

MOTION CONTROL
For Robotics & Machine Automation

2075-N Corte del Nogal
Carlsbad, CA 92009 • USA

Tel: (760) 930-0101
Fax: (760) 930-0222

E-Mail: support@pmccorp.com
Web: http://www.pmccorp.com

Title: Interfacing to MCCL Macros from Windows Programs
Products(s): All
Keywords: Macros, MCAPI, Interfacing, User Registers
ID#: TN1025
Date: April 9, 1999

Summary
Many times it desirable to take advantage of the programmability of PMC’s motion
controllers from within a Windows program. This is particularly true for time critical tasks
that need to be processed independent of the Windows Operating System, which is not
a real-time system.

More Information
The key to interfacing Windows programs developed using the Motion Control API
(MCAPI) with macro programs that run on the motion controller (written in Motion
Control Command Language – MCCL) is to pass information using the user registers.
Windows programs must use the general purpose registers on the motion controller to
pass values to and from the MCCL macro. Registers are also used to inform the PC
when the macro has completed.

As an example, let’s construct a macro that will average a variable number of analog
input readings (using one of the built in analog input channels on the motion controller.
The macro will accept as arguments the channel number, number of readings, and an
amount of time to wait between readings (dwell time). This example assumes an
advanced motion controller, such as the DCX-AT200, that is capable of multi-tasking
and floating point math. The registers used be the sample are as follows:

Argument Registers
Reg50 - A/D channel number
Reg51 - dwell between readings
Reg52 - number of readings (macro sets to zero when done)
Reg53 – results (average of all analog readings

Registers used internally by macros
Reg01 – sum of readings
Reg02 - number of readings – 1

The actual MCCL code is split into three macros. The startup macro (Macro #40)
initializes the local variables and jumps to the main macro. The main macro (Macro #41)
performs the data acquisition loop and jumps to the finish macro. Finally the finish
macro (Macro #42) calculates the average of the readings and signals the PC that the
macros have finished.

The initialization macro first zeros Reg01, which will be used to hold the sum of the
analog input readings (AL0,AR1). Then it subtracts one from the number of readings
and saves this value in Reg02 for the repeat command “RP” used in the main macro
(RA52,AS1,AR2). Finally it jumps to the main macro (MJ41).

MOTION CONTROL
For Robotics & Machine Automation

2075-N Corte del Nogal
Carlsbad, CA 92009 • USA

Tel: (760) 930-0101
Fax: (760) 930-0222

E-Mail: support@pmccorp.com
Web: http://www.pmccorp.com

The main macro reads an analog value using the channel number contained in Reg50
(GA@50). The sum of all previous readings is then added to this value and the result is
returned to Reg01 (AA@1,AR1). Next the macro is put to sleep for a variable dwell
period (WA@51). This process is repeated n – 1 more times, where n is the total
number of analog readings (RP@2). At the end of the repeat sequence it jumps to the
completion macro (MJ42).

The cleanup macro multiplies the accumulated sum by 1.0 (to convert the value to a
floating point number), moves it to the accumulator, and divides by the number of
readings (AL1.0,AM@1,AD@52). The result is copied to Reg53, and Reg52 is zeroed to
indicate that we have finished.

The Windows program opens the controller in ASCII mode so it can download macros
to the controller. It first clears out any existing macros, then downloads our sample
macros. The controller is then set to binary mode (faster, more robust) for the remainder
of the program. Note that the macros only need to be downloaded once, at the
beginning of the program.

hCtlr = MCOpen(0, MC_OPEN_ASCII, NULL);
MCBlockBegin(hCtlr, MC_RESETM, NULL); // clear old macros
pmcputs(hCtlr, “MD40,AL0,AR1,RA52,AS1,AR2,MJ41\r”);
pmcputs(hCtlr, “MD41,GA@50,AA@1,AR1,WA@51,RP@2,MJ42\r”);
pmcputs(hCtlr, “MD42,AL1.0,AM@1,AD@52,AR53,AL0,AR52\r”);
MCReopen(hCtlr, MC_OPEN_BINARY);

Next we need to “set-up” the registers from a windows program prior to executing the
macros. To do this we use the MCSetRegister() function:

channel = 1; // analog channel number
dwell_msec = 0.005; // dwell time in seconds
nreadings = 1000; // number of readings to average
MCSetRegister(hCtlr, 50, &channel, MC_TYPE_LONG);
MCSetRegister(hCtlr, 51, &dwell_msec, MC_TYPE_DOUBLE);
MCSetRegister(hCtlr, 52, &nreadings, MC_TYPE_LONG);

Finally, we start the macro and wait for Reg52 to go to zero before reading the results:

MCBlockBegin(hCtlr, MC_BLOCK_TASK, 40);
MCBlockEnd(hCtlr, NULL);
do {

MCGetRegister(hCtlr, 52, &done, MC_TYPE_LONG);
} while (done != 0);
MCGetRegister(hCtlr, 53, &results, MC_TYPE_DOUBLE);

