabVIEW Programming Manual
Chapter

11

figuration of your
y for programmers

s are provided for
download, and

131

Motion Dialog VIs

MCDLG_ConfigureAxis

MCDLG_ConfigureAxis displays a servo or stepper axis setup dialog that permits user configuration
of the axis.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to configure.

 Title specifies an optional title for the dialog box. Leave blank to use the default value.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
This VI invokes a comprehensive, ready-to-use setup dialog for stepper and servo motor axis types.
The dialog initializes itself by querying the motion controller for the current axis settings. Any changes
the user makes are sent to the motion controller if the user dismisses the dialog by pressing the OK
button.

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

See Also
MCDLG_Initialize, MCDLG_RestoreAxis, MCDLG_SaveAxis

132 Precision MicroControl

Motion Dialog VIs

MCDLG_ControllerInfo

MCDLG_ControllerInfo displays configuration information about the specified motion controller.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Title specifies an optional title for the dialog box. Leave blank to use the default value.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
This VI displays a read only dialog providing information on the current motion controller configuration
and capabilities (this information is typically used by programs to control execution - can the controller
multi-task? Is contouring supported?).

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

See Also
MCDLG_Initialize

LabVIEW Programming Manual 133

Motion Dialog VIs

MCDLG_DownloadFile

The MCDLG_DownloadFile VI opens the specified file and downloads the contents to the specified
controller.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Filename specifies the name of the command file to be downloaded (this filename may

include a drive letter and path).

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
If you routinely configure a motion controller with macros this function makes it easy to download
those macros to the motion controller (simply save the macros in a text file and pass the name of that
file to this VI).

i
The handle passed to this VI must have been opened in ASCII mode.

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

See Also
MCDLG_Initialize

134 Precision MicroControl

Motion Dialog VIs

MCDLG_Initialize

MCDLG_Initialize must be called before any other MCDLG VIs are used.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
Using MCDLG_Initialize ensures that internal data structures in the MCDLG Library are correctly
initialized.

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

LabVIEW Programming Manual 135

Motion Dialog VIs

MCDLG_RestoreAxis

The MCDLG_RestoreAxis VI restores the settings of the given axis to a previously saved state.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to restore settings for. This value may be set to 0 (all

axes) to restore settings for all axes on a particular controller.

 Flags may be set to a non-zero value to selectively disable the restoring of certain

groups of settings. Leave this value set to zero (the default) to restore all settings. See
the MCDLG Reference (included with the Motion Control API) online help for details of
the values for Flags.

 INI File specifies the name of the INI file to retrieve the settings from. Leave this string

blank to use the default file (MCAPI.INI).

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
MCDLG_SaveAxis encodes the motion controller type and module type into signature that is saved
with the axis settings. MCDLG_RestoreAxis checks for a valid signature before restoring the axis
settings. If you make changes to your hardware configuration (i.e. change module types or controller
type) MCDLG_RestoreAxis will refuse to restore those settings.

You may specify ALL AXES (a value of zero) for the Axis In parameter in order to restore the
parameters for all axes installed on a motion controller with a single call to this function.

136 Precision MicroControl

Motion Dialog VIs

Restoring the parameters to an axis while it is moving may result in erratic behavior (such as when
you choose to include the motor position in the restored parameters). The flag
MCDLG_CHECKACTIVE (a value of 2048) forces this function to check each restored axis to see if it
is active before it proceeds. By default MCDLG_CHECKACTIVE (a value of 2048) will skip the restore
of an active axis, but if you also include the flag MCDLG_PROMPT (a value of 1), which would yield a
flag of 2049, the user will be prompted for how to proceed.

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

See Also
MCDLG_Initialize, MCDLG_SaveAxis

LabVIEW Programming Manual 137

Motion Dialog VIs

MCDLG_RestoreDigitalIO

MCDLG_RestoreDigitalIO restores the settings of the all the digital I/O channels between Start
Channel and End Channel (inclusive) to their previously saved states.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Start Channel specifies the starting channel number to restore settings for. This value

may be set to 0 to specify the first channel on a controller.

 End Channel specifies the ending channel number to restore settings for. This value

may be set to 0 to specify the last channel on a controller.

 INI File specifies the name of the INI file to retrieve the settings from. Leave this string

blank to use the default file (MCAPI.INI).

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
By setting Start Channel and End Channel both to zero this VI will automatically restore all the digital
I/O channels on a motion controller.

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

See Also
MCDLG_Initialize, MCDLG_SaveDigitalIO

138 Precision MicroControl

Motion Dialog VIs

MCDLG_SaveAxis

The MCDLG_SaveAxis VI saves the settings of the given axis, allowing them to be restored at a
latter time.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to save settings for. This value may be set to 0 (all

axes) to save settings for all axes on a particular controller.

 Flags may be set to a non-zero value to selectively disable the saving of certain

groups of settings. Leave this value set to zero (the default) to save all settings. See
the MCDLG Reference (included with the Motion Control API) online help for details of
the values for Flags.

 INI File specifies the name of the INI file to save the settings to. Leave this string blank

to use the default file (MCAPI.INI).

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
MCDLG_SaveAxis encodes the motion controller type and module type into signature that is saved
with the axis settings. MCDLG_RestoreAxis checks for a valid signature before restoring the axis
settings. If you make changes to your hardware configuration (i.e. change module types or controller
type) MCDLG_RestoreAxis will refuse to restore those settings.

You may specify the constant ALL AXES (a value of zero) for the Axis In parameter in order to save
the parameters for all axes installed on a motion controller with a single call to this function. Setting

LabVIEW Programming Manual 139

Motion Dialog VIs

Axis In to -1 will cause MCDLG_SaveAxis to delete all of the stored axis information for this
controller.

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

See Also
MCDLG_Initialize, MCDLG_RestoreAxis

140 Precision MicroControl

Motion Dialog VIs

MCDLG_SaveDigitalIO

MCDLG_SaveDigitalIO saves the settings of the all the digital I/O channels between Start Channel
and End Channel (inclusive) to a file, allowing them to be easily restored to those settings at a latter
time.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Start Channel specifies the starting channel number to save settings for. This value

may be set to 0 to specify the first channel on a controller.

 End Channel specifies the ending channel number to save settings for. This value

may be set to 0 to specify the last channel on a controller.

 INI File specifies the name of the INI file to retrieve the settings from. Leave this string

blank to use the default file (MCAPI.INI).

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
By setting Start Channel and End Channel both to zero this function will automatically save all the
digital I/O channels on a motion controller.

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

See Also
MCDLG_Initialize, MCDLG_RestoreDigitalIO

LabVIEW Programming Manual 141

Motion Dialog VIs

MCDLG_Scaling

MCDLG_Scaling displays a scaling setup dialog and, if the motion controller supports scaling, allows
the user to change the scaling parameters.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Handle In is the controller handle returned by the MCOpen VI.

 Axis In selects the axis number to set the scaling of.

 Flags may be set to a non-zero value to change the behavior of the scaling dialog.

Leave this value set to zero for the default behavior. See the MCDLG Reference
(included with the Motion Control API) online help for details of the values for Flags.

 Title specifies an optional title for the dialog box. Leave blank to use the default value.

 Handle Out is an output copy of the Handle In value, allowing motion VIs to be easily

cascaded.

 Axis Out is an output copy of the Axis In value, allowing motion VIs to be easily

cascaded.

 Error is zero if there were no errors or a non-zero error code if there was an error.

Comments
For controllers that don't support scaling the Motion Control API will fill in default values (zero for
offsets, one for factors). MCDLG_Scaling will display these defaults as read-only. For advanced
controllers such as the DCX-AT and the DCX-PCI MCDLG_Scaling will display the current scale
factors and allow the user to change them.

i

Scaling changes will take effect following the next motor on command
(MCEnableAxis) after MCDLG_Scaling completes.

142 Precision MicroControl

Motion Dialog VIs

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

See Also
MCDLG_Initialize

LabVIEW Programming Manual 143

Motion Dialog VIs

MCDLG_SelectController

MCDLG_SelectController displays a list of installed controllers and allows the user to select a
controller from the list.

Parameters
 Execute specifies whether the VI should execute or skip execution. The default value

for execute is TRUE, allowing the VI to execute normally. This input may be wired to a
Boolean switch to control the VI's execution. See the discussion of the Execute Input in
Chapter 3 for more information.

 Current ID is the ID of the currently selected controller (set to –1 to ignore). The

controller matching this ID will be pre-selected when the dialog first appears

 Axis In selects the axis number to set the scaling of.

 Flags is not currently supported and should be left blank.

 Title specifies an optional title for the dialog box. Leave blank to use the default value.

 New ID is the ID of the controller selected by the user, or –1 if no controller was

selected (or available). You must use the MCOpen VI with this value in order to use
this controller.

Comments
This VI displays a list of installed controllers and allows the user to select one from the list. If a valid ID
is given for Current ID that controller will be highlighted in the list as the default selection (set Current
ID to -1 prevent a default selection). If no motion controllers have been configured for use with the
Motion Control Applet in the Motion Control Panel, a message is displayed indicating that no
controllers are configured and New ID will be set to -1.

Requirements
MCAPI: version 2.1 or higher
Motion VI Library: version 2.0 or higher

See Also
MCDLG_Initialize

144 Precision MicroControl

Error Codes

Motion VI Library error messages are listed numerically in the table below. Wher
action has been included in the column labeled Description.

LabVIEW Programming Manual
Appendix

A

e possible corrective

145

Error Codes

Error Constant Description

0 MCERR_NOERROR No error has occurred.
1 MCERR_NO_CONTROLLER No controller assigned at this ID. Use MCSETUP

to configure a controller.
2 MCERR_OUT_OF_HANDLES MCAPI driver out of handles. The driver is limited

to 32 open handles. Applications that do not call
MCClose when they exit may leave handles
unavailable, forcing a reboot.

3 MCERR_OPEN_EXCLUSIVE Cannot open - another application has the
controller opened for exclusive use.

4 MCERR_MODE_UNAVAIL Controller already open in different mode. Some
controller types can only be open in one mode
(ASCII or binary) at a time.

5 MCERR_UNSUPPORTED_MODE Controller doesn't support this mode for MCOpen
- i.e. ASCII or binary.

6 MCERR_INIT_DRIVER Couldn't initialize the device driver.
7 MCERR_NOT_PRESENT Controller hardware not present.
8 MCERR_ALLOC_MEM Memory allocation error. This is an internal

memory allocation problem with the DLL, contact
Technical Support for assistance.

9 MCERR_WINDOWSERROR A windows function returned an error - use
GetLastError() under WIN32 for details

10 - reserved
11 MCERR_NOTSUPPORTED Controller doesn't support this feature.
12 MCERR_OBSOLETE Function is obsolete.
13 MCERR_CONTROLLER Invalid controller handle.
14 MCERR_WINDOW Invalid window handle.
15 MCERR_AXIS_NUMBER Axis number out of range.
16 MCERR_AXIS_TYPE Axis type doesn't support this feature.
17 MCERR_ALL_AXES Cannot use MC_ALL_AXES for this function.
18 MCERR_RANGE Parameter was out of range.
19 MCERR_CONSTANT Constant value inappropriate.
20 MCERR_UNKNOWN_REPLY Unexpected or unknown reply.
21 MCERR_NO_REPLY Controller failed to reply.
22 MCERR_REPLY_SIZE Reply size incorrect.
23 MCERR_REPLY_AXIS Wrong axis for reply.
24 MCERR_REPLY_COMMAND Reply is for different command.
25 MCERR_TIMEOUT Controller failed to respond.
26 MCERR_BLOCK_MODE Block mode error. Caused by calling

MCBlockEnd() without first calling
MCBlockBegin() to begin the block.

27 MCERR_COMM_PORT Communications port (RS232) driver reported an
error.

146 Precision MicroControl

Error Codes

Error Constant Description
28 MCERR_CANCEL User canceled action (such as when an MCDLG

dialog box is dismissed with the CANCEL button.
29 MCERR_NOT_INITIALIZED Feature was not correctly initialized before being

enable or used.

LabVIEW Programming Manual 147

Printing a PDF Document

Introduction to PDF
PDF stands for Portable Document Format. It is the de facto standard for transp
documents. PDF files are based on the PostScript language imaging model. Thi
color-precise printing on almost all printers.

Printing a complete PDF document
It is not recommended that large PDF documents be printed on personal comp
‘wear and tear’ incurred by these units, coupled with the difficulties of two sided
resulting in degraded performance of the printer and a whole lot of wasted paper
that PDF document be printer by a full service print shop that uses digital (comp
systems with paper collating/sorting capability.

Printing selected pages of a PDF document
While viewing a PDF document with Adobe Reader (or Adobe Acrobat), any pag
can be printed by a personal computer printer by:

 Selecting the printer icon on the tool bar
 Selecting Print from the Adobe File menu

Paper
The selection of the paper type to be used for printing a PDF document should b
market for the document. For a user’s manual with extensive graphics that is prin
a page the minimum recommended paper type is 24 pound. A heavier paper sto
will reduce the ‘bleed through’ inherent with printed graphics. Typically the front
are printed on heavy paper stock (50 to 60 pound).

Binding
Unlike the binding of a book or catalog, a user’s manual distributed in as a PDF
‘comb’ or ‘coil’ binding. This service is provided by most full service print shops.

LabVIEW Programming Manual
Appendix

B

orting electronic
s enables sharp,

uter printers. The
printing, typically
. PMC recommends
uter controlled) copy

e or range of pages

e based on the target
ted on both sides of

ck (26 – 30 pound)
and back cover pages

file will typically use
Coil binding is

149

Printing a PDF Document

suitable for documents with no more than 100 pieces of paper (24 pound). Comb binding is
acceptable for documents with as many as 300 pieces of paper (24 pound). Most print shops stock a
wide variety of ‘combs’. The print shop can recommend the appropriate ‘comb’ based on the number
of pages.

Pricing
The final cost for printing and binding a PDF document is based on:

• Quantity per print run
• Number of pages
• Paper type

The price range for printing and binding a PDF document similar to this user manual will be $15 to
$30 (printed in Black & White) in quantities of 1 to 10 pieces.

Obtaining a Word 2000 version of this user manual
This user document was written using Microsoft’s Word 2000. Qualified OEM’s, Distributors, and
Value Added Reps (VAR’s) can obtain a copy of this document for

• Editing
• Customization
• Language translation.

Please contact Precision MicroControl to obtain a Word 2000 version of this document.

150 Precision MicroControl

Index

A

AB... 53
Acceleration Gain 35, 75, 76
AG .. 36
AH... 33
AL ... 43, 44
AR... 43, 44
AT ... 71

C

CF... 102
CH .. 101
CI .. 101
CL ... 101
CM .. 41
CN .. 102
Constant .. 45, 46, 89
CT... 101

D

Deceleration Gain 35, 75, 76
Derivative Gain...................................... 35, 75
DerSample Period................................. 35, 75
DG .. 36
DH .. 42
DI .. 54

DS..

F

Following Error
FR..

G

GH ...
GM...
GO ...

H

Hard Mode
Help

AppNOTES...........................
MCAPI.HLP
MCDLG.HLP
MCGUIDE.HLP
MCLV.HLP
Online
TechNOTES.........................
Tutorials................................

High Limit
High Set
HL ..

LabVIEW Programming Manual
Index
......................34

..........35, 75, 84

......................36

......................58

......................41

......................57

......................38

....................... iv

........................5

........................6

........................5

........................4

........................4

....................... iv

....................... iv

................38, 82

..........38, 46, 82

................39, 83

151

Index
I

IL .. 36
Integral Gain.. 35, 75
Integration Limit.................................... 35, 75

L

LF ... 39, 83
LL.. 39, 83
LM... 39, 83
LN ... 39, 83
Low Limit ... 38, 82
Low Set .. 38, 46, 82

M

MA .. 11, 59
MC .. 114
MC_ALL_AXES .. 146
MC_DIO_HIGH... 100
MC_DIO_LOW.. 100
MC_OPEN_ASCII....................... 124, 126, 127
MC400 .. 108
MC500 .. 106
MC520 .. 106
MCAbort....................... 22, 52, 56, 61, 62, 117
MCBlockBegin() 146
MCBlockEnd() .. 146
MCCL.. 9

Error Code... 10
Format ... 10

MCClose 112, 115, 146
MCCommand..................................... 122, 128
MCConfigureDigitalIO 100, 102, 105, 108
MCDecodeStatus 64, 68, 91
MCDirection... 54
MCDLG_CHECKACTIVE 137
MCDLG_ConfigureAxis 132
MCDLG_ControllerInfo............................. 133
MCDLG_DownloadFile 134
MCDLG_Initialize 132, 133, 134, 135, 137,

138, 140, 141, 143, 144
MCDLG_PROMPT 137
MCDLG_RestoreAxis........ 132, 136, 139, 140
MCDLG_RestoreDigitalIO 138, 141
MCDLG_SaveAxis..... 132, 136, 137, 139, 140
MCDLG_SaveDigitalIO 138, 141
MCDLG_Scaling.. 142
MCDLG_SelectController......................... 144
MCEnableAxis..21, 25, 52, 53, 55, 61, 62, 142
MCEnableBacklash..................................... 26
MCEnableDigitalIO............ 101, 102, 105, 108

MCEnableGearing..28
MCEnableSync...30
MCERR_ALL_AXES146
MCERR_ALLOC_MEM146
MCERR_AXIS_NUMBER............................146
MCERR_AXIS_TYPE..................................146
MCERR_CANCEL.......................................147
MCERR_COMM_PORT146
MCERR_CONSTANT..................................146
MCERR_CONTROLLER.............................146
MCERR_INIT_DRIVER146
MCERR_MODE_UNAVAIL146
MCERR_NO_CONTROLLER146
MCERR_NO_REPLY146
MCERR_NOERROR146
MCERR_NOT_INITIALIZED147
MCERR_NOT_PRESENT...........................146
MCERR_NOTSUPPORTED146
MCERR_OBSOLETE146
MCERR_OPEN_EXCLUSIVE146
MCERR_OUT_OF_HANDLES....................146
MCERR_RANGE...146
MCERR_REPLY_AXIS146
MCERR_REPLY_COMMAND.....................146
MCERR_REPLY_SIZE................................146
MCERR_TIMEOUT146
MCERR_UNKNOWN_REPLY.....................146
MCERR_UNSUPPORTED_MODE146
MCERR_WINDOW......................................146
MCGetAccelerationEx31, 69
MCGetAnalog103, 107
MCGetAuxEncPosEx.............................33, 70
MCGetBreakpointEx72
MCGetDecelerationEx34, 73
MCGetDigitalIO101, 102, 105, 108
MCGetError ..113, 118
MCGetFilterConfig36, 75, 85
MCGetFollowingError77
MCGetGain ...37, 79
MCGetIndexEx ...80
MCGetLimits ..39, 82
MCGetOptimalEx78, 84
MCGetPositionEx42, 78, 86
MCGetRam ...123, 125
MCGetRegisterDouble43, 44, 87, 88
MCGetRegisterLong43, 44, 87, 88
MCGets ...124, 126
MCGetScale..46, 89
MCGetStatus64, 68, 91
MCGetTargetEx..92
MCGetTorque ...48, 94
MCGetVelocityEx49, 96
MCGo ..30, 57
MCGoHome ..58

152 Precision MicroControl

Index
MCMacroCall ... 114
MCMoveAbsolute................ 58, 59, 60, 92, 93
MCMoveRelative 59, 60, 92, 93
MCOpen 112, 115, 146
MCPutRam... 125
MCPuts .. 114, 126
MCReply .. 127
MCReset .. 116
MCSetAcceleration 31, 69
MCSetAnalog 104, 106
MCSetAuxEncPos........................... 32, 70, 71
MCSetDeceleration 34, 74
MCSetFilterConfig 35, 36, 76, 84, 85
MCSetGain... 37, 79
MCSetLimits .. 38, 83
MCSetOperatingMode . 40, 52, 53, 54, 57, 61,

62
MCSetPosition ...42, 58, 59, 60, 80, 81, 85, 86
MCSetRegisterDouble 43, 44, 87, 88
MCSetRegisterLong 43, 44, 87, 88
MCSetScale22, 45, 55, 56, 63, 86, 90
MCSetServoOutputPhase 47
MCSetTorque .. 48, 95
MCSetVelocity....................................... 49, 96
MCStop 22, 53, 56, 57, 61, 117
MCTranslateErrorEx 113, 118
MCWait... 63, 65
MCWaitForDigitalIO 99, 108
MCWaitForStop............. 52, 53, 61, 62, 63, 64
MF .. 22, 56
MN .. 11, 22, 56
Mode .. 38, 82
Motion Integrator... 25
MR .. 11, 60

N

NS... 30

O

OA .. 106
Offset ... 45, 46, 89

P

PDF
described... 149
document printing.................................... 149
viewing a document................................. 149

PH... 47
PM .. 41
Printing a PDF document............................ 149

Programming
MCCL ...9
Win Control...9

Q

QM...41

R

Rate ...45, 89, 90
RP..11, 12
RT..116, 117

S

SA..31
Scale ...45, 46, 89
Scaling ..45, 46
SD..36
SE..36
SG ...37
SI ...36
SM ...29
SN..30
Soft Mode ...38, 46
SQ ...48
SS..29
ST ..61
SV..49

T

TA ..104
TB ..72
TC..105
TD..76
TF ..76, 77
TG..76, 79
TI ..76
Time ..45, 90
TL ..76
TO..85
TP ..10, 86
TQ..94
TR..87, 88
TS ..91
TT ..92
Tutorials

Installing a Motion Controller....................... iv
Intro to Motion Control programming........... iv
Intro to PMC .. iv

LabVIEW Programming Manual 153

Index
Servo Systems .. iv
Servo Systems Primer................................. iv
Servo Tuning ... iv

TZ ... 81

U

UK... 46
UO .. 46
UR .. 46
US... 46
UT... 46
UZ... 46

V

VE... 9

Velocity Gain35, 75, 76
VG ...36
VM ...41

W

WA...63
WF ...108
Win Control ..9
WN...108
WS...11, 12, 64

Z

Zero ...45, 89

154 Precision MicroControl

Precision MicroControl Corporation
2075-N Corte del Nogal

Carlsbad, CA 92009-1415 USA

Tel: (760) 930-0101
Fax: (760) 930-0222

www.pmccorp.com

Information: info@pmccorp.com
Technical Support: support@pmccorp.com

	Prologue
	Introduction
	First Time Users
	Required Software
	Install LabVIEW First
	Online Help

	Low-Level Communication
	Win Control and MCCL Commands

	Understanding LabVIEW
	Samples
	The Execute Input
	Cascading VIs
	Self-Documenting Constants

	Motion VI Library Introduction
	VI Listing Introduction

	Parameter Setup VIs
	MCEnableBacklash
	MCEnableGearing
	MCEnableSync
	MCSetAcceleration
	MCSetAuxEncPos
	MCSetDeceleration
	MCSetFilterConfig
	MCSetGain
	MCSetLimits
	MCSetOperatingMode
	MCSetPosition
	MCSetRegisterDouble
	MCSetRegisterLong
	MCSetScale
	MCSetServoOutputPhase
	MCSetTorque
	MCSetVelocity

	Motion VIs
	MCAbort
	MCDirection
	MCEnableAxis
	MCGo
	MCGoHome
	MCMoveAbsolute
	MCMoveRelative
	MCStop
	MCWait
	MCWaitForStop

	Reporting VIs
	MCDecodeStatus
	MCGetAccelerationEx
	MCGetAuxEncPosEx
	MCGetBreakpointEx
	MCGetDecelerationEx
	MCGetFilterConfig
	MCGetFollowingError
	MCGetGain
	MCGetIndexEx
	MCGetLimits
	MCGetOptimalEx
	MCGetPositionEx
	MCGetRegisterDouble
	MCGetRegisterLong
	MCGetScale
	MCGetStatus
	MCGetTargetEx
	MCGetTorque
	MCGetVelocityEx

	Analog & Digital I/O VIs
	MCConfigureDigitalIO
	MCEnableDigitalIO
	MCGetAnalog
	MCGetDigitalIO
	MCSetAnalog
	MCWaitForDigitalIO

	System VIs
	MCClose
	MCGetError
	MCMacroCall
	MCOpen
	MCReset
	MCTranslateErrorEx

	Low-Level OEM VIs
	MCCommand
	MCGetRam
	MCGets
	MCPutRam
	MCPuts
	MCReply

	Motion Dialog VIs
	MCDLG_ConfigureAxis
	MCDLG_ControllerInfo
	MCDLG_DownloadFile
	MCDLG_Initialize
	MCDLG_RestoreAxis
	MCDLG_RestoreDigitalIO
	MCDLG_SaveAxis
	MCDLG_SaveDigitalIO
	MCDLG_Scaling
	MCDLG_SelectController

	Error Codes
	Printing a PDF Document
	Index

